首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The objective of this study was to evaluate the effects of organic and inorganic fertilizers on the yield and quality of sugar beet genotypes (Beta vulgaris L.). Therefore, a field trial was carried out in Peshawar, Pakistan, during the winters in 2012–2013. The field experiment was conducted in a randomized complete block design with split plots, having three replications. Fertilizer treatments (control, composted manure Higo Organic Plus at 5 t ha?1, Maxicrop Sea Gold seaweed extract at 5 L ha?1, farm yard manure at 10 t ha?1, inorganic nitrogen–phosphorus (NP) at 90:60 kg ha?1, NP at 120:90 kg ha?1 and NP at 150:120 kg ha?1) were allotted to main plots, while genotypes (Sandrina, Serenada and Kawe Terma) were allotted to the sub-plots. Plots treated with the application of NP at 120:90 kg ha?1 produced the highest beet yield (76.4 t ha?1) and sugar yield (11.1 t ha?1), and had the second highest polarizable sugar content (14.52%) and more economic return (Rs. 553,000 per hectare) as compared to control plots. Sugar beet genotype Serenada had significantly higher beet yield (55.5 t ha?1) and sugar yield (7.9 t ha?1) and a higher economic return (Rs. 380,000 per hectare) than the other genotypes. Sugar beet genotype Serenada supplied with NP at 120:90 kg ha?1is recommended for the general cultivation in the agro-climatic conditions of Peshawar valley.  相似文献   

2.
ABSTRACT

This study was conducted to determine the effects of nitrogen (N) doses on yield, quality, and nutrient content in broccoli heads. Treatments consisted of 0, 150, 300, 450, and 600 kg N ha? 1. Nitrogen rates significantly increased yield, average weight of main and secondary heads, and the diameter in broccoli compared to control. The highest total yield (34631 kg ha? 1) was obtained at 300 kg N ha? 1. At harvest, the highest amount of the total N in broccoli heads was measured at 450 kg N ha? 1 application. Potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) content increased with increases in nitrogen treatments but, phosphorus (P), copper (Cu), manganese (Mn), boron (B), and sodium (Na) contents were not influenced. Also, removed nutrients by broccoli head were highest at 300 kg ha? 1N rate.  相似文献   

3.
The effects of a low-external-input soil fertility enhancement solution – hereafter termed ‘nitrolimigation’ were examined, as a preferred technique of applying nitrogen and calcium in the “Acid Sands” soils of southern Nigeria. Two types of nitrogenous fertilizer sources [urea and liquid pig manure (LPM)] and two types of lime {limestone (CaCO3) and hydrated lime [Ca(OH)2]} were used both in greenhouse and in field experiments at varying levels: Urea [CO (NH2)2] 0, 40, 50, 80, 100, 120, and 150 kg ha?1; lime 0, 0.1, 0.3, 0.5, 1.0, 5.0, and 10.0 metric tonnes per hectare (t ha?1) and LPM 0, 30, 60, 90, and 120 t ha?1. The rates were arranged factorially and laid out in randomized complete block design (RCBD). The results indicated that combining lime at 9 t ha?1 and LPM at 90 t ha?1 in irrigation water had significant (P < 0.01) positive effects on the fertility status of the “Acid Sands” soils and growth of okra- Abelmoschus esculentus, the test crop. When urea was combined with hydrated lime, it reduced acidity and provided nutrient balance in the Acid Sands of Calabar. Total nitrogen was significantly (P < 0.01) boosted from 0.05 to 0.11%, base saturation (BS) from 46 to 62%, and exchange acidity was reduced from 2.93 to 1.35 cmol kg?1. Combining urea (46-0-0) at 80 kg ha?1 with lime (CaCO3) at 5 t ha?1 raised the soil pH from 4.4 to 7.1. Exchange acidity was reduced from 0.8 cmol kg?1 to a negligible value, but electrical conductivity was improved from 170.7 to 291.9 μS cm?1. When LPM and lime were combined, organic carbon was increased from 2.75 to 2.93%, BS was increased from 46.72 to 75.19%, and pH was raised from 6.0 to 6.73. Plant height was increased from 9.5 to 16.9 cm while mean number of leaves was also increased from 5.6 to 6.3 only with lower level of lime (3 t ha?1) and LPM at 90 t ha?1. Of the nitrogen and calcium sources, LPM and limestone were better at 120 t ha?1 and 9 t ha?1, respectively, to offset soil acidity, boost nutrient availability, and provide balanced nutrition to arable crops grown on the “Acid Sands” of southern Nigeria.  相似文献   

4.
It is not clear about the interactive effects of nitrogen, phosphorus, and potassium additions on carbohydrate accumulation in tree seedlings in the late-season of fall. In late September of 2009, 0 or 60 kg nitrogen ha?1 urea (46-0-0) was applied with 30 and 60 kg phosphorus ha?1 potassium hydrogen phosphate (0-41-45) to transplanted bareroot Changbai larch (Larix olgensis Henry) seedlings. One month after first fertilization, seedlings receiving nitrogen addition had higher nitrogen and phosphorus, but lower potassium, concentrations in combined stems and roots. The higher rate phosphorus and potassium treatment increased nitrogen concentration in coarse roots (diameter > 5 mm) without nitrogen addition and improved potassium reserves. Fertilization did not affect seedling growth and whole-plant carbohydrate accumulation. In conclusion, we recommend a fertilizer regime of 60 kg N ha?1 urea and 60 kg phosphorus ha?1 potassium hydrogen phosphate applied in fall to improve nutrient reserves and increase root carbohydrate accumulation in Changbai larch seedlings.  相似文献   

5.
Abstract

The experiment was conducted at Kulumsa, South East Ethiopia, using four levels of nitrogen (N) (0, 50,100 and 150?kg N ha?1) and four levels of phosphorus (P) (0, 35, 70 and 105?kg P2O5 ha?1) fertilizers arranged in 4?×?4 factorial arrangements in randomized complete block design with three replications. The available P was increased after harvest due to the application of N and P fertilizer at the rates of 100 or 150?kg N ha?1 and 70 or 105?kg P2O5 ha?1. More specifically, nutrients concentration and nutrient uptake were significantly (p?<?.01) varied among treatment combinations and nutrient use efficiency was declined by increasing N and P after optimum rates. The higher physiological efficiency of N (53.47?kg kg?1) and P (580.41?kg kg?1) and the highest apparent recovery of N (19.62%) and P (2.47%) was recorded from application of 50?kg N ha?1 and P at 70?kg P2O5 ha?1 and the highest agronomic efficiency of N (10.78?kg kg?1) and P (15.25?kg kg?1) was recorded from N at the rate of 50?kg N ha?1 and P at 35?kg P2O5 ha?1, respectively. The combination of N at 100?kg N ha?1 and P at 70?kg P2O5 ha?1 was promising combination that generated highest net benefit 488,878.5 ETB (Ethiopian birr) ha?1 with the highest marginal rate of return (36638%) and gave the highest seed yield (1858.82?kg ha?1) with yield increment of about 57.72% over the control.  相似文献   

6.
Boron (B) deficiency hampers cotton (Gossypium hirsutum L.) growth and productivity globally, especially in calcareous soils. The crop is known as a heavy feeder of B; however, its reported plant analysis diagnostic norms for B-deficiency diagnosis vary drastically. In a 2-year field experiment on a B-deficient [hydrochloric acid (HCl)–extractable 0.47 mg B kg?1], calcareous, Typic Haplocambid, we studied the impact of soil-applied B on cotton (cv. CIM-473) growth, productivity, plant tissue B concentration, and seed oil composition. Boron was applied at 0.0, 1.0, 1.5, 2.0, 2.5, and 3.0 kg B ha?1, as borax (Na2B4O7·10H2O), in a randomized complete block design with four replications, along with recommended rates of nitrogen (N), phosphorus (P), potassium (K), and zinc (Zn). Boron use improved crop growth, decreased fruit shedding, and increased boll weight, leading to seed cotton yield increases up to 14.7% (P < 0.05). Improved B nutrition of plants also enhanced seed oil content (P < 0.05) and increased seed protein content (P < 0.05). Fiber quality was not affected. Fertilizer B use was highly cost-effective, with a value–cost ratio of 12.3:1 at 1 kg B ha?1. Fertilizer B requirement for near-maximum (95% of maximum) seed cotton yield was 1.1 kg B ha?1 and HCl-extractable soil B requirement for was 0.52 kg ha?1. Leaf tissue B requirement varied with leaf age as well as with plant age. In 30-day plants (i.e., at squaring), B-deficiency diagnosis critical level was 45.0 mg kg?1 in recently matured leaves and 38.0 mg kg?1 in youngest open leaves; at 60 days old (i.e., at flowering), critical concentration was 55.0 mg kg?1 in mature leaves and 43.0 mg kg?1 in youngest leaves. With advancement in plant age critical B concentration decreased in both leaf tissues; that is, in 90-day-old plants (i.e., at boll formation) it was 43.0 mg kg?1 in mature leaves and 35.0 mg kg?1 in the youngest leaves. As critical concentration range was narrower in youngest leaves (i.e., 35–43 mg kg?1) compared with mature leaves (i.e., 43–55 mg kg?1), B concentration in youngest leaves is considered a better indicator for deficiency diagnosis.  相似文献   

7.
ABSTRACT

In sorghum and mungbean – lentil cropping system, field experiments were conducted for three successive years to assess the effect of mung bean residue incorporation on sorghum and succeeding lentil productivity along with different doses of phosphorus (P; 0, 30, 60 kg ha? 1) applied to these crops. The level of soil fertility was also tested with or without incorporation of mung bean residue. The interaction of phosphorus to mungbean residue incorporation was thus studied in relation to improve crop productivity with balancing fertilizer requirements through an eco-friendly approach. Sorghum grain yield increased significantly when 60 kg P2O5 ha? 1 was applied and mungbean residue incorporated. The response was reduced to 30 kg P2O5 ha? 1 when mungbean residue was not incorporated. The succeeding lentil crop responded up to 60 kg P2O5 ha? 1 only when preceding sorghum crop received 0 or 30 kg P2O5 ha? 1. Response to applied P2O5 to lentil reduced to 30 kg ha? 1 when preceding sorghum crop received 60 kg P2O5 ha? 1 and mungbean residue incorporated. Available soil nitrogen, phosphorus, and organic carbon content increased when mungbean residue was incorporated; however, available potassium (K) of the soil decreased from its initial value.  相似文献   

8.
Abstract

A three-year experiment was carried out at three different sites in northern Germany to investigate the effects of combined sulphur (S, up to 50 kg S ha?1 year?1) and nitrogen (N, up to 300 kg N ha?1 year?1) fertilization on dry matter (DM) yield and forage quality. There was an interaction effect of site, year, S and N fertilization. The greatest DM yield increment relative to yield at the start of the experiment (1997) with no S and N applied was 10.2 t DM ha?1 at Ostenfeld (arable grassland). Cattle slurry when applied to provide 50 kg N ha?1 and 10 kg S ha?1 did not noticeably increase yield. The S content in forage decreased significantly over the years without S fertilization. At 300 kg N ha?1 and 0 kg S ha?1, crude protein (CP) contents achieved 173 g kg?1 DM and were diluted due to higher DM yields with S fertilization. The true protein content (TP% of CP) differed significantly at 300 kg N ha?1. TP achieved 93% with 50 and 87% with 0 kg S ha?1 year?1, respectively. In conclusion, with N fertilizer intensities in the range of 300 kg N ha?1, it is necessary to apply 25 kg S ha?1 to improve forage yield and quality. On the other hand, with N fertilization levels below 300 kg N ha?1, S fertilization could be omitted.  相似文献   

9.
Field experiments were conducted at two different locations under rainfed conditions of Punjab, Pakistan to assess nodulation, nitrogen fixation and nutrient uptake by chickpea (Cicer arietinum L.) in response to application of three rates [0, 40, and 80 kg phosphorus pentoxide (P2O5 ha?1)] of phosphorus and three rates (0, 15 and 30 kg S ha?1) of sulfur in different combinations. Effect of phosphorus application was nonsignificant while that of sulfur was significant on percent nitrogen derived from atmosphere. Both phosphorus and sulfur application resulted in increase in nitrogen fixation up to 38% and 33% over control, respectively. Nutrient uptake [nitrogen (N), phosphorus (P), and sulfur (S)] increased significantly with the application of phosphorus and sulfur and correlated positively with nitrogen fixation. There is direct involvement of sulfur in the process of nitrogen fixation whereas effect of phosphorus on nitrogen fixation is indirect mainly through enhanced growth and dry matter production.  相似文献   

10.
Nitrogen (N), phosphorus (P), and potassium (K) deficiencies are a widespread phenomenon throughout the world, and are one of the most common nutritional disorders in Turkish hazelnut (Corylus avellana L.) cultivation. In this research, the effects of macronutrient fertilizers on mineral contents and some biochemical contents of ‘Tombul’ hazelnut (Corylus avellana L.) variety cultivated in the Black Sea Region of Turkey were investigated, and the contribution of these nuts to human nutrition was determined. The trials were carried out at ‘Tombul’ hazelnut orchards, and the hazelnuts were fertilized with five different doses of nitrogen, phosphorus, and potassium in each year for three consecutive years. The basic fertilizers (N, P2O5, and K2O) significantly affected some biochemical contents and mineral compositions of the hazelnuts. In order to improve the biochemical and mineral compositions of hazelnut, 200 kg ha?1 and 400 kg ha?1 N fertilizations, 120 kg ha?1 and 160 kg ha?1 P2O5 fertilizations, and 400 kg ha?1 and 600 kg ha?1 K2O fertilizations could be recommended for practice. According to the daily mineral element requirements, 100 g of hazelnuts provided about 43.5% P, 13.2% K, 19.4% Ca, 37.0% Mg, 0.2% Na, 53.8% Fe, 24.5% Zn, 14.5% B, and 66.7% Mo of the recommended dietary allowances. Cu and Mn contents of 100 g hazelnut were higher than the respective daily requirements. These results indicated that the mineral composition of hazelnut depended not only on the variety but also on the cultivation techniques such as soil condition and especially basic fertilization practices.  相似文献   

11.
The study evaluated the effects of phosphorus (0, 20, 30, and 40 kg P2O5 ha?1) and biofertilizers [Rhizobium (Rhizobium leguminosarum bv viciae), plant growth promoting rhizobacteria (PGPR) (Pseudomonas fluorescens), Rhizobium + PGPR, and uninoculated control] in lentil. Application of 40 kg P2O5 ha?1 resulted in the highest number of nodules, nodule dry weight, leghemoglobin content in nodules, chlorophyll content, yield attributes, and grain yield. Coinoculated treatment performed better than uninoculated control, and individual inoculations of Rhizobium and PGPR in terms of all above mentioned parameters. Application of 20 kg P2O5 ha?1 + Rhizobium inoculation gave statistically similar and 20 kg P2O5 ha?1 + Rhizobium + PGPR inoculation gave significantly higher grain yield than that by 40 kg P2O5 ha?1 alone. The use of Rhizobium alone and Rhizobium + PGPR consortium can save not only 20 kg P2O5 ha?1 but also increase the grain yield of lentil.  相似文献   

12.
Leaf mineral content along the crop cycle may explain differences in response to fertilization among strawberry genotypes. A two year field experiment was conducted using responsive (‘Camarosa’, ‘Ventana’) and nonresponsive (‘Camino Real’, ‘Candonga’) to fertilization genotypes under proportional increases in nutrients supply: from a control dose “C” [120 kg nitrogen (N) ha?1, 70 kg phosphorus pentoxide (P2O5) ha?1, 220 kg potassium oxide (K2O) ha?1, 40 kg calcium oxide (CaO) ha?1 and 20 kg magnesium oxide (MgO) ha?1] to “1.33C” and “1.66C” in 2007 and to “1.5C” and “2C” in 2008. Response to fertilization was high (45–120%) at begining of harvesting and low (10-28%) at middle and end of harvesting. Correlation between leaf area and total yields was high (r ≈ 0.73) at begining of harvesting, except on ‘Camino Real’ (late and compact genotype). At begining of flowering and harvesting, responsive genotypes showed higher potassium (K) and lower calcium (Ca) leaf contents than nonresponsive genotypes, accentuated with the fertilization increase.  相似文献   

13.
Two vermicompost treatments providing 45 (V1) and 90 (V2) kg P ha?1 and mycorrhizae (M) inoculation were evaluated alone and in combinations for wheat (Triticum aestivum L.) growth and soil fertility status. The treatments included; the Control, nitrogen (N): dipotassium oxide (K2O) as basal dose (BD; 120:60 kg ha?1), N: phosphorus pentoxide (P2O5): K2O as recommended dose (RD; 120:90:60 kg ha?1), BD+Myccorhiza (BDM), BD+V1 (BDV1), BDM+V1 (BDMV1), BD+V2 (BDV2), and BDM+V2 (BDMV2). Combination of mycorrhizae and vermicompost (BDMV1 and BDMV2) significantly and maximally improved the growth, plant N, phosphorus (P), and micronutrient concentrations over the control, reduced the soil pH by 5 and 6%, increased OM by 25 and 112%, total N by 41%, and extractable P up to 200% while the extent of improvement was directly related to the content of added vermicompost. Results indicated that vermicompost at either level synergistically affected the mycorrhizae in plant nutrition as well as improved soil fertility status and soil chemical properties.  相似文献   

14.
Abstract

The study investigates the effects of nitrogen fertilizers on the characteristics of the autumn crop of Chinese cabbage. The rates applied varied from 0 to 225 kg ha?1 (N0, N45, N90, N135, N180, N225); the supply of phosphorus and potassium fertilizers was similar in the all trials, 90 and 150 kg ha?1, respectively. It was found that the optimum nitrogen fertilization rate for the autumn crop of Chinese cabbage was N135. In the case of lower nitrogen rates the yield decreased and the cabbage heads were smaller. Further increase in fertilizer rate (>N135) resulted in a higher percentage of non-standard cabbage heads, while the yield remained almost unchanged compared with N135. The total plant mass of cabbage crop fertilized with N135 was 76 t ha?1; plant residues constituted 33 t ha?1 (43% of the total mass). The yield of market quality cabbage heads was 30 t ha?1 (70% of all the heads produced); the rest of heads were loose, not formed or rot-infected. The optimal amount of total mineral nitrogen (the sum of nitrogen present in the 0–60 cm soil layer and the nitrogen supplied with fertilizers) before planting was 260 kg ha?1. When nitrogen rates were higher than N180 the quality of cabbage heads in terms of the content of vitamin C, nitrates, soluble solids, total solids and sugars decreased.  相似文献   

15.
Abstract

This three-year study (2003–2005) aimed to improve the yield and quality of pastures growing naturally that are colonized by naturally occurring vegetation without agricultural input under hazelnut (Corylus sp.) orchards in the middle and eastern Black Sea regions of Turkey. There were eight treatments: 1) control; 2) fertilizer only (triple superphosphate 44% and calcium ammonium nitrate 26%) (80kg ha?1 P and 60 kg ha?1 N in Samsun; 100 kg ha?1 P and 80 kg ha?1 N in Ordu; 100 kg ha?1 P and 40 kg ha?1 N in Giresun); 3) lime only (calcium carbonate 94%) (3.0 t ha?1 lime in Samsun; 4.5 t ha?1 lime in Ordu and Giresun); 4) early cut only; 5) soil aeration only; 6) fertilizer+lime; 7) fertilizer+lime+early cut; 8) fertilizer+lime+soil aeration, laid out in a randomized complete block design with four replicates at each location. The highest dry matter (DM) yield of kg ha?1 and crude protein content (%) was obtained from the treatments that included fertilizer. There was no difference in DM production between any of the combination treatments that involved fertilizer and the fertilizer alone treatment. Only lime and aeration applications also increased yield compared to control, but not as much as did any treatment including fertilizer. Crude protein content of the pasture ranged from 13.3 to 18.1% across locations. Nitrogen and phosphorus fertilizer are recommended to improve DM yields and herbage quality for pastures under hazelnut orchards.  相似文献   

16.
Dry bean (Phaseolus vulgaris L.) is an important legume worldwide and nitrogen (N) is most yield limiting nutrients. A field experiment was conducted for two consecutive years to evaluate response of 15 dry bean genotypes to nitrogen and rhizobial inoculation. The N and rhizobia treatments were (i) control (0 kg N ha?1), (ii) seed inoculation with rhizobia strains, (iii) seed inoculation with rhizobia strains + 50 kg N ha?1, and (iv) 120 kg N ha?1. Straw yield, grain yield, and yield components were significantly influenced by N and rhizobial treatments. Grain yield, straw yield, number of pods m?2, and grain harvest index were significantly influenced by year, nitrogen + rhizobium, and genotype treatments. Year × Nitrogen + rhizobium × genotype interactions were also significant for these traits. Hence, these traits varied among genotypes with the variation in year and nitrogen + rhizobium treatments. Inoculation with rhizobium alone did not produce maximum yield and fertilizer N is required in combination with inoculation. Based on grain yield efficiency index, genotypes were classified as efficient, moderately efficient, and inefficient in nitrogen use efficiency (NUE). NUE defined as grain produced per unit N applied decreased with increasing N rate. Overall, NUE was 23.17 kg grain yield kg?1 N applied at 50 kg N ha?1 and 13.33 kg grain per kg N applied at 120 kg N ha?1.  相似文献   

17.
The effects of integrated nitrogen management (INM) on saffron yield, corm production, nutrient concentration, crocin content, and soil health were studied in field experiments at the Dryland (Karewa) Agriculture Research Station, Budgam District of Kashmir Himalayas, India, during 2006–2010. The levels of fertilizers applied were 0, 45, and 90 kg ha?1 of nitrogen; 0, 30, and 60 t ha?1 of farm yard manure (FYM), and 0 and 5 kg ha ?1 of Azotobacter in solid form. The greatest yields of 3.64 and 3.51 kg ha?1 were observed when nitrogen was applied at 90 kg ha?1 and FYM was applied at 60 t ha?1. The increases over the controls (2.31 and 2.45 kg ha?1) were 57.57% and 43.26%, respectively. The maximum corm productions (10.26 and 13.10 t ha?1) were observed with the application of nitrogen at 90 kg ha?1 and FYM at 60 t ha?1 respectively, with the corresponding increases of 79.62% and 260.97% over their respective controls. Biofertilizer application in the form of viable strain of Azotobacter significantly increased the corm production only. The influence of INM on nutrient and crocin content of saffron and soil health was also found to be sustainable over nonapplication of organic and inorganic fertilizers.  相似文献   

18.
Two trials were conducted to determine the effect of swine manure application on wheat growth and nutrient uptake. Manure was added to soil on a nitrogen (N) basis at 325 kg plant-available nitrogen (PAN) ha?1 (experiment 1) and on a phosphorus (P) basis at 50 kg P ha?1, while maintaining a rate of 325 kg PAN ha?1 through ammonium sulfate addition (experiment 2). Manure treatments increased overall wheat growth by 29% (P < 0.005) compared to the negative control (NC) and increased plant tissue N mass 48% (P < 0.001) and P mass 61% (P < 0.002) (experiment 1). Fertilizer control tended to increase (P < 0.10) wheat growth and increased total vegetative tissue N mass by 23% (P < 0.006) and potassium mass by 20% (P < 0.002) compared to manure treatments. Manure treatments increased wheat growth by 23% (P < 0.03) compared to the NC at the first harvest (experiment 2).  相似文献   

19.
Information on the combined use of organic and inorganic fertilizers on wheat (Triticum aestivum L.) productivity is lacking under moisture stress conditions of Northwest Pakistan. The present experiment was designed to ascertain the combined effect of organic and inorganic fertilizer management on rainfed wheat. Four levels of farm yard manure, FYM, (0, 10, 20, and 30 Mg FYM ha?1) and nitrogen (0, 30, 60, 90, and 120 kg N ha?1) were used. The experiment was conducted at the Agriculture Research Farm of NWFP Agricultural University Peshawar, Pakistan during crop season of 2003–04. The experiment was laid out in randomized complete block design with four replications. Plant height, productive tillers m?2, grains spike?1, grain yield, straw yield, and harvest index were significantly higher in plots which received 30 Mg FYM ha?1. In the case of nitrogen (N) no distinctive differences between the effect of 90 and 120 kg ha?1 was observed for most of the parameters. Nitrogen application at 90 kg ha?1 had significantly higher; plant height, grains spike?1, grain yield, straw yield, and harvest index as compared with the lower levels, i.e., 0, 30, and 60 kg N ha?1 but were at par with 120 N kg ha?1. Significantly higher numbers of productive tillers m?2, grains spike?1, grain yield, straw yield and harvest index were recorded with application of 30 Mg FYM ha?1 + 90 kg N ha?1. The present study suggested that application of 30 Mg FYM ha?1 + 90 kg N ha?1 are promising levels for higher production of wheat under moisture stress conditions. Further research work is needed to ascertain the effect of N above 90 kg ha?1 under different moisture regimes.  相似文献   

20.
Abstract

A study was conducted in the Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, India, to transform the normal compost into bioactive compost, which has multiple benefits to the crop system. The key players in this transformation process were Azotobacter sp., Pseudomonas sp., Phosphobacteria sp. and the waste materials like poultry litter and spent wash. This enrichment process increases both the quality and nutrient content of the municipal solid waste compost significantly. A study was carried out to evaluate the effect of application of different levels of enriched municipal solid waste compost on the availability of the macronutrient content to the rice field soil. The effect of enriched compost on soil available nutrients was significant. The soil ammonium nitrogen and soil nitrate nitrogen content was found to be high in the plots where the enriched compost was applied along with inorganic fertilizer with the values of 38.87 mg kg?1 and 32.87 mg kg?1, respectively. In addition, the availability decreased towards crop growth. The soil available P and K were also increased with enriched compost application to about 22.46 kg ha?1 and 647 kg ha?1 compared with control values of 19.44 kg ha?1 and 518 kg ha?1, respectively. Both phosphorus and potassium content decreased towards advancement of crop growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号