首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The objectives of this experiment were to investigate the effects of two ruminally degradable protein (RDP) levels in diets containing similar ruminally undegradable protein (RUP) and metabolizable protein (MP) concentrations on ruminal fermentation, digestibility, and transfer of ruminal ammonia N into milk protein in dairy cows. Four ruminally and duodenally cannulated Holstein cows were allocated to two dietary treatments in a crossover design. The diets (adequate RDP [ARDP] and high RDP [HRDP]), had similar concentrations of RUP and MP, but differed in CP/RDP content. Ruminal ammonia was labeled with 15N and secretion of tracer in milk protein was determined for a period of 120 h. Ammonia concentration in the rumen tended to be greater (P = 0.06) with HRDP than with ARDP. Microbial N flow to the duodenum, ruminal digestibility of dietary nutrients, DMI, milk yield, fat content, and protein content and yield were not statistically different between diets. There was a tendency (P = 0.07) for increased urinary N excretion, and blood plasma and milk urea N concentrations were greater (P = 0.002 and P = 0.01, respectively) with HRDP compared with ARDP. Milk N efficiency was decreased (P = 0.01) by the HRDP diet. The cumulative secretion of ammonia 15N into milk protein, as a proportion of 15N dosed intraruminally, was greater (P = 0.003) with ARDP than with HRDP. The proportions of bacterial protein originating from ammonia N and milk protein originating from bacterial or ammonia N averaged 43, 61, and 26% and were not affected by diet. This experiment indicated that excess RDP in the diet of lactating dairy cows could not be efficiently utilized for microbial protein synthesis and was largely lost through urinary N excretion. At a similar MP supply, increased CP or RDP concentration of the diet would result in decreased efficiency of conversion of dietary N into milk protein and less efficient use of ruminal ammonia N for milk protein syntheses.  相似文献   

2.
Effects of different dietary rumen undegradable (RUP) to degradable (RDP) protein ratios on ruminal nutrient degradation, feed intake, blood metabolites and milk production were determined in early lactation cows. Four multiparous (43 ± 5 days in milk) and four primiparous (40 ± 6 days in milk) tie‐stall‐housed Holstein cows were used in a duplicated 4 × 4 Latin square design with four 21‐day periods. Each period had 14‐day of adaptation and 7‐day of sampling. Diets contained on a dry matter (DM) basis, 23.3% alfalfa hay, 20% corn silage and 56.7% concentrate. Cows were first offered alfalfa hay at 7:00, 15:00 and 23:00 hours, and 30 min after each alfalfa hay delivery were offered a mixture of corn silage and concentrate. Treatments were diets with RUP:RDP ratios of (i) 5.2:11.6 (control), (ii) 6.1:10.6, (iii) 7.1:9.5 and (iv) 8.1:8.5, on a dietary DM% basis. Different RUP:RDP ratios were obtained by partial and total replacement of untreated soybean meal (SBM) with xylose‐treated SBM (XSBM). In situ study using three rumen‐cannulated non‐lactating cows showed that DM and crude protein (CP) of SBM had greater rapidly degradable fractions. The potentially degradable fractions were degraded more slowly in XSBM. Treatment cows produced greater milk, protein, lactose, solids‐non‐fat and total solids than control cows. Increasing RUP:RDP reduced blood urea linearly. Feed costs dropped at RUP:RDP ratios of 6.1:10.6 and 7.1:9.5, but not at 8.1:8.5, compared with the 5.2:11.6 ratio. Intake of DM and CP, rumen pH, blood glucose, albumin and total protein, faecal and urine pH, changes in body weight and body condition score, and milk lactose and solids‐non‐fat percentages did not differ among treatments. Results provide evidence that increasing dietary RUP:RDP ratio from 5.2:11.6 to 7.1:9.5 optimizes nitrogen metabolism and milk production and reduces feed costs in early lactation cows. Reduced blood urea suggests reprodutive benefits.  相似文献   

3.
Abstract

Thirty-two Chinese Holstein lactating cows were used to investigate the relationship of milk urea nitrogen (MUN) and nitrogen excretion loading to the environment. Cows were fed a similar amount of forage, and concentrates according to milk production. Total collection of urine and faeces were conducted continuously for three days. The milk urea nitrogen was significantly correlated to total nitrogen excretion (R 2=0.70), urinary nitrogen excretion (R 2=0.85), and nitrogen excretion from faeces (R 2=0.22). The following equation was proposed to predict total nitrogen excretion (TNE) (g/d) based on milk urea nitrogen (MUN) (mg/dl): TNE?=?15.46(±1.83)×MUN?+?193.40(±28.79). The results obtained in this study suggested that MUN might be used to predict TNE from lactating cows.  相似文献   

4.
This study was carried out to evaluate the impact of including Acacia mearnsii tannin extract (TA) as a feed additive on nutrition and productive performance of dairy cows grazing a high‐quality temperate pasture and receiving supplementation with a concentrate feedstuff. Fourteen multiparous Holstein cows were assigned to either of the following treatments: concentrate without or with 20 g TA/kg dry matter (DM). Concentrate intake accounted for 32% of the total DM intake. Tannin addition increased the herbage DM intake by 22% (p < .05). There was no effect of TA inclusion on milk yield, milk composition, milk nitrogen (N) excretion, milk and plasma urea‐N concentration, urinary excretion of total N, urea‐N, and purine derivatives. However, TA inclusion increased the N intake and retention, total N excretion in manure, fecal N to urine N ratio, and decreased the dietary N efficiency for milk production and the percentage of ingested N excreted in urine (p < .05). In conclusion, supplementing dairy cows grazing a high‐quality temperate pasture with a concentrate containing 20 g TA/kg DM showed the potential of decreasing the proportion of ingested N excreted in urine without affecting the productive performance.  相似文献   

5.
Thirty‐four Holstein dry cows and 16 lactating cows were used in balance trials to identify the effects of feeding and animal performance on nitrogen (N), phosphorus (P) and potassium (K) excretion by dairy cows, and to develop prediction models for these excreta. Orchard grass silage, corn silage, alfalfa silage or timothy hay were offered to dry cows. Orchard grass silage or alfalfa silage, and concentrates were offered to lactating cows. In the statistical analysis, the independent variables were bodyweight (kg), dry matter (DM) intake (kg/day), milk yield (for lactating cows only, kg/day), water intake (free water plus water in feed, kg/day), intake (g/day) of N, P and K and dietary contents (% of DM) of crude protein, P and K. The dependent variables were N, P and K excretion (g/day) in feces and urine. In both dry and lactating cows, intake of N, P and K had large effects on corresponding excretion. The results indicated that a decrease in the intake of N, P and K could decrease the corresponding excretion. Further research by path analysis showed that K intake positively affected urinary N excretion in dry cows indirectly, through water intake and urine volume.  相似文献   

6.
The excretion of urine by dairy cows provides a source of nitrogen (N) to pasture. Excess N from urine patches can be lost through nitrate (NO3) leaching and nitrous oxide (N2O) emissions. Dicyandiamide (DCD) inhibits nitrification in the soil and is usually applied to the pasture by blanket spreading the entire field. This study assessed the potential of pulse-dosing cows with DCD so that the DCD will be excreted in the urine and deposited directly onto the urine patches. The objective of this study was to measure the recovery of DCD in urine and faeces and to assess the effects of DCD on rumen and blood metabolites and diet digestibility. Eight non-lactating Holstein–Friesian dairy cows fitted with rumen cannulae were assigned to two treatments in a Latin square design over two periods. The two treatments used were (1) control (CON) consisting of 500 ml distilled water and (2) DCD consisting of 0.1 g DCD per kg liveweight (LW) suspended in 500 ml distilled water. Both treatments were pulse-dosed into the rumen daily for 6 days with half the volume dosed in the morning and the remainder in the afternoon. The administration of DCD into the rumen had no effect on rumen and blood metabolites, and diet digestibility when compared to the control treatment, as all were not significantly different from the control treatment and were within the normal biological range. During 6 days of dosing with DCD the average recovery of the dosed DCD in urine was 82.3%, with a further 2.1% recovered in the faeces. No DCD was recovered in the urine and faeces 10 days following the cessation of dosing. These results could provide the basis for a novel mitigation strategy to reduce NO3 leaching and N2O emissions from urine patches in grazed grassland.  相似文献   

7.
Four Nili-Ravi buffalo calves (100 ± 4 kg) were used in 4 × 4 Latin Square Design to evaluate the influence of varying ruminally degradable protein (RDP) to ruminally undegradable protein (RUP) ratio on dry matter intake (DMI), digestibility and nitrogen (N) metabolism. Four experimental diets A, B, C and D were formulated to contain RDP:RUP of 70:30, 65:35, 60:40 and 55:45, respectively. The calves were fed ad libitum. Dry matter intake by calves fed C diet was higher (P < 0.05) than those fed D diet and lower (P < 0.05) than calves fed A diet, however, it was similar to those fed B diet. There was a linear decrease (P < 0.01) in DMI with decreasing the RDP to RUP ratio. Similar trend was noticed in crude protein (CP) intake. Neutral detergent fiber (NDF) intake was significantly different across all treatment. The decrease in CP and NDF intake was due to decreasing trend of DMI. Dry matter (DM) digestibility in calves fed A and B diets was higher (P < 0.05) than those fed C and D diets. A linear decrease (P < 0.01) in DM digestibility was observed with decreasing the RDP to RUP ratio. Crude protein digestibility remained unaltered across all treatments. Neutral detergent fiber digestibility was higher in calves fed A and B diets than those fed C and D diets. Higher NDF digestibility in calves fed A and B diets was due to higher level of dietary RDP that might resulted in higher ruminal ammonia concentration which stimulate activity of cellulytic bacteria and ultimately increased NDF digestibility. The N retention (g/d) was similar among the calves fed B, C and D diets, however, it was higher (P < 0.05) than those fed A diet. Decreasing the RDP to RUP ratio resulted in linear increase (P < 0.01) in N retention. The N retention, as percent of N intake was significantly different across all treatments. Decreasing RDP to RUP ratio resulted in linear increase (P < 0.01) in N retention, as percent of N intake. A similar trend was noticed in N retention, as percentage of N digestion. Blood urea nitrogen (BUN) concentration in calves fed B diet was higher (P < 0.05) than those fed D diet and was lower (P < 0.05) than those fed A diet, however, it was not different from calves fed C diet. Decreasing dietary RDP to RUP ratio resulted in linear decrease (P < 0.05) in BUN concentrations. The decrease in BUN concentration was because of decreasing level of dietary RDP. The N retention can be increased by decreasing RDP to RUP ratio in the diet of growing buffalo calves and diet containing RDP to RUP ratio 55:45 is considered optimum regarding N retention in buffalo calves.  相似文献   

8.
日粮营养因素对牛奶尿素氮含量的影响   总被引:1,自引:0,他引:1  
本研究收集了21个(92个处理组,551头奶牛)有关中国荷斯坦牛牛奶尿素氮(MUN)的试验资料分析日粮因素对MUN值的影响。结果为,在单因素回归分析中日粮粗蛋白(CP)含量、产奶净能(NEL)、瘤胃降解蛋白(RDP)含量、能蛋比(NEL与CP的比值,N∶P)和瘤胃未降解蛋白(RUP)含量与MUN值有极显著的回归关系(P0.01),CP含量的决定系数最高,然后依次是NEL、RDP含量、N∶P、RUP含量、酸性洗涤纤维(ADF)含量、RDP∶RUP、干物质采食量(DMI)和中性洗涤纤维(NDF)含量。在多因素回归分析中,每种日粮因素组合都与MUN值有极显著的回归关系(P0.01),同时含有CP含量和RDP∶RUP指标的公式的决定系数最高。结果表明,日粮CP水平是影响MUN值的最主要因素。  相似文献   

9.
王志刚 《中国饲料》2022,1(4):45-48
本研究旨在评估全混合日粮添加益生菌对干乳期奶牛生长性能、瘤胃发酵及氮平衡的影响.试验将体重为(440.92±3.33)kg、平均干乳期为42?d的60头荷斯坦奶牛随机分为2组,每组5个重复,每个重复6头.对照组饲喂玉米-豆粕型全混合日粮,处理组饲喂基础全混合日粮+200?mg/kg益生菌(枯草芽孢杆菌含量:1×106?...  相似文献   

10.
日粮类型对奶牛粪尿特性及氮排放的影响   总被引:3,自引:0,他引:3  
通过研究不同类型日粮对泌乳奶牛粪尿及氮排放的影响,达到减少和控制氮排放的目的,本试验选用12头体重514 kg、年龄3~5岁的中国荷斯坦奶牛为试验动物,分为3组,分别饲喂粗料为干秸秆玉米,精粗比40∶60的A日粮、粗料为玉米青贮,精粗比分别是40∶60和60∶40的B和C日粮进行了对其粪尿特性及氮排放的试验研究。结果表明,日粮类型对奶牛粪便及尿液产生量均有一定的影响。粪便产生量结果为秸秆型A日粮>青贮型低精比B日粮>青贮型高精比C日粮。3种日粮的尿液产生量为C日粮>B日粮>A日粮。同时,日粮类型对奶牛氮平衡具有显著的影响,秸秆型日粮的乳氮、尿氮含量和氮的消化率极显著低于青贮型日粮低(P<0.01),粗料均为青贮玉米条件下,随日粮精料水平的提高,氮消化率和尿氮极显著增加(P<0.01),粪氮和乳氮增加不显著(P>0.05)。结果提示,秸秆型日粮的摄入氮主要是从粪中排出,粗料为青贮玉米时,随日粮精料水平的提高粪氮比例减少,而尿氮比例增加,粪氮和尿氮占总粪尿氮的比例基本一致。  相似文献   

11.
Microbial protein flow to the duodenum may be regarded as the most important and sensitive indicator to optimise rumen metabolism in high-yielding dairy cows. In this review, the methodology and the sources of variation to estimate the duodenal microbial N flow with urinary excretion of purine derivatives (PD) as a non-invasive method is discussed. The urinary PD excretion was linearly related with the amount of purine bases (PB) infused in the abomasum or duodenum, but the recovery of PB in urine differed between experiments. The main sources of variation in the relationship between microbial N flow and urinary PD excretion are dietary contribution of nucleic acids to duodenal flow, varying N:purine ratio in duodenal digesta, differences in intestinal digestibility of nucleic acids and infused PB, and endogenous contribution of PD to urinary excretion. The recycling of PD to the rumen is negligible, and does not explain the incomplete urinary recovery of PD. A large proportion of the total PD is excreted as allantoin in urine. In some experiments this proportion was constant, whereas in others it varied with diet or physiological state of the animal. The excretion of PD in milk is not a suitable indicator of microbial N flow, due to mammary purine catabolism to uric acid and due to the strong positive correlation between milk allantoin excretion and milk yield. Instead of total urine collection, the molar ratio between urinary PD and creatinine can be used to estimate microbial N flow. However, a substantial between-animal variation in this ratio was found, and effects of changes in energy balance of dairy cows on urinary creatinine excretion should be determined. The urinary excretion of total PD and of allantoin provided lower estimates of duodenal microbial N flow than with measurements in the omasum or duodenum, but they closely reflected the changes observed with these measurements.  相似文献   

12.
An experiment was conducted to examine the effect that various isoenergetic diets, containing different quantities of soluble carbohydrate and fiber and different types of starch, have on nitrogen (N) balances. Six lactating dairy cows in early to midlactation consuming grass silage diets with not less than 600 g/kg total DMI as forage were used in the experiment. Four concentrates were prepared that had higher amounts of either fiber, soluble sugars, corn (low degradable starch source), or barley (high degradable starch source). Overall N utilization by the cows was poor, rarely exceeding 0.30 g milk N/g of dietary N intake. Fecal N outputs accounted for more than half of total N excreted in all treatments except for diets supplemented with high degradable starch, in which urinary N excretion was significantly higher compared with the other treatments. Milk yield was unaffected by concentrate type, averaging 19.9 kg/d, but milk protein content decreased from 32.9 for starch-based diets to 30.9 and 30.0 g/kg for the soluble sugar- and fiber-based diets, respectively. The efficiency of N utilization improved in the low degradable starch treatment, which had lower N excretion (65%) and higher protein concentration in milk. Furthermore, feeding cows corn-based concentrates reduced urinary N excretion by almost 30% compared with barley-based concentrates; therefore, feeding corn-based diets is recommended for the reduction of nitrogen pollution in lactating dairy cows.  相似文献   

13.
Effects of exposure to hot environment on urea metabolism were studied in lactating Holstein cows. Four cows were fed ad libitum a total mixed ration and housed in a temperature‐controlled chamber at constant moderate (18°C) or high (28°C) ambient temperatures in a cross‐over design. Urea nitrogen (N) kinetics was measured by determining urea isotopomer in urine after single injection of [15N2]urea into the jugular vein. Both dry matter intake and milk yield were decreased under high ambient temperature. Intakes of total N and digestible N were decreased under high ambient temperature but urinary urea‐N excretion was increased. The ratio of urea‐N production to digestible N was increased, whereas the proportion of gut urea‐N entry to urea‐N production tended to be decreased under high ambient temperature. Neither return to the ornithine cycle, anabolic use nor fecal excretion of urea‐N recycled to the gut was affected by ambient temperature. Under high ambient temperature, renal clearance of plasma urea was not affected but the gut clearance was decreased. Increase of urea‐N production and reduction of gut urea‐N entry, in relative terms, were associated with increased urinary urea‐N excretion of lactating dairy cows in higher thermal environments.  相似文献   

14.
The effects of a 17% deficiency of crude protein for four weeks on nutrient digestibility and parameters of N metabolism were investigated using four pairs of monozygotic twin cows. During a period of realimentation of three weeks with slight nutrient oversupply and a further period of three weeks with nutrient supply adjusted to the lactation trend it was examined if residual effects remain. Protein restriction enhanced the excretion of fecal dry matter by 7.7%. Total fecal nitrogen was a high in the restricted group as in the control group. Apparent digestion coefficients for dry matter, organic matter and N-free extracts were lowered by 2 to 3 percent points with deficient protein nutrition. Crude fiber and nitrogen digestibilities declined by 4.5 and 9.8 percent points, respectively. The reduction of urine nitrogen excretion amounted to 47% as consequence of a drastically diminished nitrogen content of urine. Total nitrogen retention (milk-N and body-N) was lowered by 14%. The sum of the relative nitrogen losses via faeces and urine was not different between the protein-deficient and the normal diet. The utilization of feed nitrogen for milk nitrogen excretion was 28.2% in protein deficiency and 25.9% in control feeding. After realimentation no relevant residual effects of the previous protein deficiency were found neither with respect to nutrient digestibility nor to parameters of the nitrogen balance. So far the observed permanent effect in reduced milk yield by 6% of the expected performance can not be explained with changes in digestibility or nitrogen balance.  相似文献   

15.
本试验旨在为合理利用花生秧及提高氮素利用率提供理论依据。选择产奶量一致、处于泌乳中期、体重相近、胎次相同的12头中产荷斯坦奶牛,分为3组,每组4个重复。根据3×3拉丁方试验设计,试验分3期进行,每期预饲15d,采样期6d。分别饲喂含有不同花生秧与玉米青贮配比的全混合日粮(TMR),3种TMR中花生秧与玉米青贮的干物质(DM)配比分别为1.0∶3.9(A组)、1.0∶1.2(B组)、1.0∶0.4(C组)。结果表明,1)花生秧与玉米青贮配比对中产荷斯坦奶牛的干物质采食量、生产性能及血液指标没有显著影响(P0.05);2)奶牛的各乳成分组成均没有显著性差异(P0.05),但随着花生秧比例的增加,牛奶体细胞数有降低的趋势,B组较A组的体细胞数下降了35.4%;3)随着日粮中花生秧添加比例的增加,经济效益有所提高;4)日粮B显著降低了粪氮占摄入氮的比例(P0.05)。花生秧与玉米青贮配比在1.0∶1.2时,奶牛氮素利用及经济效益效果最佳。  相似文献   

16.
This experiment was designed to evaluate the effects of different concentrate crude protein (CP) concentration on performance, metabolism and efficiency of N utilization (ENU) on early-lactation dairy cows grazing intensively managed tropical grass. Thirty cows were used in a ten replicated 3 × 3 Latin square design. The treatments consisted of three levels of concentrate CP: 7.9%, 15.4%, and 20.5% offered at a rate of 1 kg (as-fed basis)/3 kg of milk. The cows fed low and medium CP had negative balance of rumen degradable protein and metabolizable protein. Increasing CP tended to linearly increase DMI, 3.5% FCM and milk casein, and linearly increased the yields of milk fat and protein. Increasing CP linearly increased the intake of N, the concentration of rumen NH3–N, and the losses of N in milk, urine, and feces. Increasing dietary CP linearly increased the molar proportion of butyrate but had no effect on the other rumen VFAs and no effect on microbial yield. In conclusion, feeding a concentrate with 20.5% of CP to early-lactation dairy cows grazing tropical grasses, leading to a 17.8% CP diet, tended to increase DMI, increased the yield of 3.5% FCM and the milk N excretion, and decreased ENU by 32%.  相似文献   

17.
Two experiments were carried out to compare white clover with red clover as supplementation to ryegrass, in ensiled and fresh form, for differences in nitrogen loss and methane emission by dairy cows. In experiment 1, fresh ryegrass was mixed with fresh white (WF) or red clover (RF) (60/40 on dry matter basis). Experiment 2 involved similar mixed diets in ensiled form (WS and RS, respectively), and two ryegrass silage diets, without (GS) or with supplementary maize gluten meal (600 g protein/kg DM; GS+). Barley was supplemented to meet the calculated requirements for milk production. The type of clover did not affect crude protein (CP) intake in experiment 1. In experiment 2, the highest CP intakes were observed for cows on the GS+ diet (P < 0.05), followed by the WS and RS diet, compared to the GS diet. Within experiments, no treatment effects occurred for intake of digestible organic matter, milk and milk protein yield, while milk urea and urine N excretion mostly reflected the differences in CP intake in experiment 2. The highest absolute N excretions (P < 0.001) occurred with the GS+ diet, compared to the other diets. Per unit of N intake, a tendency for highest urine N losses with GS+ was still noticeable. The slurry characteristics were not affected by clover type during storage in experiment 1. In experiment 2, initial treatment differences in ammonia-N levels (P < 0.01) in the slurry were still observed after 8 weeks of storage. Clover supplementation, but not clover type, slightly enhanced gaseous N losses per cow per day in relation to GS, but not as much as GS+ (+53%). Gaseous N losses relative to milk N yield were slightly lower (P < 0.1) with fresh red clover compared to white clover, a trend not apparent in experiment 2 with silages where levels were elevated with GS+. Methane emissions were not affected (P > 0.05) either by clover supplementation or by clover type in both experiments. This study illustrates that the white and red clovers investigated were widely similar for their effects on N losses and methane emission in dairy cows. Our findings imply that supplementation of white or red clover to a high-protein ryegrass could enhance nitrogen losses to the environment, and would not be beneficial in terms of reducing methane emissions.  相似文献   

18.
为研究饲料中添加复合酵母培养物对奶牛产奶性能、氮排放及血液生化指标的影响,选取年龄、体重、产奶量及泌乳期相近(135±15) d的荷斯坦奶牛24头,随机分为4组,每个处理6个重复,对照组和3个试验组的复合酵母培养物添加量分别为精料浓度的0,0.8%,1.0%,1.2%,随精料饲喂,测定产奶量、乳成分、氮排放及血液生化指标,结果表明,1)试验2组日均产奶量显著高于对照组(P<0.05),各试验组分别比对照组提高8.48%,10.05%,8.97%。2)复合酵母培养物能显著提高乳脂和乳蛋白率(P<0.05),显著降低牛奶体细胞数(P<0.05),以试验2组最低。3)在氮排放量上,试验2组显著低于对照组(P<0.05),各试验组比对照组分别降低8.47%,12.01%,9.36%。4)在血液生化指标方面,复合酵母培养物能提高血清中总蛋白、球蛋白、血糖、胰岛素水平(P<0.05),降低尿素氮水平(P<0.05)。由此可见,本试验条件下,综合考虑产奶量、乳成分、氮排放及血液生化指标,复合酵母培养物的最佳添加量为精料浓度的1.0%。  相似文献   

19.
Nine multiparous Holstein cows were used in a replicated 3 × 3 Latin square design to determine the effects of substituting corn grain with brown rice (BR) grain in total mixed ration (TMR) silage on milk yield, ruminal fermentation and nitrogen (N) balance. The TMR silages were made from the ensiling of TMR containing (dry matter basis) 50.1% forage in rice silage and corn silage combination, and 49.9% concentrate. The grain portion of the diets contained 31.2% steam‐flaked corn, 31.2% steam‐flaked BR or an equal mixture of corn and BR. Dietary treatments did not affect dry matter intake, milk yield and milk fat, protein and lactose yields. The ruminal pH and total volatile fatty acid concentrations were not affected by dietary treatment. The urinary N excretion decreased linearly (P < 0.01) in response to increased levels of BR, with no dietary effect on N intake, N secretion in milk and fecal N excretion. Our results indicate that steam‐flaked BR is a suitable replacement for steam‐flaked corn in dairy cow diets, and that it can be included in rations to a level of at least 31.2% of dry matter without adverse effects on milk production, when cows were fed rice silage and corn silage‐based diets.  相似文献   

20.
The objective of this study was to evaluate the effect of substituting brown rice grain for corn grain in total mixed ration (TMR) silage containing food by‐products on the milk production, whole‐tract nutrient digestibility and nitrogen balance in dairy cows. Six multiparous Holstein cows were used in a crossover design with two dietary treatments: a diet containing 30.9% steam‐flaked corn (corn TMR) or 30.9% steam‐flaked brown rice (rice TMR) with wet soybean curd residue and wet soy sauce cake. Dietary treatment did not affect the dry matter intake, milk yield and compositions in dairy cows. The dry matter and starch digestibility were higher, and the neutral detergent fiber digestibility was lower for rice TMR than for corn TMR. The urinary nitrogen (N) excretion as a proportion of the N intake was lower for rice TMR than for corn TMR with no dietary effect on N secretion in milk and fecal N excretion. These results indicated that the replacement of corn with brown rice in TMR silage relatively reduced urinary N loss without adverse effects on feed intake and milk production, when food by‐products such as soybean curd residue were included in the TMR silage as dietary crude protein sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号