首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wheat contains phenolic compounds concentrated mainly in bran tissues. This study examined the distribution of phenolics and antioxidant activities in wheat fractions derived from pearling and roller milling. Debranning (pearling) of wheat before milling is becoming increasingly accepted by the milling industry as a means of improving wheat rollermilling performance, making it of interest to determine the concentration of ferulic acid at various degrees of pearling. Eight cultivar samples were used, including five genotypes representing four commercial Canadian wheat classes with different intrinsic qualities. Wheat was pearled incrementally to obtain five fractions, each representing an amount of product equivalent to 5% of initial sample weight. Wheat was also roller milled without debranning. Total phenolic content of fractions was determined using the modified Folin‐Ciocalteau method for all pearling fractions, and for bran, shorts, bran flour, and first middlings flour from roller milling. Antioxidant activity was determined on phenolic extracts by a method involving the use of the free radical 2,2‐diphenyl‐l‐picrylhydrazyl (DPPH). Total phenolics were concentrated in fractions from the first and second pearlings (>4,000 mg/kg). Wheat fractions from the third and fourth pearlings still contained high phenolic content (>3,000 mg/kg). A similar trend was observed in antioxidant activity of the milled fractions with ≈4,000 mg/kg in bran and shorts, ≈3,000 mg/kg in bran flour, and <1,000 mg/kg in first middlings flour. Total phenolic content and antioxidant activity were highly correlated (R2 = 0.94). There were no significant differences between red and white wheat samples. A strong influence of environment (growing location) was indicated. Pearling represents an effective technique to obtain wheat bran fractions enriched in phenolics and antioxidants, thereby maximizing health benefits associated with wheat‐based products.  相似文献   

2.
The health-promoting effects of whole-grain consumption have been attributed in part to their unique phytochemical contents and profiles that complement those found in fruits and vegetables. Wheat is an important component of the human diet; however, little is known about the phytochemical profiles and total antioxidant activities of milled fractions of different wheat varieties. The objectives of this study were to investigate the distribution of phytochemicals (total phenolics, flavonoids, ferulic acid, and carotenoids) and to determine hydrophilic and lipophilic antioxidant activity in milled fractions (endosperm and bran/germ) of three different wheat varieties, two of which were grown in two environments. Grain samples of each of the wheat varieties were milled into endosperm and bran/germ fractions. Each fraction was extracted and analyzed for total phenolics, ferulic acid, flavonoids, carotenoid contents, and hydrophilic and lipophilic antioxidant activities. Total phenolic content of bran/germ fractions (2867-3120 micromol of gallic acid equiv/100 g) was 15-18-fold higher (p < 0.01) than that of respective endosperm fractions. Ferulic acid content ranged from 1005 to 1130 micromol/100 g in bran/germ fractions and from 15 to 21 micromol/100 g in the endosperm fractions. The bran/germ fraction flavonoid content was 740-940 micromol of catechin equiv/100 g. On average, bran/germ fractions of wheat had 4-fold more lutein, 12-fold more zeaxanthin, and 2-fold more beta-cryptoxanthin than the endosperm fractions. Hydrophilic antioxidant activity of bran/germ samples (7.1-16.4 micromol of vitamin C equiv/g) was 13-27-fold higher than that of the respective endosperm samples. Similarly, lipophilic antioxidant activity was 28-89-fold higher in the bran/germ fractions (1785-4669 nmol of vitamin E equiv/g). Hydrophilic antioxidant activity contribution to the total antioxidant activity (hydrophilic + lipophilic) was >80%. In whole-wheat flour, the bran/germ fraction contributed 83% of the total phenolic content, 79% of the total flavonoid content, 51% of the total lutein, 78% of the total zeaxanthin, 42% of the total beta-cryptoxanthin, 85% of the total hydrophilic antioxidant activity, and 94% of the total lipophilic antioxidant activity. Our results showed that different milled fractions of wheat have different profiles of both hydrophilic and lipophilic phytochemicals. These findings provide information necessary for evaluating contributions to good health and disease prevention from whole-wheat consumption.  相似文献   

3.
One nonwaxy (covered) and two waxy (hull-less) barleys, whole grain and commercially abraded, were milled to break flour, reduction flour, and the bran fraction with a roller mill under optimized conditions. The flour yield range was 55.3–61.8% in whole grain and increased by 9–11% by abrasion before milling. Break flours contained the highest starch content (≤85.8%) independent of type of barley and abrasion level. Reduction flours contained less starch, but more protein, ash, free lipids, and total β-glucans than break flours. The bran fraction contained the highest content of ash, free lipids, protein, and total β-glucans but the lowest content of starch. Break flours milled from whole grain contained 82–91% particles <106 μm, and reduction flours contained ≈80% particles <106 μm. Abrasion significantly increased the amount of particles <38 μm in break and reduction flours in both types of barley. Viscosity of hot paste prepared with barley flour or bran at 8% concentration was strongly affected by barley type and abrasion level. In cv. Waxbar, the viscosity in bran fractions increased from 428 to 1,770 BU, and in break flours viscosity increased from 408 to 725 BU due to abrasion. Sugar snap cookies made from nonwaxy barley had larger diameter than cookies prepared from waxy barley. Cookies made from break flours were larger than those made from reduction flours, independent of type of barley. Quick bread baked from nonwaxy barley had a loaf volume similar to that of wheat bread, whereas waxy barley bread had a smaller loaf volume. Replacement of 20% of wheat flour by both waxy and nonwaxy barley flour or bran did not significantly affect the loaf volume but did decrease the hardness of quick bread crumb.  相似文献   

4.
Barley is considered a healthy food because of its high content of β‐glucan and phenolic antioxidants. In the current study, 28 black, blue, and yellow barleys were investigated in terms of their composition of free and bound phenolic acids and 2,2‐diphenyl‐1‐picrylhydrazyl radical scavenging capacity. Free phenolics were based on aqueous methanol extraction, whereas bound phenolics were extracted following alkaline hydrolysis. Phenolics were then separated and quantified by liquid chromatography and the Folin–Ciocalteu method. Significant differences were observed between the three barley color groups, and within each color group a wide range of phenolics concentrations existed. Ferulic acid was the predominant phenolic acid in free and bound extracts, followed by p‐coumaric acid in all the barleys investigated. Total phenols content and individual phenolic acids strongly correlated with free radical scavenging capacity of barley. Black and blue barley were found to be related and distinct from yellow barley. The results showed significant variations in phenolics among barleys, with a potential for the development of barley grains with high content of phenolic compounds as antioxidant potential.  相似文献   

5.
Two commercial samples of soft (70% Canadian Eastern soft red spring and 30% Canadian Eastern soft white winter) and hard (90% Canadian western hard red spring and 10% Canadian Eastern hard red winter) wheats were used to obtain different milling fractions. Phenolics extracted belonged to free, soluble esters and insoluble-bound fractions. Soluble esters of phenolics and insoluble-bound phenolics were extracted into diethyl ether after alkaline hydrolysis of samples. The content of phenolics was determined using Folin-Ciocalteu's reagent and expressed as ferulic acid equivalents (FAE). The antioxidant activity of phenolic fractions was evaluated using Trolox equivalent antioxidant capacity, 2,2-diphenyl-1-picrylhydrazyl radical scavenging, reducing power, oxygen radical absorbance capacity, inhibition of oxidation of human low-density lipoprotein cholesterol and DNA, Rancimat, inhibition of photochemilumenescence, and iron(II) chelation activity. The bound phenolic content in the bran fraction was 11.3 +/- 0.13 and 12.2 +/- 0.15 mg FAE/g defatted material for hard and soft wheats, respectively. The corresponding values for flour were 0.33 +/- 0.01 and 0.46 +/- 0.02 mg FAE/g defatted sample. The bound phenolic content of hard and soft whole wheats was 2.1 (+/-0.004 or +/-0.005) mg FAE/g defatted material. The free phenolic content ranged from 0.14 +/- 0.004 to 0.98 +/- 0.05 mg FAE/g defatted milling fractions of hard and soft wheats examined. The contribution of bound phenolics to the total phenolic content was significantly higher than that of free and esterified fractions. In wheat, phenolic compounds were concentrated mainly in the bran tissues. In the numerous in vitro antioxidant assays carried out, the bound phenolic fraction demonstrated a significantly higher antioxidant capacity than free and esterified phenolics. Thus, inclusion of bound phenolics in studies related to quantification and antioxidant activity evaluation of grains and cereals is essential.  相似文献   

6.
Cookies were produced from different sorghum flours to determine their potential as vectors of antioxidants. Different sorghum cultivars and their flour extraction rates were evaluated for their effects on phenolic content and antioxidant activity of the cookies. Consumer acceptance of the sorghum cookies was compared with that of wheat flour cookies. For each sorghum cultivar, cookies of 100% extraction rate flours had two to three times more total phenolics compared with those of 70% extraction rate flours, while antioxidant activity was 22–90% higher. Cookies of the condensed tannin sorghum had two to five times more phenolics compared with those of condensed tannin‐free sorghum. Antioxidant activity was 145–227 μMol Trolox equivalents (TE)/g in cookies of condensed tannin sorghum compared with 10–102 μMol TE/g in those of condensed tannin‐free sorghum. The sorghum flours had slightly higher phenolic content and antioxidant activity values than their corresponding cookies. Cookies of the red tannin‐free sorghum flours (PAN 8564/8446) were equally liked as wheat flour cookies, except for texture. However, cookies of condensed tannin sorghum were least accepted compared with wheat flour cookies despite their high antioxidant activity.  相似文献   

7.
The steryl ferulate contents of rye and wheat grains and their milling fractions were analyzed using a reversed-phase high-performance liquid chromatographic (HPLC) method. HPLC-mass spectrometry was used for identification. In addition, steryl ferulates of some selected milling byproducts were determined. The total steryl ferulate contents of rye and wheat grains were 6.0 and 6.3 mg/100 g, respectively. Uneven distribution of steryl ferulates in the grains led to considerable differences in the milling products; their steryl ferulate contents ranged from trace amounts in flours with low ash content to 20 and 34 mg/100 g in rye and wheat brans, respectively. Campestanyl ferulate and sitostanyl ferulate were the main components, followed by campesteryl ferulate and sitosteryl ferulate, whereas sitosterol was the main component in total sterols. Among the other samples, a byproduct of rice milling (pearling dust) was the best source of steryl ferulates, its total steryl ferulate content being 119 mg/100 g, whereas no measurable amounts of steryl ferulates were measured in oat bran or pearling dust of barley. The results indicated that rye and wheat and especially their bran fractions are comparable to corn as steryl ferulate sources.  相似文献   

8.
Four hull‐less barley samples were milled on a Bühler MLU 202 laboratory mill and individual and combined milling fractions were characterized. The best milling performance was obtained when the samples were conditioned to 14.3% moisture. Yields were 37–48% for straight‐run flour, 47–56% for shorts, and 5–8% for bran. The β‐glucan contents of the straight‐run white flours were 1.6–2.1%, of which ≈49% was water‐extractable. The arabinoxylan contents were 1.2–1.5%, of which ≈17% was water‐extractable. Shorts and bran fractions contained more β‐glucan (4.2–5.8% and 3.0–4.7%, respectively) and arabinoxylan (6.1–7.7% and 8.1–11.8%, respectively) than the white flours. For those fractions, β‐glucan extractability was high (58.5 and 52.3%, respectively), whereas arabinoxylan extractability was very low (≈6.5 and 2.0%, respectively). The straight‐run white flours had low α‐amylase, β‐glucanase, and endoxylanase activities. The highest α‐amylase activity was found in the shorts fractions and the highest β‐glucanase and endoxylanase activities were generally found in the bran fractions. Endoxylanase inhibitor activities were low in the white flours and highest in the shorts fractions. High flavanoid, tocopherol, and tocotrienol contents were found in bran and shorts fractions.  相似文献   

9.
Oxidation of LDL cholesterol is an important factor in the development of atherosclerosis and heart disease. In this study, selected Canadian and Egyptian barley cultivars and their pearling fractions were evaluated for antioxidant capacity to inhibit human LDL oxidation in vitro. Measurement of conjugated dienes (CD) at 234 nm was optimized to determine the degree of LDL oxidation. Dilution of oxidized LDL with iso‐propanol gave a distinct diene conjugation peak. Significant differences in total phenols content (TPC) were found between the cultivars tested, with the hulless barley having greater TPC and inhibition capacity compared with hulled barleys. The outer layers fraction contained the highest TPC, lowest CD formation, and longest lag time, whereas the inner, or endosperm fraction, had the lowest inhibition effects. The middle pearling and hull fractions possessed intermediate inhibition effects. The inhibitory effect of barley extracts was dependent on phenols concentration following a linear or quadratic pattern. The results suggest that barley whole meals, outer layers, middle pearling, or hull fraction would be a potential LDL antioxidant.  相似文献   

10.
The effects of pearling on the content of phenolics and antioxidant capacity of two Canadian wheat classes, namely, Canada Western Amber Durum; Triticum turgidum L. var. durum; CWAD) and Canada Western Red Spring; Triticum aestivum L.; CWRS) were examined. The antioxidant activity of wheat phenolics was evaluated using oxygen radical absorbance capacity (ORAC), inhibition of photochemiluminescence (PCL), Rancimat method, inhibition of oxidation of low-density lipoprotein, and DNA. The phenolic composition of wheat extracts was determined using high-performance liquid chromatography. The antioxidant capacity of both pearled grains and byproducts significantly decreased as the degree of pearling increased. Among grains, the unprocessed whole grains demonstrated the highest antioxidant capacity. The byproducts always demonstrated higher antioxidant capacity compared to the pearled grains, regardless of the wheat class. The resultant byproducts from 10-20% pearling possessed the highest antioxidant capacity. Processing of cereals may thus exert a significant effect on their antioxidant activity. The concentration of grain antioxidants is drastically reduced during the refining process. As phenolic compounds are concentrated in the outermost layers, the bran fractions resulting from pearling may be used as a natural source of antioxidants and as value-added products in the preparation of functional food ingredients or for enrichment of certain products.  相似文献   

11.
Measuring antioxidant activity using a biologically relevant assay adds important evidence to aid in understanding the role of phytochemicals based on data from in vivo and chemical assays of extrusion processed purple potato and pea flours. A cellular antioxidant activity assay could provide biologically relevant information on bioactive compounds in raw as well as processed food products. The objective of this study was to investigate the complete phytochemical profiles, antioxidant activity, cellular antioxidant activity, and their contribution to bioactivity in purple potato flour, dry pea flour, raw formulations, and extrusion cooked products prepared with the above ingredients. The free fraction of extracts contributed 68, 64, and 88% to total phenolics, total antioxidant activity (ORAC value), and total flavonoids, respectively, in purple potato flour (PPF). Similarly, extracts in the free fraction contributed 87, 86, and 64% to total phenolics, total antioxidant activity (ORAC value), and total flavonoids, respectively, in dry pea flour (DPF). The amount of total phenolics and total flavonoids in purple potato flour and the antioxidant activity of PPF and DPF were comparable to published data. However, a higher amount in the total flavonoids and lower in the total phenolics of DPF were observed. Caffeic, p-coumaric, and ferulic acids were mostly observed in the bound extracts of raw formulations as in the extrudates, whereas chlorogenic acid was predominant in the free extracts. The extruded products had significantly higher (p < 0.05) content of total phenolics, ORAC antioxidant activity, and flavonoids, compared to the raw formulations. Extrusion processing increased the cellular antioxidant activity of the extrudates prepared from 35:65 and 50:50 PPF/DPF (w/w) of ingredients compared with control raw formulations in a dose-dependent manner. Increase of PPF significantly increased (p < 0.05) the cellular antioxidant activity of 35-50% PPF formulations.  相似文献   

12.
The amounts and compositions of free, conjugated, bound, and total phenolic acids were determined in 175 samples of wheat flour grown on a single site in 2005. The highest contents of total phenolic acids were found in flours of winter wheat (1171 microg/g) with average levels of 658 microg/g total phenolics across all of the wheat genotypes. Winter wheats showed a range of >3.5-fold across the concentration range for total phenolic acids. Spelt genotypes displayed the narrowest (1.9-fold) range of total phenolic acid concentration. The concentrations of phenolic acids in the different phenolic acid fractions were in the order bound > conjugated > free, with bound phenolic acids making up around 77% of the total phenolic acid concentration and free phenolic acids constituting between 0.5 and 1%. The results indicate that there is genetic diversity in phenolic acid content and that it should be possible to selectively breed for lines with high contents of phenolic components.  相似文献   

13.
The phytochemical profiles (total phenolics, anthocyanins, ferulic acid, carotenoids) and antioxidant activities of five types of corn (white, yellow, high carotenoid, blue, and red) processed into masa, tortillas, and tortilla chips were studied. The nixtamalization process significantly (p < 0.05) reduced total phenolics and antioxidant activities when compared to raw grains. Nixtamalized grains exhibited higher concentration of free phenolics and soluble conjugated ferulic acid and had lower concentrations of bound phenolics and ferulic acid than unprocessed grains. Among processed products, there was little difference in the phytochemical contents and antioxidant activities. Among types of corn, the highest concentrations of total phenolics, ferulic acid, and antioxidant activity were observed in the high-carotenoid genotype followed by the regular yellow counterpart. The white corn contained the lowest amount of total phenolics and antioxidant activity. The pigmented blue corn had the highest anthocyanin concentration followed by the red counterpart. These findings suggest that lime-cooking significantly reduced the phytochemical content of nixtamalized products but released phenolics and ferulic acid.  相似文献   

14.
Oat milling fractions were examined for concentrations of total phenolics, tocols, and phenolic acids and in vitro antioxidant activity to determine their potential as dietary antioxidants. Methanolic extracts of pearling fractions, flour and aspirations from flaking, and trichomes had high, intermediate, and low antioxidant activities, respectively, evaluated by the beta-carotene bleaching method. Pearling fractions were also highest in total phenolics and tocols. p-Hydroxybenzoic acid, vanillic acid, caffeic acid, vanillin, p-coumaric acid, and ferulic acid were identified and quantified by HPLC. Three avenanthramides and an unidentified ferulate derivative were also detected. Total phenolic content was significantly correlated with antioxidant activity, and regression equations that predicted antioxidant activity from phenolic and tocol concentrations were calculated. Antioxidant activity, evaluated by beta-carotene bleaching, was correlated with measures of oxygen radical absorbance capacity and low-density lipoprotein oxidation. These data indicate a potential for oat products, especially those enriched in outer layers of the groat, to contribute to dietary intakes of antioxidant phytonutrients.  相似文献   

15.
Phenolic compounds are found in both free and bound forms in cereals. The majority is in the insoluble bound form, that is, bound to cell wall material, such as ferulic acid and its derivatives. The antioxidant properties of the phenolic compounds in grains are associated with the health benefits of grains and grain products. The extraction capacity of several solvent mixtures, for extracting free phenols from barley flours, and the possibility of employing a rapid automated solvent extraction method were studied. The extraction yield of each method was evaluated by correlating several spectrophotometric indices (absorption at 280, 320, and 370 nm and total phenolic compounds by the Folin-Ciocalteu method) with the antioxidant activities of the barley extracts (scavenging activity by the 2,2-diphenyl-1-picrylhydrazyl method). Interesting results were obtained when ethanol and acetone-based extraction mixtures were employed to extract free phenols. A comparison was made between alkaline and acid hydrolysis. The extraction yield of bound phenolic compounds increased when the digestion time for alkaline hydrolysis was prolonged.  相似文献   

16.
The purpose of this study was to examine the antioxidant properties of water and 80% methanolic extracts of cereal grains and their different morphological fractions. Wheat (Triticum aestivum L.) cv. Almari and cv. Henika, barley (Hordeum vulgare L.) cv. Gregor and cv. Mobek, rye (Secale cereale L.) cv. Dańkowskie Zlote, oat (Avena sativa L.) cv. Slawko and buckwheat (Fagopyrum esculentum Moench) cv. Kora were used. PC (L-alpha-phosphatidylcholine) liposome system and spectrophotometric assay of total antioxidant activity (TAA) were used to evaluate the antioxidative activity of extracts. Among the water extracts, only the one prepared from buckwheat exhibited antioxidant activity at the concentration analyzed. The following hierarchy of antioxidant activity was provided for 80% methanolic extracts originated from whole grain: buckwheat > barley > oat > wheat congruent with rye. The antioxidant activity was observed in extract prepared from separated parts of buckwheat and barley. In respect to hulls, the antioxidant hierarchy was as follows: buckwheat > oat > barley. The correlation coefficient between total phenolic compounds and total antioxidative activity of the extracts was -0.35 for water extracts and 0.96, 0.99, 0.80, and 0.99 for 80% methanolic extracts originated from whole grains, hulls, pericarb with testa fractions and endosperm with embryo fractions, respectively.  相似文献   

17.
The objective was to study the influence of jet‐cooked Prowashonupana barley flour on total phenolic contents, antioxidant activities, water‐holding capacities, and viscoelastic properties. Barley flour was jet‐cooked without or with pH adjustment at 7, 9, or 11. Generally, the free phenolic content and antioxidant activity decreased after jet‐cooking, while the bound phenolic content and antioxidant significantly increased regardless of pH. Detectable levels of gallic acid, caffeic acid, ferulic acid, and p‐coumaroyl‐pentose in the jet‐cooked barley flour hydrolysates along with vitexin were found among 21 phenolics by LC‐ESI‐Q‐TOF‐MS analysis. Jet‐cooking at an elevated pH resulted in increased pasting viscosities. The oil content was decreased after jet‐cooking and continued to decrease with increased pH values. Jet cooking dramatically increased water holding capacity from 179% for unprocessed flour to 643% for jet‐cooked flour without pH adjustment, and water‐holding capacity was greatly increased to 914% by jet‐cooking at pH 11. The combination of jet‐cooking and pH adjustment had tremendous influence on water‐holding and pasting properties. This increase in functionality should contribute to food applications such as bakery and frozen products because of the release of the bound phenolic content, antioxidant activities, and improved water‐holding and pasting abilities.  相似文献   

18.
The effectiveness of extracting free and bound phenolic compounds and antioxidant activities from air‐classified corn bran was evaluated by various extracting methods. Free phenolic contents and antioxidant activities decreased significantly with increasing particle sizes for all methods used in the study. Also, the oil, protein, and ash contents were noticeably decreased with increasing particle sizes. By contrast, bound phenolic content and antioxidant activities increased with increasing particle sizes. Free phenolic contents were much lower than those of bound phenolic contents for the same fraction. The free antioxidant activities were similar to bound antioxidant activities for the same fraction. It suggests that some phenolic compounds may not exhibit antioxidant activity, and some antioxidant activities were not extractable or released during alkaline extraction. Considerable higher free antioxidant activities were found in both direct and double extractions when compared to the single neutral extraction using samples <30 μm. Similar free antioxidant activities were observed for directed extraction and double extraction. For corn bran fractions, the direct method may be suitable for free phenolic content and antioxidant activity, while the sequential method may be proper for bound phenolic content and antioxidant activity.  相似文献   

19.
Research was initiated to measure antioxidant activity of extracts from oat (Avena sativa L.) groats and hulls and the concentrations of phenolic substances that may contribute to antioxidant activity. Antioxidant activity of ethanolic extracts of four cultivars was evaluated by an in vitro assay that measures the inhibition of coupled autoxidation of linoleic acid and β-carotene. Total phenolic content was determined using Folin and Ciocalteau's phenol reagent and was expressed as gallic acid equivalents. Phenolic compounds were separated by reversed-phase HPLC and detected at 290 nm. Peaks were identified by comparing retention times and spectra with known standards and verified with internal standards. Groats had significantly higher antioxidant activity than hulls. For two cultivars, total phenolic content was similar in groats and hulls, whereas one cultivar had higher and another lower total phenolic content in groats than hulls. Ten phenolic compounds were separated and identified in extracts, and one flavan-3-ol and three avenanthramides were tentatively identified. The concentrations of many of these compounds differed among cultivars and between fractions. In general, caffeic acid and the avenanthramides were predominantly found in groats, whereas many of the other phenolics were present in greater concentrations in hulls.  相似文献   

20.
The total plant sterol contents (free sterols and covalently bound structures) of the main cereals cultivated in Finland were determined. Furthermore, sterol contents were determined for different flour and bran fractions in the milling process of wheat and rye, as well as plant sterol contents in various milling and retail bakery products. The sample preparation procedure included acid and alkaline hydrolysis to liberate sterols from their glycosides and esters, respectively. Free sterols were extracted and, after recovery using solid‐phase extraction, derivatized to trimethylsilyl ethers for gas chromatography (GC) analysis. We used GC with a mass spectrometer (MS) for identification. When two cultivars of rye, wheat, barley, and oats grown in the same year were compared, the highest plant sterol content was observed in rye (mean content 95.5 mg/100 g, wb), whereas the total sterol contents (mg/100 g, wb) of wheat, barley, and oats were 69.0, 76.1, and 44.7, respectively. In addition, the 10 rye cultivars and breeding lines compared had total sterol contents of 70.7–85.6 mg/100 g. In the milling process of rye and wheat, the plant sterols fractionated according to the ash content of the corresponding milling product. In all cereal grain and milling product samples, sitosterol was the main sterol. The level of stanols differed in the different milling process samples; it was lower in the most refined rye and wheat flours (≈15%) than in the bran fractions (≈30% in the bran with 4% ash content). Rye bread with whole meal rye flour as the main or only ingredient was a good source of sterols. Sterol content was higher than that of wheat bread, whereas plant sterol content of other bakery products was affected by the type and amount of fat used in baking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号