首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The development of rainbow trout Oncorhynchus mykiss strains that are resistant to whirling disease has shown promise as a management tool for populations in areas where Myxobolus cerebralis is present. However, the physiological effects of the disease on characteristics necessary for fish survival in natural river conditions have not been tested in many of these strains. Five rainbow trout strains were evaluated for their swimming ability and growth characteristics in relation to M. cerebralis exposure: the resistant German rainbow trout (GR) strain (Hofer strain), the susceptible Colorado River rainbow trout (CRR) strain, and three intermediate (hybrid) strains (F1 = GR × CRR; F2 = F1 × F1; B2 = backcross of F1 × CRR). Three broad response patterns among strain and exposure were evident in our study. First, exposure metrics, growth performance, and swimming ability differed among strains. Second, exposure to the parasite did not necessarily produce differences in growth or swimming ability. Exposure to M. cerebralis did not affect batch weight for any strain, and critical swimming velocity did not differ between exposed and unexposed families. Third, although exposure did not necessarily affect growth or swimming ability, individuals that exhibited clinical deformities did show reduced growth and swimming performance; fish with clinical deformities were significantly smaller and had lower critical swimming velocities than exposed fish without clinical deformities. Research and management have focused on GR × CRR hybrid strains; however, given the performance of the GR strain in our study, it should not be discounted as a potential broodstock. Additional field trials comparing the GR and F1 strains should be conducted before wholesale adoption of the GR strain to reestablish rainbow trout populations in Colorado.

Received September 9, 2010; accepted May 27, 2011  相似文献   

2.
Abstract

Laboratory exposures to the infectious stages (triactinomyxons) of Myxobolus cerebralis demonstrated a range of susceptibility to whirling disease among four species of inland salmonids. Replicate groups of each species were exposed to two concentrations of triactinomyxons, a low dose (100–200 per fish) and a high dose (1,000–2,000 per fish). Exposed fish were evaluated for clinical signs, for severity of microscopic lesions at 35 d, 2 and 5 months, and for spore concentrations in the head cartilage at 5 months. A standard strain of rainbow trout Oncorhynchus mykiss matched for age served as a susceptible species control. Rainbow trout, westslope cutthroat trout O. clarki lewisi, Yellowstone cutthroat trout O. clarki bouvieri, and bull trout Salvelinus confluentus were susceptible to M. cerebralis infections. Clinical signs, including radical swimming (“whirling”) and black tails, were observed at 7 weeks postexposure among rainbow and cutthroat trout challenged at 3 weeks of age. Clinical signs were rare among bull trout exposed at an age of 4 weeks and absent among rainbow and cutthroat trout exposed at 3 months posthatch. Most rainbow, cutthroat, and bull trout were found to be infected when examined at 5 months postexposure. The most severe microscopic lesions among infected fish at 5 months postexposure were found among rainbow trout. Cutthroat trout had less severe lesions, bull trout had mild infections, and no evidence of infection was found among Arctic grayling Thymallus arcticus. Mean spore concentrations among infected fish correlated with the severity of microscopic lesion scores. Rainbow trout had mean concentrations of spores in head cartilage reaching 106, whereas more resistant species such as bull trout had 104 spores; no spores were found among Arctic grayling at 5 months postexposure.  相似文献   

3.
Abstract

Over an approximately 2-year period, 20,974 fish (trout and other salmonid species) from 230 separate waters (creeks, rivers, lakes, reservoirs, ponds, hatcheries, and irrigation ditches) within 21 of the 22 major drainages in Montana were examined for Myxobolus cerebralis. Nine of the major river drainages have waters containing infected fish: Beaverhead, Big Hole, Blackfoot, Clark Fork above the Bitterroot River, Flathead below the south fork of the Flathead River, Jefferson, Madison, Missouri above the Marias River, and Yellowstone above the Bighorn River. The Beaverhead, Clark Fork above the Bitterroot River, Jefferson, Madison, and Missouri above the Marias River have the greatest number of waters containing fish infected with M. cerebralis. Comparisons of infection levels (number of pooled samples that contain fish infected with M. cerebralis) between species among these drainages show significantly lower levels of infection in brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss in the Missouri above the Marias River drainage and significantly higher levels of infection of rainbow trout in the Jefferson. Comparisons of differences in infection levels between drainages among species show that, in the Beaverhead, Clark Fork above the Bitterroot River, and Madison, infection levels in brown trout are significantly higher than in rainbow trout. This is partially attributed to losses of juvenile rainbow trout because of M. cerebralis infection, leading to biased samples. Histopathologic studies showed lesions were consistently less severe in brown trout than other species and occurred in a different location (gill arches versus ventral calvarium). In six of the nine affected drainages (Beaverhead, Blackfoot, Clark Fork above the Bitterroot River, Flathead below the South Fork, Jefferson, and Madison), infected fish were found at or near the time that intensive sampling was initiated in the spring of 1995. In the three remaining affected drainages (Missouri above the Marias River, Yellowstone above the Bighorn River, and the Big Hole), infected fish were not identified until at least 15 months after the initiation of widespread testing. This indicates that in the first six drainages listed above, the infection was well established prior to 1995 but spread into the last three drainages in the ensuing months. Methods of transmission and the sources of infection are unknown, although the absence of infected fish in state, private, and federal hatcheries in Montana indicates hatchery fish from these sources are not likely to be responsible.  相似文献   

4.
Abstract

Two sizes of fingerling Snake River cutthroat trout Oncorhynchus clarkii behnkei and Colorado River rainbow trout O. mykiss were raised at hatcheries testing negative for Myxobolus cerebralis and stocked into the Dolores and Cache la Poudre rivers from 1999 to 2001. Populations were resampled over a 2-year period to determine which species and size combination had the highest growth and survival rates. Fish were tested for M. cerebralis via polymerase chain reaction and pepsin?trypsin digest analyses. Growth and survival rates between the species and size groups were not significantly different in either river. In the Dolores River, annual survival for both species and sizes of fish combined ranged from 0.063 to 0.12. In the Cache la Poudre River, survival for both sizes of rainbow trout was 0.004; survival for cutthroat trout ranged from 0.182 to 0.53. Larger fish had higher growth rates than smaller fish, and cutthroat trout had higher rates than similar sizes of rainbow trout. In both rivers, a higher percentage of the rainbow trout sample was infected than in the cutthroat trout sample. Rainbow trout also had a higher mean number of spores per head than cutthroat trout, and small rainbow trout had higher spore counts than large rainbow trout. Survival rates for cutthroat trout in the Cache la Poudre River were the highest of any of the groups, suggesting a difference that is biologically significant. Raising fingerlings to sizes greater than 100 mm can improve poststocking survival. If rainbow trout are stocked into contaminated waters, raising fingerlings to a larger size does not appear to improve growth or survival rates. Stocking rainbow trout in the spring could maximize growth rates but will expose fish to greater triactinomyxon densities, resulting in higher intensities of infection.  相似文献   

5.
Abstract

The effect of water temperature on the progress of experimentally induced Cytophaga psychrophila infection was investigated in juveniles of coho salmon Oncorhynchus kisutch, chinook salmon O. tshawytscha, and rainbow trout O. mykiss (formerly Salmo gairdneri). A virulent strain of C. psychrophila was administered to fish by subcutaneous injection. Infected fish were held in tanks containing pathogen-free well water at temperatures ranging from 3 to 23°C. Mean times from infection to death of the fish were shortest at 12–15°C, which were the temperatures associated with the shortest time for doubling the population of this bacterium in vitro. Juvenile steelhead (anadromous rainbow trout) injected with viable C. psychrophila cells and held in 22°C water did not become diseased.  相似文献   

6.
Abstract

Laboratory studies were conducted on the susceptibility of different strains of Atlantic salmon Salmo salar and rainbow trout Oncorhynchus mykiss to infection with the monogenean Gyrodactylus salaris. This parasite, probably originating from the Baltic Sea region, is known to minimally affect Neva River (Baltic Sea) Atlantic salmon. However, following its introduction into Norway, G. salaris has caused severe mortality and morbidity among Norwegian Atlantic salmon, which are considered a highly susceptible strain. The cohabitation experiment included one stock of rainbow trout and four different strains of Atlantic salmon from the Baltic Sea region (Mörrum River, Sweden), Europe (Skjern River, Denmark; Conon River, Scotland), and North America (Bristol Cove River, Canada). Fish were exposed to a Norwegian strain of G. salaris, and parasite population development and distribution were monitored for 7 weeks. Rainbow trout exhibited low susceptibility to G. salaris infection, whereas Conon River and Skjern River Atlantic salmon were highly susceptible and exhibited high mortality rates. Mörrum River Atlantic salmon exhibited intermediate susceptibility and low mortality. Bristol Cove River Atlantic salmon harbored relatively low parasite numbers, but fish mortality was high. Our experiment showed that the Danish Skjern River strain of Atlantic salmon is highly susceptible to G. salaris infection, further supporting the hypothesis that Atlantic Ocean strains are more susceptible to G. salaris infection than are Baltic strains.  相似文献   

7.
The development of rainbow trout Oncorhynchus mykiss strains that are resistant to whirling disease has shown promise as a management tool for populations in areas where Myxobolus cerebralis is present. However, the physiological effects of the disease on characteristics necessary for fish survival in natural river conditions have not been tested in many of these strains. Five rainbow trout strains were evaluated for their swimming ability and growth characteristics in relation to M. cerebralis exposure: the resistant German rainbow trout (GR) strain (Hofer strain), the susceptible Colorado River rainbow trout (CRR) strain, and three intermediate (hybrid) strains (F1 = GR x CRR; F2 = F1 x F1; B2 = backcross of F1 x CRR). Three broad response patterns among strain and exposure were evident in our study. First, exposure metrics, growth performance, and swimming ability differed among strains. Second, exposure to the parasite did not necessarily produce differences in growth or swimming ability. Exposure to M. cerebralis did not affect batch weight for any strain, and critical swimming velocity did not differ between exposed and unexposed families. Third, although exposure did not necessarily affect growth or swimming ability, individuals that exhibited clinical deformities did show reduced growth and swimming performance; fish with clinical deformities were significantly smaller and had lower critical swimming velocities than exposed fish without clinical deformities. Research and management have focused on GR x CRR hybrid strains; however, given the performance of the GR strain in our study, it should not be discounted as a potential broodstock. Additional field trials comparing the GR and F1 strains should be conducted before wholesale adoption of the GR strain to reestablish rainbow trout populations in Colorado.  相似文献   

8.
Differences in susceptibility to the myxozoan parasite Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease (PKD), between four strains of rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) were evaluated. Fish were exposed to water enzootic for the parasite in the field for 5 days and were subsequently transferred to the laboratory. Relative parasite load was determined after 2, 3 and 4 weeks post-exposure (wpe) by quantitative real-time PCR (qPCR) of kidney samples and number of parasite stages was determined in immunohistochemical stained sections of kidney, liver and spleen tissues. According to qPCR results, the highest amount of parasite DNA per equal amount of host tissue at all time points was measured in brown trout. Two of the rainbow trout strains showed lower relative parasite load than all other groups at the beginning of the experiment, but the parasite multiplied faster in these strains resulting in an equal level of relative parasite load for all rainbow trout strains at 4 wpe. A weak negative correlation of fish size and parasite load was detected. Only in samples of a few fish, single stages of T. bryosalmonae were found in sections stained by immunohistochemistry impeding quantitative evaluation of parasite numbers by this method. The results indicate a differential resistance to T. bryosalmonae between the rainbow trout strains investigated and between rainbow trout and brown trout.  相似文献   

9.
Myxobolus cerebralis, the myxozoan parasite responsible for whirling disease in salmonids, was first introduced into the United States in 1958 and has since spread across the country, causing severe declines in wild trout populations in the intermountain western United States. The recent detection of the parasite in Alaska is further evidence of the species' capability to invade and colonize new habitat. This study qualitatively assesses the risk of further spread and establishment of M. cerebralis in Alaska. We examine four potential routes of dissemination: human movement of fish, natural dispersal by salmonid predators and straying salmon, recreational activities, and commercial seafood processing. Potential for establishment was evaluated by examining water temperatures, spatial and temporal overlap of hosts, and the distribution and genetic composition of the oligochaete host, Tubifex tubifex. The most likely pathway of M. cerebralis transport in Alaska is human movement of fish by stocking. The extent of M. cerebralis infection in Alaskan salmonid populations is unknown, but if the parasite becomes dispersed, conditions are appropriate for establishment and propagation of the parasite life cycle in areas of south-central Alaska. The probability of further establishment is greatest in Ship Creek, where the abundance of susceptible T. tubifex, the presence of susceptible rainbow trout Oncorhynchus mykiss, and the proximity of this system to the known area of infection make conditions particularly suitable for spread of the parasite.  相似文献   

10.
Abstract

Blood parameters, disease resistance, and the immune response were sequentially evaluated in rainbow trout Oncorhynchus mykiss with proliferative kidney disease (PKD). The fish were maintained under laboratory conditions, and the study group went through a full cycle of the disease. Hematological and serological changes occurred primarily in those fish with severe kidney lesions. Fish infected with the parasite that causes PKD demonstrated a greater resistance to bacterial challenge, and their immune responses were heightened when compared with those of uninfected fish. These data suggest that PKD alone is not a predisposing factor for secondary infections if the fish does not incur severe renal lesions.  相似文献   

11.
Abstract

A whirling-disease-resistant strain of rainbow trout Oncorhynchus mykiss (GRHL strain) derived from a backcross of an F1 hybrid of two strains (German strain × Harrison Lake strain) with German strain females, was compared with the Ten Sleep (TS) strain of rainbow trout. The GRHL strain had consistently superior growth and feed conversion in two consecutive hatchery trials. Hatching and mortality rates were similar between strains. Both strains were stocked into two Utah reservoirs (Hyrum, Porcupine), and a third, Causey Reservoir, was monitored as a control for seasonal variation in prevalence of Myxobolus cerebralis. A total of 1,323 salmonids captured by gill net in spring and fall sampling between 2006 and 2008 were tested for M. cerebralis via pepsin-trypsin digest methods. Only eight of these (<1% per species) had clinical signs consistent with whirling disease. In both reservoirs, GRHL survived better than the TS and had higher growth rates. The prevalence of M. cerebralis was significantly lower for GRHL (18.1%) than TS (50.0%) in Porcupine Reservoir. In Hyrum Reservoir the trend was similar, but prevalence was lower and did not significantly differ between GRHL (9.6%) and TS (23.1%). For infected fish, no significant differences were observed between strains in myxospore counts in either Hyrum (GRHL = 911–28,244 spores/fish [spf], TS = 1,822–155,800 spf) or Porcupine (GRHL = 333–426,667spf, TS = 333–230,511 spf) reservoirs. Unmarked rainbow trout in both reservoirs had significantly higher myxospore counts than stocked fish of either strain. There were significant differences in M. cerebralis prevalence and myxospore loads among other naturally reproducing salmonids in the reservoirs. The trend in susceptibility was cutthroat trout Oncorhynchus clarkii > kokanee Oncorhynchus nerka > brown trout Salmo trutta. The GRHL performed well in both hatchery and field settings and is recommended for stocking programs.

Received December 28, 2011; accepted February 2, 2012  相似文献   

12.
Abstract

A series of experiments was carried out with infectious hematopoietic necrosis virus (IHNV; 193-110 isolate) in rainbow trout Oncorhynchus mykiss (weight, ~1.2 g) to determine the duration of the patent period and the timing of onset of the infectious periods. We first attempted to transmit IHNV to recipient fish from infected rainbow trout 2–3 d after they had been exposed. No infection transfer occurred despite high titers (104.79 to 104.91 plaque-forming units 5–8 d postexposure (dpe). To determine the number of secondary cases produced by one infectious individual, we exposed approximately 50 rainbow trout (weight, ~1.5 g) in each of seven replicate tanks to a donor fish that had been infected with virus by bath exposure 3 d earlier. The prevalence of infection in recipient fish rose from 0.84% at 2 dpe to 7.9% at 6 dpe. Maximum incidence (22 cases) occurred between 2 and 4 dpe. No disease-specific mortalities occurred in recipient fish during the experiment. The titer of virus in both recipient and donor fish increased from 2 to 4 dpe. There was a positive correlation between the level of infection among donors and prevalence values among recipient fish (r 2 = 0.60). The level of challenge by one infectious fish under the conditions provided was enough for infection transfer from sick cohabitant to susceptible fish but was not enough for initiation of a full-scale epizootic among recipients.  相似文献   

13.
Abstract

The ability of two rhabdoviruses, infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV), to infect fish skin was investigated by in vitro infection of excised tissues. Virus replication was determined by plaque assay of homogenized tissue extracts, and the virus antigen was detected by immunohistology of tissue sections. Gill, fin, and ventral abdominal skin tissues of rainbow trout Oncorhynchus mykiss that had been infected in vitro with a virulent strain of IHNV (193–110) produced substantial increases in virus titer within 24 h. Titers continued to increase up until day 3 of incubation; by this time, virus had increased 1,000-fold or more. This increase in IHNV titer occurred in epidermal tissues of fingerlings and of older fish. In another experiment, IHNV replicated in excised rainbow trout tissues whether the fish had been subject to prior infection with a virulent strain of IHNV (Western Regional Aquaculture Consortium isolate) or whether the fish had been infected previously with an attenuated strain of the virus (Nan Scott Lake, with 100 passes in culture). A virulent strain of VHSV (23/75) replicated effectively in excised gill tissues and epidermal tissues of rainbow trout and chinook salmon O. tshawytscha; however, the avirulent North American strain of VHSV (Makah) replicated poorly or not at all.  相似文献   

14.
Abstract

Susceptibility to infection by the myxosporean parasite Myxobolus cerebralis was compared among strains of cutthroat trout Oncorhynchus clarki in two separate exposure tests in the laboratory. In both tests, each strain was exposed to 1,000 triactinomyxons/fish for 2 h in 8.0 L of water. In the first test, three strains of 10-week-old cutthroat trout were compared: two strains of Bonneville cutthroat trout O. c. utah (Bear Lake and southern Bonneville strains) and Yellowstone cutthroat trout O. c. bouvieri. In the second test, these strains plus Snake River fine-spotted cutthroat trout O. c. subsp. and Colorado River cutthroat trout O. c. pleuriticus were exposed at either 5 or 10 weeks of age. The prevalence of the M. cerebralis infection was determined by single-round polymerase chain reaction (PCR) assay 5 weeks after exposure. In the first test, the prevalence was significantly lower in the Bear Lake strain of Bonneville cutthroat trout (78.5%) than in the Yellowstone (97.8%) or southern Bonneville (100%) strains when exposed at 10 weeks of age. In the second test, the Bear Lake strain also had significantly lower infection rates after exposure at 5 (54%) or 10 weeks (82%) of age than the other four strains, which did not differ from each other (94–100%). The severity of the infection was also significantly reduced in Bear Lake Bonneville cutthroat trout, as suggested by the strength of the product of the single-round PCR assay. These results suggest that intraspecific differences in susceptibility to M. cerebralis infection exist, further supporting the need to maintain the genetic diversity among subspecies and geographic variants of cutthroat trout.  相似文献   

15.
Abstract

Juvenile rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta acclimated to freshwater or salinities of 9.0‰ or less were exposed to Yersinia ruckeri, the bacterial pathogen that causes enteric redmouth disease (ERM). Both species of fish were kept in the same recirculating systems after bacterial exposure. Rainbow trout mortality was significantly (P < 0.05) different in each salinity: 96.5% in freshwater, 89.5% in water of 1.1‰ salinity, 81.3% in 3.0‰ salinity, and 75.0% in 9.0‰ salinity (model SE = 1.0). All deaths occurred between 3 and 12 d after exposure to Y. ruckeri. Only 2.3% of brown trout in all salinities died, and differences among treatments were not significant. For both fish species, Y. ruckeri was isolated from liver, spleen, and trunk kidney of fish dying during this experiment, and lesions of rainbow trout were consistent with ERM. Yersinia ruckeri was not isolated from brown trout surviving for 21 d after bacterial exposure but was isolated from 3 of 24 surviving rainbow trout; a polymerase chain reaction assay detected the DNA of Y. ruckeri in 3 additional rainbow trout survivors. Neither the lesions of fish with ERM nor the percentage of surviving fish subclinically infected with Y. ruckeri was affected by salinity. Bacterial growth in vitro was not affected by low (≤9.0‰) salinity; however, bacterial adhesion to polystyrene was significantly reduced as salinity increased. Although mortality caused by Y. ruckeri was significantly lower for rainbow trout in water with slightly increased salinity, none of the salinities tested was effective in preventing serious losses caused by this pathogen in recirculating systems.  相似文献   

16.
Abstract

Infectious hematopoietic necrosis virus (IHNV) causes important losses of chinook salmon Oncorhynchus tshawytscha, sockeye salmon Oncorhynchus nerka, and rainbow trout and steelhead Oncorhynchus mykiss on the west coast of North America. Although coho salmon Oncorhynchus kisutch are considered resistant to IHNV infection, the virus was detected in numerous adult coho salmon returning to Trinity River Hatchery, California, in 1985 and 1986. The virus was isolated from internal organs and ovarian fluids of these fish. Antigenic and structural polypeptides of the viruses were identical in adult coho and chinook salmon collected at the same location. Chinook salmon and rainbow trout alevins exhibited high degrees of susceptibility to IHNV obtained from adult coho and chinook salmon. Coho salmon alevins were resistant to both virus isolants.  相似文献   

17.
Abstract

Evaluation of the susceptibility of bull trout Salvelinus confluentus fry to Myxobolus cerebralis infection using two different laboratory challenge models demonstrated that the method of administering the exposure dose affected infection prevalence. Administration of a low parasite dose (500 per fish) in a single exposure did not establish infection, but when the same cumulative dose was administered over 21 d the prevalence of infection was 45%. The results of challenges at a high exposure dose (5,000 per fish) were similar, infections being detected in 24% of the fish receiving a single dose and 40% of those administered the same dose in multiple exposures. Clinical disease was not detected in fish exposed via either challenge method. The susceptibility of yearling bull trout was tested by means of a single high dose of 10,000 per fish, and infection was detected in only 5% of those fish.  相似文献   

18.
Abstract

Fry of rainbow trout Oncorhynchus mykiss were exposed to serotype VR-299 of infectious pancreatic necrosis virus (IPNV) by using a standardized immersion challenge. In concurrent experiments, fish were monitored for 11 d for excretion of IPNV or monitored for 9 d for excretion and transmission of IPNV to susceptible rainbow trout fry. Immersion-challenged fish began excreting virus within 2 d after challenge. The rate of IPNV excretion per fish increased steadily from about day 4 to day 8 and then decreased. Virus concentrations in tissues of immersion-challenged fish increased exponentially. Susceptible fish became infected with IPNV within 4 d after being introduced to immersion-challenged fish (e.g., 2 d after the challenged fish began excreting virus). By 9 d, 84% of the susceptible fish were infected with IPNV.  相似文献   

19.
Abstract

We determined the sensitivity and specificity of a nested polymerase chain reaction (PCR) for detection of the microsporidian parasite Nucleospora salmonis in kidney tissue of rainbow trout Oncorhynchus mykiss. Kidney tissues were sampled on three dates from 162 juvenile rainbow trout obtained from a California State fish hatchery where the organism was endemic. Kidney tissues were used to prepare imprints stained with May–Grünwald Giemsa and for extraction of genomic DNA for a nested PCR test for N. salmonis. Positive PCR results for N. salmonis were obtained from 1 of 100, 2 of 32, and 27 of 30 kidneys collected on the first, second, and third sample dates, respectively. Kidney tissues from 3 of 27 trout in the third sample that tested positively by PCR also had microscopic evidence of parasites in stained kidney imprints. No parasites were detected in the remaining 159 kidney samples examined microscopically. Sensitivity and specificity of the PCR assay were estimated by using maximum likelihood estimation based on cross-classified test results. This method yielded estimates of sensitivity of 99.99% and specificity of 99.87%. This field evaluation supports experimental evidence that the nested PCR test will be a valuable diagnostic tool for prevention and control of N. salmonis as well as for risk assessment associated with fish movements.  相似文献   

20.
Abstract

A nonradioactive in situ hybridization (ISH) protocol was developed to detect Myxobolus cerebralis, the causative organism of whirling disease, in its primary host, rainbow trout Oncorhynchus mykiss, and in its alternate oligochaete host, Tubifex tubifex. A cocktail of three oligonucleotide primers (derived from the small subunit ribosomal DNA sequence) directed at target sequences of the parasite DNA was tailed at the 3′ end with digoxigenin-labeled deoxyuridine triphosphate (DIG-dUTP). Labeled probes were hybridized to parasite DNA present in deparaffinized tissue sections from infected trout and oligochaetes. The bound probes were visualized after modifications of existing ISH protocols. By using the new ISH procedure, the parasite was found in target tissues of subclinically and clinically infected fish and tubificid oligochaetes after exposures of these hosts to triactinomyxons and mature spores, respectively. The probe did not bind with salmonid tissues infected with two other myxosporean parasites, Ceratomyxa shasta or the PKX organism, or to a Myxobolus sp. infecting the cartilage of plain sculpin Myoxocephalus jaok. These initial results indicate that ISH is an effective and specific test for detecting Myxobolus cerebralis in its fish and oligochaete hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号