首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Desert soils are infertile, and the ability to improve them by P-fertilization is limited by the solubility of phosphate. We aimed to understand the function of phosphate solubilizing bacteria and the mechanisms behind phosphate solubilization in desert soils. Vegetated and barren desert soils, mine spoil and a fertile temperate grassland loam were sampled. Bacteria and fungi were isolated and identified, and their phosphate-solubilizing abilities were measured in vitro. The release of plant available PO4, SO4, NO3 and NH4 from desert soils did not compare with that of a grassland soil. Desert soils had substantially lower solubilization than grassland, 162 and 99–121 µg PO4-P g?1 dry soil, respectively. Phosphate-solubilizing bacteria and fungi were inhabiting the soils. Si addition increased phosphate solubilization of fungi by 50%. The isolated microbes were shown, using 31P nuclear magnetic resonance (NMR) analysis, to rapidly take-up both intracellular and extracellular phosphate during the phosphate solubilizing process. Desert soil had potentially active microbial populations that are capable to solubilize inorganic phosphorus; S and Si as the limiting factors. Acidification as the main mechanism to solubilize mineral phosphate was not as evident in our desert soils as in former studies dealing more fertile soils.  相似文献   

2.
The objectives of this work were to isolate and characterize walnut phosphate-solubilizing bacteria (PSB) and to evaluate the effect of inoculation with the selected PSB stains to walnut seedlings fertilized with or without insoluble phosphate. Thirty-four PSB strains were isolated and identified under the genera Pseudomonas, Stenotrophomonas, Bacillus, Cupriavidus, Agrobacterium, Acinetobacter, Arthrobacter, Pantoea, and Rhodococcus through a comparison of the 16S ribosomal DNA sequences. All isolated PSB strains could solubilize tricalcium phosphate (TCP) in solid and liquid media. Phosphate-solubilizing activity of these strains was associated with a drop in the pH of medium. A significantly negative linear correlation was found between culture pH and phosphorus (P) solubilized from inorganic phosphate. Three isolates Pseudomonas chlororaphis (W24), Bacillus cereus (W9), and Pseudomonas fluorescens (W12) were selected for shade house assays because of their higher phosphate-solubilizing abilities. Under shade house conditions, application of W24 or W12 remarkably improved plant height, shoot and root dry weight, and P and nitrogen (N) uptake of walnut seedlings. These increases were higher on combined inoculation of PSB with TCP addition. The most pronounced beneficial effect on growth of walnut plants was observed in the co-inoculation of the three PSB strains with TCP addition. In comparison, the isolate of W9 failed to increase available soil P, nutrient levels in plants, or to promote plant growth, suggesting that more insoluble phosphate compounds than tricalcium phosphate should be used as substrates to assess the phosphate-solubilizing ability of PSB under greenhouse conditions. The present results indicated that strains P. chlororaphis or P. fluorescens could be considered for the formulation of new inoculants of walnut, even of more woody plants.  相似文献   

3.
Many soil microorganisms are able to transform insoluble forms of phosphorus to an accessible soluble form, contributing to plant nutrition as plant growth-promoting microorganisms (PGPM). The objective of this work was to isolate, screen and evaluate the phosphate solubilization activity of microorganisms in maize rhizosphere soil to manage soil microbial communities and to select potential microbial inoculants. Forty-five of the best isolates from 371 colonies were isolated from rhizosphere soil of maize grown in an oxisol of the Cerrado Biome with P deficiency. These microorganisms were selected based on the solubilization efficiency of inorganic and organic phosphate sources in a modified Pikovskaya's liquid medium culture containing sodium phytate (phytic acid), soybean lecithin, aluminum phosphate (AlPO4), and tricalcium phosphate (Ca3(PO4)2). The isolates were identified based on nucleotide sequence data from the 16S ribosomal DNA (rDNA) for bacteria and actinobacteria and internal transcribed spacer (ITS) rDNA for fungi. Bacteria produced the greatest solubilization in medium containing tricalcium phosphate. Strains B17 and B5, identified as Bacillus sp. and Burkholderia sp., respectively, were the most effective, mobilizing 67% and 58.5% of the total P (Ca3(PO4)2) after 10 days, and were isolated from the rhizosphere of the P efficient L3 maize genotype, under P stress. The fungal population was the most effective in solubilizing P sources of aluminum, phytate, and lecithin. A greater diversity of P-solubilizing microorganisms was observed in the rhizosphere of the P efficient maize genotypes suggesting that the P efficiency in these cultivars may be related to the potential to enhance microbial interactions of P-solubilizing microorganisms.  相似文献   

4.
Abstract

In a greenhouse study, a significant increase in sunflower (Helianthus annuus L., cv. Hysun 33) dry matter yield was observed with boron (B) application to a B-deficient (hot water-extractable, 0.23 mg B kg?1) calcareous soil of Missa series (Typic Ustochrept). Six rates of B, ranging from 0 to 8 mg B kg?1 soil, were applied as H3BO3 along with adequate basal fertilization of nitrogen (N), phosphorus (P), potassium (K), and zinc (Zn). Four plants of sunflower were grown in each pot; two were harvested after 4 weeks of germination and the other two after 8 weeks. Maximum crop biomass was produced with 1.0 mg B kg ?1, and application of ≥2.0 mg B kg?1 proved toxic, resulting in drastic yield suppressions. Critical B concentration range for deficiency diagnosis in 4‐week‐old sunflower whole shoots appears to be 46–63 mg B kg?1. However, critical concentration in 8‐week‐old plants was much less (i.e., 36 mg B kg?l), presumably due to a dilution effect. As plant's internal B requirement can vary, in fact manifold, depending on the species, plant part, and plant age, only a relevant criterion can help in diagnosing the deficiency effectively.  相似文献   

5.
With the aim to explore the possible role of mineral phosphate-solubilizing bacteria (PSB) in phosphorus (P) cycling in iron-rich, acidic soils, we conducted a survey of PSB naturally colonizing a limonitic crust in the south-east region of Venezuela (Bolívar State). A total of 130 heterotrophic bacterial isolates showing different degrees of mineral tri-calcium phosphate (Ca3(PO4)2)-solubilizing activities were isolated from NBRIP plates. In contrast, no isolates showing iron phosphate (FePO4)- or aluminum phosphate (AlPO4)-solubilizing activities were detected by this experimental approach. The 10 best Ca3(PO4)2-solubilizers were selected for further characterization. These isolates were shown to belong to the genera Burkholderia, Serratia, Ralstonia and Pantoea by partial sequencing analysis of their respective 16S rRNA genes. All the PSB isolates were able to mediate almost complete solubilization of Ca3(PO4)2 in liquid cultures; in contrast, the PSB isolates were less effective when solubilizing FePO4. Two groups of PSB isolates were clearly differentiated on the basis of their Ca3(PO4)2 solubilization kinetics. Acidification of culture supernatants seemed to be the main mechanism for P solubilization. Indeed, gluconic acid was shown to be present in the supernatant of five isolates. Furthermore, detection of genes involved in the production of this organic acid was possible in three isolates by means of a PCR protocol.  相似文献   

6.
Low availability of phosphorus(P) is a major constraint for optimal crop production, as P is mostly present in its insoluble form in soil. Therefore,phosphate-solubilizing bacteria(PSB) from paddy field soils of the Indo-Gangetic Plain, India were isolated, and their abundance was attempted to be correlated with the physicochemical characteristics of the soils. Ninety-four PSB were isolated on Pikovskaya's agar medium, and quantitative phosphate solubilization was evaluated using NBRIP medium. The isolates solubilized P up to a concentration of 1 006 μg mL~(-1) from tricalcium phosphate with the secretion of organic acids. These isolates were identified by 16 S rRNA gene sequence comparison, and they belonged to Gammaproteobacteria(56 isolates),Firmicutes(28 isolates), Actinobacteria(8 isolates), and Alphaproteobacteria(2 isolates). Phylogenetic analysis confirmed the identification by clustering the isolates in the clade of the respective reference organisms. The correlation analysis between PSB abundance and physicochemical characteristics revealed that the PSB population increased with increasing levels of soil organic carbon, insoluble P, K~+, and Mg~(2+). The promising PSB explored in this study can be further evaluated for their biofertilizer potential in the field and for their use as potent bio-inoculants.  相似文献   

7.
Ten phosphate-solubilizing bacterial strains belonging to genera Pseudomonas, Burkholderia, Enterobacter, Serratia, Klebsiella, and Aeromonas were tested for mineral phosphate solubilization activity in Pikovskaya's broth using different phosphate sources at four temperatures (15, 25, 35, and 45 οC). Dicalcium and tricalcium phosphate were solubilized more effectively (≥1000 mg L?1) than ferric and rock phosphate (≥100 mg L?1) and 35 °C was found to be the optimum temperature. Although Klebsiella and Aeromonas spp. are well known for their dinitrogen (N2)–fixing ability, to the best of our knowledge, this is the first report of inorganic phosphate solubilization by Klebsiella terrigena and Aeromonas vaga. Interestingly, A. vaga BAM-77 is the most efficient strain at solubilizing inorganic phosphorus (P) even in the presence of 8% sodium chloride (NaCl) at pH 10. These findings indicate that all four strains are efficient P solubilizers under variable conditions of temperature, pH, and P source and thus can be recommended for P fertilization in different soils.  相似文献   

8.
Red soils in subtropical regions are often low in available phosphorus (P), a vital plant nutrient. Phosphate-solubilizing microorganisms (PSMs) can release P from phosphate reservoir, making it accessible to plants. However, the complex interactions between PSMs and minerals in red soils are not yet fully understood. In this study, we investigated the effects of Aspergillus niger, a typical phosphate-solubilizing fungus (PSF), on phosphate dissolution in two representative red soils – an acidic soil and an alkaline soil. In the acidic red soil, the fungal abundance reached 3.01 × 10 7 cfu g−1 after a 28-day incubation period, with respiration of ~2000 mg C kg−1. The secretion of oxalic acid promoted P release from inorganic phosphate (from ~1 to 187 mg kg−1). Additionally, the contents of amorphous Fe/Al oxides decreased, which otherwise could have contributed to P sorption in the soil. In contrast, P availability declined in the alkaline red soil after the addition of A. niger, regardless of the P source (inorganic or organic phosphate). Meanwhile, the fungal respiration decreased to ~780 mg C kg−1. Therefore, alkaline red soils with abundant carbonates are susceptible to P deficiency due to both the diminished function of PSMs and strong soil buffering. These findings have important implications for sustainable agriculture on alkaline red soils, as they suggest that the use of PSMs to improve P availability may be limited.  相似文献   

9.
Boron (B) deficiency hampers cotton (Gossypium hirsutum L.) growth and productivity globally, especially in calcareous soils. The crop is known as a heavy feeder of B; however, its reported plant analysis diagnostic norms for B-deficiency diagnosis vary drastically. In a 2-year field experiment on a B-deficient [hydrochloric acid (HCl)–extractable 0.47 mg B kg?1], calcareous, Typic Haplocambid, we studied the impact of soil-applied B on cotton (cv. CIM-473) growth, productivity, plant tissue B concentration, and seed oil composition. Boron was applied at 0.0, 1.0, 1.5, 2.0, 2.5, and 3.0 kg B ha?1, as borax (Na2B4O7·10H2O), in a randomized complete block design with four replications, along with recommended rates of nitrogen (N), phosphorus (P), potassium (K), and zinc (Zn). Boron use improved crop growth, decreased fruit shedding, and increased boll weight, leading to seed cotton yield increases up to 14.7% (P < 0.05). Improved B nutrition of plants also enhanced seed oil content (P < 0.05) and increased seed protein content (P < 0.05). Fiber quality was not affected. Fertilizer B use was highly cost-effective, with a value–cost ratio of 12.3:1 at 1 kg B ha?1. Fertilizer B requirement for near-maximum (95% of maximum) seed cotton yield was 1.1 kg B ha?1 and HCl-extractable soil B requirement for was 0.52 kg ha?1. Leaf tissue B requirement varied with leaf age as well as with plant age. In 30-day plants (i.e., at squaring), B-deficiency diagnosis critical level was 45.0 mg kg?1 in recently matured leaves and 38.0 mg kg?1 in youngest open leaves; at 60 days old (i.e., at flowering), critical concentration was 55.0 mg kg?1 in mature leaves and 43.0 mg kg?1 in youngest leaves. With advancement in plant age critical B concentration decreased in both leaf tissues; that is, in 90-day-old plants (i.e., at boll formation) it was 43.0 mg kg?1 in mature leaves and 35.0 mg kg?1 in the youngest leaves. As critical concentration range was narrower in youngest leaves (i.e., 35–43 mg kg?1) compared with mature leaves (i.e., 43–55 mg kg?1), B concentration in youngest leaves is considered a better indicator for deficiency diagnosis.  相似文献   

10.
A large proportion of phosphate fertilizer applied to calcareous soils reacts with calcium. Changes in soil phosphorus (P) availability after single application of biochar and phosphate-solubilizing bacteria have been reported. However, interaction of biochar (increasing soil pH) and phosphate-solubilizing bacteria (decreasing soil pH) on P availability in calcareous soil is not well known. An incubation experiment was conducted to study how the interactive effects of biochars (produced from wheat straw and cow manure at 300°C and 500°C with residence time of 1, 3 and 6 h) at different rates (0, 5 and 10 t ha?1) and phosphate-solubilizing Pseudomonas sp. IS8b2 affected on content of soil available P after 0, 60, 120 and 180 days of incubation (DOI) in a calcareous soil. After 60 DOI, the maximum value of available P (50.31 mg kg?1) was observed in the compound treatment of Pseudomonas sp. IS8b2 and wheat straw biochar (10 t ha?1) produced at 500°C with residence time of 3 h. We conclude that the combination use of wheat straw biochar and phosphate-solubilizing bacterium is promising to potentially improve soil P availability in calcareous soil, but further research at field scale is needed to confirm this.  相似文献   

11.
ABSTRACT

Phosphate-solubilizing microbes (PSM) are widely distributed in the rhizosphere and helps plant to acquire phosphates from soil. The availability of phosphates in soil are governed by several factors among which the proton exchange capacity has been regarded to be the most important factor involved in cation complex formations with soluble phosphates making them unavailable to plants, thereby disturbing the phosphorus cycling events found in arable soils. PSM solubilizes the cation complexes and thereby improves the functioning of phosphorus cycle in soil. In addition to involvement in biogeochemical cycling events, PSM have been also found to have antagonistic potential against several plant phytopathogens. These biocontrol microbes represent the most abundant groups of soil microflora. Among which some nutrient solubilizers have been used for effective biocontrol of important plant diseases. This review article shows contributions of different plant growth promoters used in nutrient and disease management practices in agriculture.

Abbreviations: P (phosphorus), PSM (phosphate-solubilizing microbes), PSB (phosphate-solubilizing bacteria), PSF (phosphate-solubilizing fungi), PGPM (plant growth-promoting microbes), PGPB (plant growth-promoting bacteria), SAR (systemic acquired resistance), ISR (induced systemic resistance), TCP (tri-calcium phosphate), HCN (hydrogen cyanide), IAA (indole-3-acetic acid), aPhosphorus [(SSP) single super phosphate, RP (rock phosphate), PM (poultry manure) and FYM (farm yard manure)], PAL (phenylalanine ammonia lyase), ESI-MS (electrospray ionization mass spectrometry), DAPG (2,4-diacetylphloroglucinol) and NMR (1H nuclear magnetic resonance).  相似文献   

12.
Phosphate-solubilizing bacteria (PSB) were isolated and characterized from the rhizosphere and bulk soils of Areca catechu plants. A long history of phosphate fertilizer use has elicited a direct effect on the incidence of soil PSB. Their abundance and ability to solubilize insoluble phosphate were significantly greater (P?<?0.0001) in soils with low available phosphorus (P) content than in other soil types. Three efficient PSB strains, namely, ASL12, ASG34, and ADH302, were identified as Acinetobacter pittii, Escherichia coli, and Enterobacter cloacae by characterizing 16S rRNA sequences and biochemical characteristics; they produced gluconic acid at concentrations of 7862.4, 4306.5, and 2663.8 mg L?1, respectively. The highest amount of solubilized P was determined in Pikovskaya (PVK) medium for the bacterial strain ASL12. The secretion of gluconic acid was related to the available P of rhizosphere soils and P solubilization. Under shaded conditions, the application of these three strains significantly improved plant height, shoot and root dry weight, and nutrient uptake of A. catechu seedlings. A further increase in P solubilization was observed by co-inoculating the three strains and also applying tricalcium phosphate (TCP) or aluminum phosphate (AP). A significant (P?<?0.05) correlation was also observed between P-solubilization activity and A. catechu plant growth in pot experiments. Thus, the three strains can be potentially applied as inoculants in tropical and aluminum-rich soils.  相似文献   

13.
ABSTRACT

The exploitation of phosphate mines generates an important quantity of phosphate sludge that remains accumulated and not valorized. In this context, composting with organic matter and rhizospheric microorganisms offers an interesting alternative and that is more sustainable for agriculture. This work aims to investigate the synergetic effect of arbuscular mycorrhizal fungi (AMF), phosphate-solubilizing bacteria (PSB) and phospho-compost (PC), produced from phosphate-laundered sludge and organic wastes, and their combination on plant growth, phosphorus solubilization and phosphatase activities (alkaline and acid). Inoculated mycorrhizae and bacteria strains used in this study were selected from plant rhizosphere grown on phosphate-laundered sludge. Significant (p < .05) increases in plant growth was observed when inoculated with both consortia and PC (PC+ PSB+ AMF) similar to those recorded in plants amended with chemical fertilizer. Tripartite inoculated tomato had a significantly (p < .05) higher shoot height; shoot and root dry weight, root colonization and available P content, than the control. Co-inoculation with PC and AMF greatly increased alkaline phosphatase activity and the rate of mycorrhizal intensity. We conclude that PC and endophytic AMF and PSB consortia contribute to a tripartite inoculation in tomato seedlings and are coordinately involved in plant growth and phosphorus solubilization. These results open up promising prospects for using formulate phospho-compost enriched with phosphorus-solubilizing microorganisms (PSM) in crop cultivation as biofertilizers to solve problems of phosphate-laundered sludge accumulation.  相似文献   

14.
ABSTRACT

Zinc (Zn) deficiency is a global nutritional problem in crops grown in calcareous soils. However, plant analysis criteria, a good tool for interpreting crop Zn requirement, is scarcely reported in literature for onion (Allium cepa L.). In a greenhouse experiment, Zn requirement, critical concentrations in diagnostic parts and genotypic variation were assessed using four onion cultivars (‘Swat-1’, ‘Phulkara,’ ‘Sariab Red,’ and ‘Chilton-89’) grown in a Zn-deficient (AB-DTPA extractable, 0.44 Zn mg kg?1), calcareous soil of Gujranwala series (Typic Hapludalf). Five rates of Zn, ranging from 0 to 16 mg Zn kg?1 soil, were applied as zinc sulphate (ZnSO4·7H2O) along with adequate basal fertilization of nitrogen (N), phosphorus (P), potassium (K), and boron (B). Four onion seedlings were transplanted in each pot. Whole shoots of two plants and recently matured leaves of other two plants were sampled. Zinc application significantly increased dry bulb yield and maximum yield was produced with 8 mg Zn kg?1. Application of higher rates did not improve yield further. The cultivars differed significantly in Zn efficiency and cv. ‘Swat-1’ was most Zn-efficient. Fertilizer requirement for near-maximum dry bulb yield was 2.5 mg Zn kg?1. Plant tissue critical Zn concentrations were 30 mg kg?1 in young whole shoots, 25 mg kg?1 in matured leaves, 16 mg kg?1 in tops and 14 mg Zn kg?1 in bulb. Zinc content in mature bulb also appeared to be a good indicator of soil Zn availability status.  相似文献   

15.
In most soil ecosystems, soil biological activity and associated processes are concentrated in the rhizosphere soil and is influenced by the external application of plant nutrients. The impacts of boron and sulfur on soil biological properties were evaluated in an Aeric Haplaquept (pH 5.7) growing rapeseed (Brassica campestris L.) as a test crop. Application of boron (B) at 2 mg kg?1 in combination with sulfur (S) at 30 mg kg?1 (B2S30) resulted in highest available Boron and sulfur of 0.239 and 15.4 mg kg?1, respectively and registered 62.5% and 71.3% increase over control (B0S0) at 60 days of crop growth compared to individual applications. The microbial populations viz. phosphate solubilizing microorganisms (PSM) and nitrogen fixing bacteria (NFB) were the highest of 52.63 and 85.87 × 105 g?1 soil, respectively, CFU in B2S30 treatment at 60 days and adjudged as the best treatment combination for enhancement of soil biological indices and seed yield.  相似文献   

16.
Maize (Zea mays L.) is the most widely grown crop in Bosnia and Herzegovina especially in Northwest part of the country. Considering that, the maize is extremely sensitive to micronutrient deficiency the main aim of this study was to asses: (1) micronutrient availability in soil, (2) micronutrient status in silage maize; and (3) the relationship between micronutrient soil availability and maize plant concentration. Soil samples for micronutrient availability (n?=?112) were collected from 28 farms in 7 municipalities. Plant available micro- and macro- nutrients in soil were extracted using Mehlich-3, except plant available Se was extracted using 0.1M KH2PO4. Result showed that on average there was no significant difference between different soil types regarding their potential in plant available nutrients. P deficiency was present both, in soil and plants in whole region. Soil extractable P was ranging from 0.003–0.13?g?kg?1 and total plant P was ranging from 0.79–4.95?g?kg?1. Zinc deficiency was observed in two locations both in soil (0.71?mg?kg?1; 0.79?mg?kg?1) and plant (11.5?mg?kg?1; 15.8?mg?kg?1). Potential Se soil deficiency was observed on some locations, while Se plant status is not high enough to meet daily requirements of farm animals. Extractable soil nutrients could be used as relatively good predictor of potential soil and plant deficiencies, but soil nutrient interactions and climate conditions are highly effecting the plant uptake potential.  相似文献   

17.
Rhizospheric microorganisms can increase P availability to plants. The objective of this work was to elucidate the effects of two plant growth promoting rhizobacteria and biocontrol agents (Bacillus subtilis QST713 and B. Amyloliquefaciens FZB24), a biocontrol agent (the fungus Trichoderma asperellum T34), and Aspergillus niger CBS513.88 on P uptake from insoluble Ca‐phosphates by plants. An experiment involving microbial cultivation in liquid media and three involving cultivation of cucumber plants in a siliceous growing medium fertilized with 40 mg P kg?1 as phosphate rock (PR), a calcareous medium supplied with the same fertilizer, and one fertilized with KH2PO4 or PR at 200 mg P kg?1 were conducted. In spite of the observed PR solubilization in liquid culture, not all the microorganisms improved P uptake by plants from this P source. The effect of each microorganism also differed depending on the plant‐growing medium, revealing that its P‐solubilizing activity was affected by pH and P concentration in the medium. Overall, best results were obtained with Bacillus subtilis QST713 which increased P uptake from the siliceous growing medium and the calcareous medium fertilized with 200 mg P kg?1. Improved P nutrition of plants was the result not only of increased P solubilization, but also of enhanced ability of plants to absorb P. The other microorganisms studied provided less promising results despite the P mobilizing strategies they exhibited in the liquid culture (acidification and organic anion exudation). Therefore, these cannot be the only mechanisms contributing to P uptake by plants. Our results support the ability of B. subtilis QST713 to enhance the use of PR as a P source for calcareous soils or to improve uptake of residual P in the form of sparingly soluble Ca‐phosphates.  相似文献   

18.
Boron (B) is an essential microelement, which is necessary for reproductive organs including pollen tube formation in wheat (Triticum aestivum L.), and flowering and boll formation in cotton (Gossypium hirsutum L.) The study was associated with wheat-cotton rotation in 80 farm fields, belonging to different soil series, in four districts of cotton belt of Punjab, Pakistan to assess concentrations of extractable B in soils [0.05 M hydrochloric acid (HCl) extractable B], and added fertilizer B and their relationship to some soil physico-chemical properties [pH, organic matter (OM), calcium carbonate (CaCO3) and clay content], yields and total B concentrations in wheat and cotton plants. All soils had alkaline pH (7.45 to 8.55), high CaCO3 content (2.14 to 8.65%), less than 1.0% OM (0.33 to 0.99%), low plant available-P (Olsen P less than 8 mg kg?1 soil) and medium ammonium acetate extractable potassium (K) (< 200 mg K kg?1 soil). Of the 80 soil samples, 65 samples (81%) were low in available B (<0.45 mg B kg?1, ranging from 0.11 to 0.43 mg B kg?1) Of the corresponding 80 plant samples, leaves B concentrations were below critical levels (<10 mg B kg?1 for wheat; <30 mg B kg?1 for cotton) for all the tested samples for wheat and cotton. The regression analysis between plant total B concentrations and soil extractable B concentrations showed strong linear positive relationships for both wheat (R2 = 0.509***, significant at P <0.001) and cotton (R2 = 0.525***, significant at P <0.001). Further regression analysis between extractable soil B and wheat grain yield as well as between wheat leaves total B and wheat grain yield also depicted strong linear relationships (R2 = 0.76 and 0.42, respectively). Boron fertilizer demonstration plots laid out at farmers’ fields low in extractable B, in each district not only enhanced grain yields of wheat crop but also contributed a significant increase towards seed cotton yield of succeeding cotton crop through residual B effect. In conclusion, the findings suggest that many soils in the cotton belt of Punjab may be low in extractable B for wheat and cotton, especially when these crops are grown on low OM soils with high CaCO3 content.  相似文献   

19.
ABSTRACT

In a greenhouse study, boron (B) application significantly increased dry-matter yield of sweet pepper (Capsicum annum L.) cultivars (‘California Wonder,’ ‘Anahein,’ ‘Narwala,’ and ‘2573’) grown in a B-deficient (hot-water extractable, 0.28 B mg kg?1), calcareous soil of the Shujabad series (Typic Ustochrepts). Five rates of B, ranging from 0 to 8 mg B kg?1 soil, were applied as H3BO3 along with adequate basal fertilization of nitrogen (N), phosphorus (P), potassium (K), and zinc (Zn). Four plants of sweet pepper were transplanted in each pot, two of which were harvested after three weeks of transplanting and the other two after six weeks. Maximum crop biomass was produced with ~1 mg B kg?1, but application of higher rates proved toxic, resulting in dry-matter yield reductions. The four cultivars significantly differed in relative growth rate (RGR) and relative accumulation rate of B (RARB). Cultivar ‘2573’ showed the highest RGR while ‘Anahein’ showed the highest RARB. Relative accumulation rate was positively correlated (R2 = 0.83) with dry-matter yield of four cultivars. Critical B concentration in sweet pepper whole shoots was 69 mg B kg?1 for three-week-old plants and 49 mg B kg?1 for six-week-old plants.  相似文献   

20.
Abstract

Sustainable food production includes mitigating environmental pollution and avoiding unnecessary use of non-renewable mineral phosphate resources. Efficient phosphorus (P) utilization from organic wastes is crucial for alternative P sources to be adopted as fertilizers. There must be predictable plant responses in terms of P uptake and plant growth. An 18-week pot experiment was conducted to assess corn (Zea mays L.) plant growth, P uptake, soil test P and P fractionation in response to application of organic P fertilizer versus inorganic P fertilizer in five soils. Fertilizers were applied at a single P rate using: mono-ammonium phosphate, anaerobically digested dairy manure, composted chicken manure, vegetable compost and a no-P control. Five soils used varied in soil texture and pH. Corn biomass and tissue P concentrations were different among P fertilizers in two soils (Warden and Quincy), with greater shoot biomass for composted chicken manure and higher tissue P concentration for MAP. Plant dry biomass ranged from highest to lowest with fertilizer treatment as follows: composted chicken manure?>?AD dairy?=?MAP?=?no-P control?=?vegetable compost. Soil test P was higher in soils with any P fertilizer treatment versus the no-P control. The loosely bound and soluble P (2.7?mg P kg?1) accounted for the smallest pool of inorganic P fractions, followed by iron bound P (13.7?mg P kg?1), aluminum bound P (43.4?mg P kg?1) and reductant soluble P (67.9?mg P kg?1) while calcium bound P (584.6?mg P kg?1) represented the largest pool of inorganic P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号