共查询到17条相似文献,搜索用时 0 毫秒
1.
Inge Håkansson Thomas Keller Tomas Rydberg 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2013,63(2):166-171
Abstract For studies of the effects of seedbed properties on crop emergence, experiments were carried out in shallow plastic boxes. In some experiments, it was examined whether rainfall after sowing could cause oxygen deficiency in the seedbed sufficiently severe to hamper emergence. Crops studied were barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), oilseed rape (Brassica napus var. oleifera, L., Metzg.) and pea (Pisum sativum L.). For harmful oxygen deficiency to develop it appeared that rainfall would need to cause structural collapse of the surface layer followed by continuously wet weather accompanied by slow drainage and high oxygen consumption in the soil; in the experiments the latter was achieved by large amounts of easily decomposable organic matter. It was concluded that such conditions are rare in the field. Therefore, unless rainfall after sowing generates surface water for an extended period, the poor crop emergence often observed after such rainfall is nearly always caused not by oxygen deficiency, but by surface layer hardening when this layer dries. 相似文献
2.
《Communications in Soil Science and Plant Analysis》2012,43(8):1322-1339
A field experiment was conducted on Typic Rhedustalfs to determine the effects of various organic production systems. Results revealed that the soil microbial biomass carbon (SMBC) content was greatest with the application of 100% N through farmyard manure. The ratio index value of biofertilizer along with 50% N through any one of the organic sources were greater than 100% N through green leaf manure?/?vermicompost, integrated use of manure and fertilizer (conventional production system), and control (traditional system of production). Soil enzymes varied with the production systems. The urease, phosphatase, and β-glucosidase activities were more with greater nitrogen, phosphorus, and organic-matter treatments, respectively. The SMBC, soil enzymes, and microbial activity were very responsive to organic production systems, but their levels and activities were not reflected in sweet potato root yield. 相似文献
3.
《Communications in Soil Science and Plant Analysis》2012,43(17):2618-2624
In this study, the chemical compositions of the essential oils from the aerial parts of Artemisia aucheri, grown in a mountainous region in Ghamsar Province, central Iran, have been analyzed by using gas chromatography (GC)–mass spectroscopy (MS) to determine how they are affected by topographic factors (site direction and elevation). Plants were sampled at random in full flowering stage in a completely randomized (CR) design with three replications. The essential oil was extracted by a modified Likens–Nickerson's simultaneous distillation–extraction (SDE) technique. Analysis of the plant oils on the sites [in two directions, north–south (N/S) and east–west (E/W)] and five elevations resulted in 30 identified compounds. Of the oil samples collected, the 99.94% of the components at the N/S site and 99.89% at the E/W site were identified. The main component in the two directions (N/S and E/W) was α-thujone with 19.5% and 18%, respectively. Other significant components in the two directions include α-pinene, davanone, camphor, and camphene. The percentages of all these main compounds on the N/S site were more than on the E/W site. Also, the main compounds increased with increasing altitude and at all five elevations. Among all the oil compounds, the percentages of α-thujone, α-pinene, and camphor were the greatest. Finally, at all the elevations, the percentage of the α-thujone was the greatest among the different oil compounds. 相似文献
4.
A study was undertaken to investigate the bacterial community found in metallophytic grassland soil contaminated with Zn and
Pb. We hypothesised that such communities would be tolerant of additional heavy metal stress due to phylogenetic and functional
adaptation. In microcosm experiments, lasting 51 days, denaturing gradient gel electrophoresis (DGGE) analyses was used to
compare the total bacterial and actinobacterial communities in non-amended soils and those to which additional Pb and Zn concentrations
were added. There was a decrease in total bacterial diversity with each addition of Pb and Zn; in contrast, the actinobacterial
community diversity remained unaffected. The community structures were analysed using multivariate analyses of the DGGE profiles.
Total bacterial community profiles showed two distinct groups sharing less than 80% similarity, irrespective of Pb and Zn
addition. The first contained profiles sampled during the first 7 days of the experiment; the second contained those sampled
from day 10 onwards. Actinobacterial profiles from those that were non-amended showed a similar distribution to those of the
total bacterial community. However, in soil amended with fivefold additional Pb and Zn, all the profiles shared more than
80% similarity. Raup and Crick analyses suggested that total bacterial soil communities were subject deterministic selection
becoming significantly similar as the experiment progressed, but this was inhibited by the highest concentration of additional
Pb and Zn. Actinobacterial communities showed a similar response but were less affected by elevated Pb and Zn concentrations.
These data indicate that the diversity of the actinobacterial community was not negatively affected by additional heavy metal
stress in contrast to total bacterial community diversity. 相似文献
5.
Acid deposition and its effect on Andisols were investigated in the forest experimental station, the Rolling Land Laboratory (RLL), located in the Tama Hill region of Central Japan. The annual volume-weighted mean pH value of open bulk precipitation was 4.8 in the period 1990 to 1992. Nitrate deposition at RLL was larger than for sulfate, which was obviously different from results in Japan Environment Agency (JEA) stations or in study areas of Europe and North America. Abundant nitrate deposition was ascribed to the high emissions from a non-point source, mainly cars. Although sulfate concentration in throughfall fluctuated, its concentration in soil solution was kept at a low level. This was attributed to the high sulfate adsorption capacity of the Andisols. 相似文献
6.
Effect of tillage and residue management on enzyme activities in soils 总被引:14,自引:3,他引:14
Recent interest in soil tillage and residue management has focused on low-input sustainable agriculture. In this study we investigated the effect of three tillage systems (no-till, chisel plow, and moldboard plow) and four residue placements (bare, normal, mulch, and double mulch) on the activities of four amidohydrolases (amidase, L-asparaginase, L-glutaminase, and urease) in soils from four replicated field-plots. Correlation coefficients (r) for linear regressions between the activities of each of the enzymes and organic C or pH and between all possible paired amidohydrolases were also calculated. The results showed that the effects of tillage and residue management on pH in the 28 surface soil (0–15 cm) samples were not significant. The organic C content, however, was affected significantly by the different tillage and residue-management practices studied, being the greatest in soils with notill/double mulch treatment, and the least with no-till/bare and moldboard/normal treatments. Within the same tillage system, mulch treatment resulted in greater organic C content compared with normal or bare treatment. The activities of the amidohydrolases studied were generally greater in mulch-treated plots than in non-treated plots, and were significantly correlated with organic C contents of soils, with r values ranging from 0.70*** to 0.90***. Linear regression analyses of enzyme activities on pH values (in 0.01 M CaCl2) of the 28 surface soils showed significant correlations for L-asparaginase, L-glutaminase, and urease, with r values of 0.74***, 0.77***, and 0.72***, respectively, but not for amidase (r=0.24). The activities of the four amidohydrolases studied in the 40 soil samples tested were significantly intercorrelated, with r values ranging from 0.72*** to 0.92***. The activities of the four amidohydrolases decreased with increasing soil depth of the plow layer, and were accompanied by a decrease in organic C content. 相似文献
7.
Mu Zhang Xiaohu Zhao Qiling Tan Xuecheng Sun Na Li 《Soil Science and Plant Nutrition》2013,59(5):595-603
Molybdenum (Mo) and selenium (Se) are both essential micronutrients for animals and humans. Increasing Mo and Se contents in food crops offers an effective approach to reduce Mo and Se deficiency problems. A hydroponic trial was conducted to investigate the interactions of Mo and Se on uptake, transfer factors (TF shoot ) as well as distribution coefficients (DC) of Mo and Se on Chinese cabbage (Brassica campestris L. ssp. Pekinensis). In Experiment 1 three concentrations of Mo (0.01, 0.1 and 1?mg?L?1) and four concentrations of Se (0, 0.01, 0.1 and 1?mg?L?1) were arranged with a randomized block design. In Experiment 2, there were three treatments, 0.1?mg?L?1 Mo, 0.1?mg?L?1 Se and a combination of 0.1?mg?L?1 Mo?+?0.1?mg?L?1 Se. Experiment 1 showed that Se decreased Mo concentrations in shoots and roots. The impact of Mo on Chinese cabbage response to uptake of Se varied, depending on whether the root Se concentration was saturated or not; Experiment 2 showed that there is a strong antagonism between Mo and Se on nutrition uptake when Mo and Se deficiencies persist for long periods; Mo and Se were easily translocated from solution to plants and from roots to shoots. The results will also be of help in cultivating Mo-enriched and Se-enriched crops. 相似文献
8.
Kouhei Tejima Yasuhiro Arima Tadashi Yokoyama Hitoshi Sekimoto 《Soil Science and Plant Nutrition》2013,59(2):239-247
In leguminous root nodules, bacteroids are differentiated from rhizobia and are surrounded by a peribacteroid membrane (PBM) forming an intracellular structure designated as symbiosome. Through the peribacteroid space (PBS) between the PBM and bacteroids, metabolic substances and signal compounds are exchanged between two symbionts. In this study, organic compounds with low molecular weight in the PBS were collected from isolated symbiosomes of soybean (Glycine max L.) root nodules, and their composition was analyzed and compared with that of the organic compounds in whole root nodules and bacteroids. Major differences were detected in the molar percentages of amino and organic acids, and sugars, to the total low molecular weight organic compounds among whole root nodules, PBS, and bacteroids. The PBS composition was characterized by abundant sugars and poor amino acids. Also the composition of the amino acids, organic acids, and sugars in the PBS was clearly different from that in whole root nodules and bacteroids. The PBS sugar composition was characterized by the predominance of inositols, especially myo-inositol at the 5th and 7th weeks of the host plant growth stages. Changes in the myo- and D-chiro- inositol balance at the host plant growth stages occurred and a syntony was observed between the PBS and bacteroids. The localization of myo-inositol in the PBS accounted for almost 70% of the total myo-inositol in root nodules. A small difference in the PBS composition between two soybean cultivars was recorded but it varied with the growth stages. It was tentatively concluded that the PBS sugar composition affected the bacteroidal sugar composition in soybean plants, and that inositol utilization in the bacteroids could be a factor controlling the bacteroidal function level which varied with the host plant growth stages. 相似文献
9.
J.M. Scervino I. Sampedro M.A. Ponce M.A. Rodriguez J.A. Ocampo A. Godeas 《Soil biology & biochemistry》2008,40(9):2474
Exudates of Rhodotorula mucilaginosa, a yeast commonly found in the rhizosphere, increased hyphal length of the arbuscular mycorrhizal (AM) fungi Gigaspora rosea and Gigaspora margarita. Rhodotorulic acid (RA), a siderophore compound obtained from R. mucilaginosa exudates, increased hyphal length and branching. Thus, the increase in the number of entry points and the higher AM root colonization of tomato plants in the presence of RA can at least partially be explained by the positive effect of RA on the pre-symbiotic stages of the AM fungi. 相似文献
10.
Jared L. DeForest 《Soil biology & biochemistry》2009,41(6):1180-1186
The purpose of this experiment was to evaluate whether soil storage and processing methods significantly influence measurements of potential in situ enzyme activity in acidic forest soils. More specifically, the objectives were to determine if: (1) duration and temperature of soil storage; (2) duration of soil slurry in buffer; and (3) age of model substrates significantly influence the activity of six commonly measured soil extracellular enzymes using methylumbelliferone (MUB)-linked substrates and l-dihydroxyphenylalanine (l-DOPA). Soil collected and analyzed for enzyme activity within 2 h was considered the best measure of potential in situ enzyme activity and the benchmark for all statistical comparisons. Sub-samples of the same soil were stored at either 4 °C or −20 °C. In addition to the temperature manipulation, soils experienced two more experimental treatments. First, enzyme activity was analyzed 2, 7, 14, and 21 days after collection. Second, MUB-linked substrate was added immediately (i.e. <20 min) or 2 h after mixing soil with buffer. Enzyme activity of soil stored at 4 °C was not significantly different from soil stored at −20 °C. The duration of soil storage was minimal for β-glucosidase, β-xylosidase, and peroxidase activity. N-acetyl-glucosaminidase (NAGase), phosphatase, and phenol oxidase activity appeared to change the most when compared to fresh soils, but the direction of change varied. Likewise, the activities of these enzymes were most sensitive to extended time in buffer. Fluorometric MUB and MUB-linked substrates generally had a 3-day shelf life before they start to significantly suppress reported activities when kept at 4 °C. These findings suggest that the manner in which acidic forest soils are stored and processed are site and enzyme specific and should not initially be trivialized when conducting enzyme assays focusing on NAGase, phosphatase, and phenol oxidase. The activities of β-glucosidase, β-xylosidase, and peroxidase are insensitive to storage and processing methods. 相似文献
11.
A study was conducted to investigate the effects of cow manure and sewage sludge application on the activity and kinetics
of soil l-glutaminase. Soil samples were collected from a farm experiment in which 0, 25, and 100 Mg ha−1 of either cow manure or sewage sludge had been applied annually for 4 consecutive years to a clay loam soil (Typic Haplargid).
A chemical fertilizer treatment had also been applied. Results indicated that the effects of chemical fertilizer and the solid
waste application on pH in the 18 surface soil (0–15 cm) samples were not significant. The organic C content, however, was
affected significantly by the different treatments, being the greatest in soils treated with 100 Mg ha−1 cow manure, and the least in the control treatment. l-Glutaminase activity was generally greater in solid-waste applied soils and was significantly correlated (r = 0.939, P < 0.001) with organic C content of soils. The values of l-glutaminase maximum velocity (Vmax) ranged from 331 to 1,389 mg NH4
+–N kg−1 2 h−1. Values of the Michaelis constant (K
m) ranged from 35.1 to 71.7 mM. Organic C content of the soils were significantly correlated with V
max (r = 0.919, P < 0.001) and K
m (r = 0.763, P < 0.001) values. These results demonstrate the considerable influence that solid waste application has on this enzymatic
reaction involved in N mineralization in soil. 相似文献
12.
This study examined variations in soil organic C content and the activity of acid phosphatase, α-glucosidase, phenol oxidase, chitinase, and l-glutaminase in ultisols of burned and unburned areas in Quercus-dominated forests in Ohio, USA. The low intensity, prescribed fires were conducted in April 2001, with temperature 10 cm above the forest floor averaging 160-240 °C. Sampling was conducted throughout the six month growing season (May-October) of 2003, two years after the fire. Organic C content in these ultisols varied between 20 and 30 g C/kg soil, and varied little through the growing season, except for a late season increase to ∼32 g C/kg soil in the burned areas. When enzyme activity was expressed per unit soil organic C, there was no statistically significant variation among sample dates in soil enzyme activity except l-glutaminase, which demonstrated a distinct maximum in activity in spring. Non-metric multidimensional scaling (NMS) ordination resulted in no clear separation of burned and unburned sample areas based on soil organic C and enzyme activity. When the growing season was divided into three segments (early spring, late spring/early summer, and late summer/early autumn), there was again a lack of separation between burned and unburned areas in the earlier two segments, whereas in the late summer/early autumn segment the burned and unburned areas were clearly separated on the basis of differences in soil organic C and l-glutaminase activity. As environmental factors (e.g. soil temperature, moisture) and substrate availability do not vary in parallel through the growing season in this region, seasonal patterns often differ among enzyme systems based on their predominant control mechanism. Sampling time during the growing season appears to have little effect on holistic judgments of fire effects based on soil enzymes, except under restrictive conditions. 相似文献
13.
Mukhtar Musa Festo Massawe Sean Mayes Ibraheem Alshareef 《Communications in Soil Science and Plant Analysis》2016,47(4):533-542
Bambara groundnut has great potential as an alternative crop for improving food security in its production regions and beyond. A field experiment was conducted at the Field Research Centre of the Crops for the Future to obtain information on the nitrogen (N) fixation and N balance of Bambara groundnut landraces on tropical acidic soils of Malaysia. Treatments consisted of three Bambara groundnut landraces (Ex-Sokoto, Kaaro, and NN-1) laid out in a randomized complete block design replicated three times. Results obtained revealed that Ex-Sokoto landrace was greater in yield and N fixation, whereas N balance (-haulm) was greater in NN-1 landrace. The results revealed grain yield of 703–2256 kg ha?1 and N fixation from 32–81 kg ha?1 and suggest that Bambara groundnut could be integrated into a cereal-based cropping system. Ex-Sokoto landrace appeared to be the most promising for yield and N fixation under Malaysian acidic soil conditions. 相似文献
14.
不同氮磷浓度及氮磷比对龙须菜生长和琼胶含量的影响 总被引:3,自引:0,他引:3
本文研究了不同氮磷浓度及氮磷比对龙须菜生长和琼胶含量的影响。结果表明:污染环境中的两种不同化合态氮对龙须菜的生长和琼胶含量的影响没有差异,在试验范围内(氨氮0~50 μmol/L;硝氮0~100 μmol/L),随着氮浓度升高,龙须菜的生长速率增加而琼胶含量下降;环境中的磷对龙须菜生长的影响与氮相似,但对琼胶含量的影响却与氮相反;此外,不同的氮磷比对龙须菜的生长和琼胶含量也有很大影响,本试验中10∶1的氮磷比,龙须菜生长最好;而1∶1的氮磷比,藻体的琼胶含量最高。因此,在实际应用中,收获龙须菜前,要根据所作用环境的不同,对收获的海藻作适当的处理,如让海藻在有利于琼胶合成的环境中(低氮磷比、氮限制、富磷的环境)暂养2周,使得所收获龙须菜的琼胶产量高、质量好。 相似文献
15.
施磷对苜蓿光合产物在根茎叶的分配及抗蓟马的影响 总被引:1,自引:0,他引:1
为了明确施磷后紫花苜蓿根、茎、叶中光合产物分配与苜蓿抗蓟马能力的关系,本试验以紫花苜感虫品种‘甘农3号’和抗虫品种‘甘农9号’为材料,以北方苜蓿蓟马类优势害虫牛角花齿蓟马(Odontothripsloti)为研究对象,设0mg(P_2O_5)·kg~(-1)(土)、27mg(P_2O_5)·kg~(-1)(土)、54mg(P_2O_5)·kg~(-1)(土)、81mg(P_2O_5)·kg~(-1)(土)和108mg(P_2O_5)·kg~(-1)(土)5个磷水平,分别记为P0、P1、P2、P3和P4,在苜蓿6叶期,按3头·株~(-1)接入牛角花齿蓟马,分别于苜蓿持续受害7 d、14 d和21 d时,评价苜蓿的受害指数,测量单株叶、茎、根生物量和根、茎、叶中的可溶性糖和淀粉含量。结果表明:随着施磷水平的升高,‘甘农3号’和‘甘农9号’苜蓿的受害指数降低,总体以P3水平下最低;受害7 d时,两个苜蓿品种受害指数均下降但不显著;受害14 d和21 d时受害指数下降显著(P0.05)。施磷后苜蓿根、茎和叶生物量均显著增加,在蓟马为害前期(7d)和中期(14d)苜蓿受害较轻时,生物量向叶中分配较多;在受到持续较重的为害后(21d),苜蓿的生物量更多向根系分配,相应分配到叶部的生物量有所下降,茎秆中的生物量分配比例变化不显著。相对于‘甘农3号’,各施磷水平下‘甘农9号’分配到叶中的生物量更多。施磷后苜蓿根、茎和叶中可溶性糖和淀粉含量显著增加,随着受害时间的持续,苜蓿根、茎和叶中的淀粉含量总体下降,而可溶性糖含量持续增加;在受害14 d和21 d时,‘甘农9号’的叶和根中的可溶性糖及淀粉含量明显高于‘甘农3号’。总之,施磷可有效增强苜蓿对蓟马的耐害性,在虫害压力适中时,施磷促进了苜蓿地上部分的补偿生长,虫害压力较大时,施磷保证根系的生长以维持其生存。随着受害时间的持续,苜蓿存贮型碳水化合物淀粉的含量趋向减少,根、茎和叶中的可溶性糖含量升高,使较多的资源用于苜蓿光合器官和贮藏器官的构建。P3水平[81 mg(P_2O_5)·kg~(-1)(土)]为本试验中苜蓿最佳施磷水平。 相似文献
16.
Domingo Sancho-KnapikJavier Gismero Alberto AsensioJosé Javier Peguero-Pina Victoria FernándezTomás Gómez Álvarez-Arenas Eustaquio Gil-Pelegrín 《Agricultural and Forest Meteorology》2011,151(7):827-832
In this study the estimation of reflectivity at 1730 MHz (l-band), measured with a microwave digital cordless telephony (DCT) patch antenna, is presented as an easy-to-handle and non-destructive new method to assess the relative water content (RWC) of poplar leaves and filter discs at different levels of dehydration. The accuracy of this new method has been contrasted with the R1300/R1450 index, determined by a portable near infrared (NIR) spectrometer. The close correlations found between RWC and the reflectivity at a frequency of 1730 MHz, both for filters and leaves, indicate that microwave determinations are rather independent of the physical properties of the material analysed. On the contrary, the differences found between poplar leaves and leaf filters in the relationships established between RWC and the R1300/R1450 index demonstrate a strong influence of the properties of the material in NIR reflectance measurements, specifically as they relate to changes in leaf thickness during dehydration. It should be noted that the amount of energy received by the leaf for the microwave technique (0.1 mW) was much lower than that received for the measuring of the R1300/R1450 index (2.5 W). Moreover, R-square coefficients were higher for microwaves than for the R1300/R1450 index. The use of a technologically simple, low cost and portable device, based on a microwave DCT patch antenna, could yield a solid support for the development of a commercial apparatus enabling the determination of plant water status under field conditions. 相似文献
17.
Jonathan J. Halvorson Javier M. Gonzalez Ann E. Hagerman Jeffrey L. Smith 《Soil biology & biochemistry》2009,41(9):2002-2010
Some tannins, plant-derived polyphenolic compounds, can rapidly affix to soil and affect the solubility of labile soil-N but a more complete understanding of the nature and persistence of tannin-soil interactions is needed. Forest and pasture soils from two depths were treated for 1 h with cool (23 °C) water (Control) or solutions that added 10 mg g−1 soil tannic acid (TA), an imprecisely defined mixture of galloyl esters, gallic acid (GA), a phenol, or β-1,2,3,4,6-penta-O-galloyl-d-glucose (PGG), a hydrolyzable tannin. Soluble-C and N, in treatment supernatants, was measured to uncover evidence for sorption of treatments or effects on extraction of soil-N. Significant amounts of soluble-C, added with treatments, were not recovered in supernatants indicating sorption of nearly 90% of the PGG-C, about 75% of the TA-C but less than 25% of the GA-C in surface soil. Disappearance of soluble-C from treatment supernatants was accompanied by a corresponding reduction of total phenolic content. Treatments added a negligible amount of N to soil; but while PGG and TA reduced soluble-N, in extracts from surface soil, GA had little effect. Soluble-N in extracts was composed mainly of organic-N. Effects of tannins persisted in surface soil through 12 washings with hot water (80 °C), suggesting the formation of stable complexes with soil. The proportion of initial soil-C and N remaining after all extractions was higher in samples treated with PGG or TA than either the Control or GA treatment. We conclude PGG readily sorbs to soil and reduces the solubility of soil organic-N unlike GA, its simple monomeric constituent. These differences could be especially important near the surface where quantities of soil organic matter and biological activity are comparatively large and most easily affected by management. 相似文献