首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mountainous peatlands are one of the most important terrestrial ecosystems for carbon storage and play an important role in the global carbon cycle. An insight into the carbon cycle of peat swamps located in mountainous regions can be obtained by studying the distribution of soil organic carbon (SOC) and its relationships with environmental factors. This study focused on the development conditions of peat swamps in the Gahai wetlands, located on the Zoigê Plateau, China, with four different altitudinal gradients as experimental sample sites. The distribution of SOC and its relationship with environmental factors were analysed through vegetation surveys and a generalized additive model (GAM). The results show that with increasing altitude, soil temperature decreased while the soil pH and bulk density initially decreased then increased. On the contrary, the topographic wetness index (TWI), SOC content, above-ground biomass and litter count initially increased then decreased. The SOC content of the 0–30 cm soil layer was in the range 226–330 g·kg−1 (coefficient of variation (CV) = 21.4%), and the 30–60 cm layer was 178–257 g·kg−1 (CV = 17.5%) and was significantly correlated (p < .05) with above-ground biomass and litter count. Meanwhile, the SOC content in the 60–90 cm soil layer was in the range 132–167 g·kg−1 (CV = 9.2%) with a significant correlation (p < .05) with soil temperature, pH, bulk density and topographic moisture index. The study showed that the SOC content exhibited more pronounced spatial patterns with increasing altitude, with the peak value in the shallow soil layer appearing in lower elevation areas compared with the deep soil layer. The level of variation changed from medium to low, reflecting the stable mechanism for maintaining SOC within the heterogeneous peat swamp environment.  相似文献   

2.
Phosphorus status of soils is regarded a component of soil fertility. This component can be influenced by cropping measures. In 1983 a number of Swedish fields with a high P status were identified. In all there were 17 fields chosen distributed over Sweden. On these fields P fertilizer experiments were started with the treatments 0, 15 and 30 kg P ha-1 yr-1.

In average of all experimental sites the starting P-AL value was 19.6 mg 100-1g soil. Typically P-AL in Swedish arable soils are less than 10 mg, so the 19.6 average is a high value, pH varied from 5.1 to 7.3 with 46% of the sites having initial pH values less than 6.2. With no P applied the P-AL values decreased significantly with time. The slope of the regression line indicates that P-AL in the top soil decreased with 0.5 units year-1. The decline was statistically significant at the 5% level. When 30 kg P year-1 was applied the decline was insignificant. In the high pH range (≥ 6.2) the decline in P-AL was 0.67 units year-1 compared with 0.18 in the low pH group. Measurement of the uptake and removal of P with harvest products was chosen as the best method to analyse the crop response with time. When the experiments were pH grouped and the effects in cereals were analysed a positive effect on the P uptake with time was found.  相似文献   

3.
Abstract

The relationships between the ratio of plant-available phosphorus (P-AL) to total P and soil properties were examined in 52 samples of mineral soils collected from different parts of Norway. The ratio P-AL/total P in the soils was used as a measurement of a soil's capacity to bind P in sparsely soluble forms and of the possibility for plants to utilize added P. Simple regression analysis showed that the ratio P-AL/total P was correlated with clay (r= ?0.60???, significant at the 0.1% probability level), Tamm acid oxalate extractable Fe (r= ?0.63???), and Tamm acid oxalate extractable Al (r-= ?0.44???), but not with organic C and pH. Variation of Fe, Al and clay content could explain 50% of the variation of the ratio of P-Al/total P. Partial correlation coefficients showed that Fe was the most important factor explaining the variation of the ratio of P-AL/total P.  相似文献   

4.
《Geoderma》2007,137(3-4):318-326
Increasing areas of altered wetland are being restored by re-flooding the soil. Evidence in the literature indicates that this practice can induce the redox-mediated release of soil nutrients, thereby increasing the risk of diffuse water pollution. However, for the sake of improving wetland management decisions, there is a need for more detailed studies of the underlying relationship between the hydrological and redox dynamics that explain this risk; this is particularly the case in agricultural peatlands that are commonly targeted for the creation of lowland wet grassland. A 12-month field study was conducted to evaluate the relationship between hydrological fluctuations and soil redox potential (Eh) in a nutrient-rich peat field (32 g N kg 1 and 1100 mg P kg 1 in the surface 0–30 cm soil) that had been restored as lowland wet grassland from intensive arable production. Field tensiometers were installed at the 30-, 60- and 90-cm soil depths, and Pt electrodes at the 10-, 30-, 60- and 90-cm depths, for daily logging of soil water tension and Eh, respectively. The values for soil water tension displayed a strong negative relationship (P < 0.001) with monthly dip well observations of water table height. Calculations of soil water potential from the logged tension values were used, therefore, to provide a detailed profile of field water level and, together with precipitation data, explained some of the variation in Eh. For example, during the summer, alternating periods of aerobism (Eh > 330 mV) in the surface, 0–10 cm layer of peat coincided with intense precipitation events. Redox potential throughout the 30–100 cm profile also fluctuated seasonally; indeed, at all depths Eh displayed a strong, negative relationship (P < 0.001) with water table height over the 12-month study period. However, Eh throughout the 30–100 cm profile remained relatively low (< 230 mV), indicating permanently reduced conditions that are associated with denitrification and reductive dissolution of Fe-bound P. The implications of these processes in the N- and P-rich peat for wetland plant diversity and water quality are discussed.  相似文献   

5.
Anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) are two recently discovered processes in the nitrogen cycle that are catalysed by anammox bacteria and n-damo bacteria, respectively. Here, the depth-specific distribution and importance of anammox bacteria and n-damo bacteria were studied in an urban wetland, Xixi Wetland, Zhejiang Province (China). Anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia and Candidatus Anammoxoglobus, and n-damo bacteria related to “Candidatus Methylomirabilis oxyfera” were present in the collected soil samples. The abundance of anammox bacteria (2.6–8.6 × 106 copies g−1 dry soil) in the shallow soils (0–10 cm and 20–30 cm) was higher than that (2.5–9.8 × 105 copies g−1 dry soil) in the deep soils, whereas the abundance of n-damo bacteria (0.6–1.3 × 107 copies g−1 dry soil) in the deep soils (50–60 cm and 90–100 cm) was higher than that (3.4–4.5 × 106 copies g−1 dry soil) in the shallow soils. Anammox activity was detected at all depths, and higher potential rates (12.1–21.4 nmol N2 g−1 dry soil d−1) were observed at depths of 0–10 cm and 20–30 cm compared with the rates (3.5–8.7 nmol N2 g−1 dry soil d−1) measured at depths of 50–60 and 90–100 cm. In contrast, n-damo was mainly occurred at depths of 50–60 cm and 90–100 cm with potential rates of 0.7–5.0 nmol CO2 g−1 dry soil d−1. This study suggested the niche segregation of the anammox bacteria and n-damo bacteria in wetland soils, with anammox bacteria being active primarily in deep soils and n-damo bacteria being active primarily in shallow soils.  相似文献   

6.
Diffusive gradients in thin films (DGT) measurements have been shown to outperform other phosphorus (P) tests in soils with strong P sorption, but this has not been confirmed for moderately weathered European soils. We compared the performance of DGT in predicting wheat grain yield in Swedish long-term fertility experiments with those of standard intensity (water-extractable P (P-H2O)) and quantity (ammonium lactate-extractable P (P-AL)) tests. A Mitscherlich-type model was used to fit wheat yield response to P application rates (0, 15, 30 or 35, and 45 kg P ha-1 year-1) in each individual trial replicate to estimate the maximum yield. For trials with clear plateau-type yield responses and the goodness of fit (R2) > 0.75, relative yields (RYs) were calculated for each P treatment and plotted against the soil P test results (n=143). The goodness of the Mitscherlich-type fits decreased in the following order:DGT-measured P (P-DGT) (R2=0.35) > P-H2O (R2=0.18) > P-AL (R2=0.13). When excluding soils with P-AL:P-DGT ≥ 0.1 L g-1, R2 was considerably improved to 0.55 for P-AL, 0.46 for P-H2O, and 0.65 for P-DGT (n=61). At 95% of maximum yield, the upper limit of P deficiency for P-DGT was 44.8 (the soils with P-AL:P-DGT < 0.1 L g-1) and 61.9 μg L-1 (all soils), falling within the range reported for other European and Australian soils (6.0-142 μg L-1). We show that in the investigated Swedish soils, DGT performed better than the quantity and intensity tests, which is attributed to its ability to capture P diffusion and resupply from the soil solid phase, similar to plant roots in the rhizosphere.  相似文献   

7.
Abstract

Soil tests with extractions are commonly used for risk assessments of phosphorus (P) leaching. Procedures for routine analysis of crop-available soil P by extraction with acid ammonium lactate (P-AL) have been used for nearly 50 years in Sweden, Norway and several East European countries. Aluminium and iron (Al-AL and Fe-AL) were determined in the same extract for 40 well known clayey, loamy or sandy soils from the Swedish long-term studies. Average outcome was 16.8 and 6.0% for the two elements related to extraction with chelating ammonium oxalate (Al-AO and Fe-AO) and concentrations had a correlation coefficient of 0.947 and 0.891, respectively, when the two extraction agents were compared. On average, P-AL determination using inductive coupled plasma (ICP) resulted in 19% higher soil P concentrations compared to analysis using a colorimetric method based on non-calcareous and calcareous soils from the southern counties in the Swedish soil survey, represented mainly by sandy loam soils. Degree of P saturation on a molar basis in the AL extract (DPS-AL) was determined for 22 Nordic observation fields with drained clayey, loamy and sandy soils. Results were used together with long-term flow-weighed concentration of dissolved reactive P (DRP) concentration in drainage water. These parameters were correlated (r=0.918, p=0.000) and could be fitted to a linear regression model (R2=84.3). In addition, two fields with unusually high DPS-AL values could clearly be identified as those with lowest P sorption index and highest DRP concentrations in drainage water. This demonstrates DPS-AL to have the potential as an environmental risk indicator for Swedish acid soils. A set of 230 non-calcareous soils in the southern counties of Sweden from the Swedish soil survey indicated that 3% of the soils had a high DPS-AL in the topsoil or subsoil, from which high DPS leaching probably occurs.  相似文献   

8.
Radionuclide fallout during nuclear accidents on the land may impair the atmosphere, contaminate farmland soils and crops, and can even reach the groundwater. Previous research focused on the field distribution of deposited radionuclides in farmland soils, but details of the amounts of radionuclides in the plough layer and the changes in their proportional distribution in the soil profile with time are still inadequate. In this study, a lysimeter experiment was conducted to determine the vertical migration of 137Cs and 60Co in brown and aeolian sandy soils, collected from the farmlands adjoining Shidaowan Nuclear Power Plant(NPP) in eastern China, and to identify the factors influencing their migration depths in soil. At the end of the experiment(800 d), >96% of added 137Cs and 60Co were retained in the top 0–20 cm soil layer of both soils;very little 137Cs or 60Co initially migrated to 20–30 cm, but their amounts at this depth increased with time. The migration depth of 137Cs was greater in the aeolian sandy soil than in the brown soil during 0–577 d, but at the end of the experiment, 137Cs migrated to the same depth(25 cm) in both soils. Three phases on the vertical migration rate(v) of 60Co in the aeolian sandy soil can be identified: an initial rapid movement(0–355 d, v = 219 ± 17 mm year-1), followed by a steady movement(355–577 d, v = 150 ± 24 mm year-1) and a very slow movement(577–800 d, v = 107 ± 7 mm year-1). In contrast, its migration rate in the brown soil(v = 133 ± 17 mm year-1) was steady throughout the 800-d experimental period. The migration of both 137Cs and 60Co in the two soils appears to be regulated by soil clay and silt fractions that provide most of the soil surface area, soil organic carbon(SOC), and soil pH, which were manifested by the solid-liquid distribution coefficient of 137Cs and 60Co. The results of this study suggest that most 137Cs and 60Co remained within the top layer(0–20 cm depth) of farmland soils following a simulated NPP accident, and little reached the subsurface(20–30 cm depth). Fixation of radionuclides onto clay minerals may limit their migration in soil, but some could be laterally distributed by soil erosion and taken up by crops, and migrate into groundwater in a high water table level area after several decades.Remediation measures, therefore, should focus on reducing their impact on the farmland soils, crops, and water.  相似文献   

9.
Crop species and their varieties vary in phosphorus (P) requirements for optimum production and response to P application. As crop recovery of added P often ranges from 10 to 40%, the rest accumulates in soil and may create potential for P leaching, depending upon the soil characteristics, duration of P applications, and cropping systems. Accumulation and distribution of Olsen P (plant-available labile P), total inorganic P, and total organic P were investigated in soil profiles of three field experiments differing in rate (9–44 kg P ha–1), frequency (applied once or twice annually), and duration (4–34 years) of fertilizer P applications, crop rotations, soil characteristics, and irrigation pattern (upland irrigated and flooded-rice crop) in a subtropical region. Profile samples were collected from soil depths of 0–15, 15–30, 30–60, 60–90, 90–120, and 120–150 cm of different treatments in these experiments and analyzed for different forms of P and soil characteristics. The results revealed that (i) annual applications of fertilizer P either to one crop (alternative-applied P) or to both crops (cumulative) led to the accumulation of residual fertilizer P in the form of Olsen P, varying from 44 to 148 kg P ha–1, and the magnitude of accumulation was proportional to applied fertilizer P rate, frequency, and duration; (ii) majority of residual fertilizer P accumulated as inorganic P (74–89%) followed by organic P (11–26%) and Olsen P (9–19%), illustrating that the inorganic P pool is a major sink for fertilizer P; (iii) application of fertilizer nitrogen (N) and potassium (K) alone or in combination with fertilizer P did not affect residual fertilizer P accumulation in soil profile; (iv) incorporation of farmyard manure enhanced the P enrichment of soil profile; (v) irrigation pattern, soil pH (7.1–7.7), and calcium carbonate (CaCO3) (trace–0.33%) did not influence P movement to deeper soil layers; silt, clay, and soil organic C (SOC) showed strong relationships with Olsen P (r = 0.827, 0.938, and 0.464, P < 0.01) and enhanced the retention of labile P in the plow layer; and (vi) only 6–29% total residual P moved beyond 30 cm deep in fine-textured soils under 22-year rice (Oryza sativa L.)–wheat (Triticum aestivum L.) and 34-year maize (Zea maize L.)–wheat rotations, whereas 41, 27, 20, 9, and 3% were located in soil layers 0–30, 30–60, 60–90, 90–120, and 120–150 cm deep, respectively, in coarse-textured soil profile under 4-year peanut (Arachis hypogaea L.)–sunflower (Helianthus annuus L.) field. These findings confirmed that interplay between the fertilizer P management (alternative vis-à-vis cumulative P application and optimal vis-à-vis excessive rates of fertilizer P in different crop rotations), amount of labile P accumulated in soil profile, and soil characteristics (silt, clay, and SOC) largely controlled the downward movement and resultant potential for P leaching in subtropical irrigated soils.  相似文献   

10.
We evaluated the effect of elemental S (S0) under three moisture (40, 60, 120% water-filled pore space; WFPS) and three temperature regimes (12, 24, 36°C) on changes in pH and available P (0.5 N NaHCO3-extractable P) concentrations in acidic (pH 4.9), neutral (pH 7.1) and alkaline (pH 10.2) soils. Repacked soil cores were incubated for 0, 14, 28 and 42 days. Application of S0 did not alter the trends of pH in acidic and neutral soils at all moisture regimes but promoted a decrease in the pH of alkaline soil under aerobic conditions (40%, 60% WFPS). Moisture and temperature had profound effects on the available P concentrations in all three soils, accumulation of available P being greatest under flooded conditions (120% WFPS) at 36°C. Application of S0 in acidic, neutral and alkaline soils resulted in the net accumulation of 16.5, 14.5 and 13 g P g–1 soil after 42 days at 60% WFPS, but had no effect under flooded conditions. The greatest available P accumulations in the respective soils were 19, 19.5 and 20 g P g–1 soil (equivalent to 38, 41, 45 kg P ha–1) with the combined effects of 36°C, 60% WFPS and applied S0. The results of our study revealed that oxidation of S0 lowered the pH of alkaline soil (r=–0.88, P<0.01), which in turn enhanced available P concentrations. Also, considering the significant relationship between the release of sulphate and accumulation of P, even in acidic soil (r=0.92, P<0.01) and neutral soil (r=0.85, P<0.01) where the decrease in pH was smaller, it is possible that the stimulatory effect of sulphate on the availability of P was due to its concurrent desorption from the colloidal surface, release from fixation sites and/or mineralization of organic P. Thus, in the humid tropics and irrigated subtropics where high moisture and temperature regimes are prevalent, the application of S0 could be beneficial not only in alleviating S deficiency in soils but also for enhancing the availability of P in arable soils, irrespective of their initial pH.  相似文献   

11.
Greenhouse gas (GHG) emissions from farmed organic soils can have a major impact on national emission budgets. This investigation was conducted to evaluate whether afforestation of such soils could mitigate this problem. Over the period 1994–1997, emissions of methane (CH4) and nitrous oxide (N2O) were recorded from an organic soil site in Sweden, forested with silver birch (Betula pendula Roth), using static field chambers. The site was used for grazing prior to forestation. Soil pH and soil carbon content varied greatly across the site. The soil pH ranged from 3.6 to 5.9 and soil carbon from 34 to 42%. The mean annual N2O emission was 19.4 (± 6.7) kg N2O‐N ha?1 and was strongly correlated with soil pH (r = ?0.93, P < 0.01) and soil carbon content (r = 0.97, P < 0.001). The N2O emissions showed large spatial and temporal variability with greatest emissions during the summer periods. The site was a sink for CH4 (i.e. ?0.8 (± 0.5) kg CH4 ha?1 year?1) and the flux correlated well with the C/N ratio (r = 0.93, P < 0.01), N2O emission (r = 0.92, P < 0.01), soil pH (r = ?0.95, P < 0.01) and soil carbon (r = 0.97, P < 0.001). CH4 flux followed a seasonal pattern, with uptake dominating during the summer, and emission during winter. This study indicates that, because of the large N2O emissions, afforestation may not mitigate the GHG emissions from fertile peat soils with acidic pH, although it can reduce the net GHG because of greater CO2 assimilation by the trees compared with agricultural crops.  相似文献   

12.
The potential risk of phosphorus (P) loss in surface run‐off can be decreased using sparingly soluble forms of P fertilizer (e.g. reactive phosphate rock (RPR)). However, it is unclear whether RPR can decrease P loss in leachate, especially when applied to soils with a small anion storage capacity (viz. P sorption capacity) and pH. Our hypothesis was that at low soil pH, the solubility of RPR would increase and result in P losses in leachate similar to those receiving single superphosphate (SSP), but at higher pH, less P would be lost from soils receiving RPR than SSP. Lysimeters containing a crushed, sieved acid mesic Organic (viz. peat) subsoil (30–60 cm) were limed to pH 4.5, 5.5 or 6.5 and treated with SSP or RPR at rates of 0, 50, 100 or 200 kg P/ha. Lysimeters were sown with ryegrass and watered over 12 months under controlled conditions and the leachate collected. Losses of filtered (< 0.45 μm) reactive inorganic P (FRP) and unreactive or organic P (FUP) in leachate were greatest for pH 4.5 treatments and least for the pH 6.5 treatments. The difference in FRP and FUP leachate losses in RPR‐ and SSP‐treated soils was smaller at pH 4.5 and 5.5, and increased at pH 6.5 as losses from soils receiving RPR decreased compared to those receiving SSP. The results suggest that RPR can be used as a strategy to decrease P losses in leachate from an acid Organic soil with small P sorption capacity when limed to > pH 5.5.  相似文献   

13.
The aim of this study was to determine the effect of winter cover crop (CC) residues on soil pH and phosphorus (P) availability. Three incubation assays were performed in pots using two CC: vetch (V) (Vicia villosa Roth.) and oats (Oa) (Avena sativa L.). Soil samples were taken from 10 sites at 0–20-cm depth. The rate of residues were 0 (D0), 10 (D1), 20 (D2), 30 (D3), and 40 (D4) g dry matter kg?1 soil and the soil sampling was after 10, 20, 30, 60, 90, and 120 days of incubation. Soil pH, extractable P (Pe), and soil organic matter (SOM) and its fractions were determined. The pH increase was correlated with the rate applied (D1 < D2 < D3 < D4). No differences were found for pH comparing V and Oa residues with low residue rates. Soil pH changes were dependent from initial pH and SOM fractions in different soils across the incubation period. The multiple regression models showed that the pH changes were dependent on initial pH level and SOM fractions with a high R2 (0.81). CC residues and its quantities produced different changes on pH – especially at the beginning of the incubation – which influenced the P availability.  相似文献   

14.
He  Huan  Xia  Guotong  Yang  Wenjin  Zhu  Yunpeng  Wang  Guodong  Shen  Weibo 《Journal of Soils and Sediments》2019,19(12):3954-3968
Purpose

Wetlands in Mu Us Desert have severely been threatened by grasslandification over the past decades. Therefore, we studied the impacts of grasslandification on soil carbon (C):nitrogen (N):phosphorus (P) stoichiometry, soil organic carbon (SOC) stock, and release in wetland-grassland transitional zone in Mu Us Desert.

Materials and methods

From wetland to grassland, the transition zone was divided into five different successional stages according to plant communities and soil water conditions. At every stage, soil physical and chemical properties were determined and C:N:P ratios were calculated. SOC stock and soil respirations were also determined to assess soil carbon storage and release.

Results and discussion

After grasslandification, SOC contents of top soils (0–10 cm) decreased from 100.2 to 31.79 g kg?1 in June and from 103.7 to 32.5 g kg?1 in October; total nitrogen (TN) contents of top soils (0–10 cm) decreased from 3.65 to 1.85 g kg?1 in June and from 6.43 to 3.36 g kg?1 in October; and total phosphorus (TP) contents of top soils (0–10 cm) decreased from 179.4 to 117.4 mg kg?1 in June and from 368.6 to 227.8 mg kg?1 in October. From stages Typha angustifolia wetland (TAW) to Phalaris arundinacea L. (PAL), in the top soil (0–10 cm), C:N ratios decreased from 32.2 to 16.9 in June and from 19.0 to 11.8 in October; C:P ratios decreased from 1519.2 to 580.5 in June and from 19.0 to 11.8 in October; and N:P ratios decreased from 46.9 to 34.8 in June and changed from 34.9 to 34.0 in October. SOC stock decreased and soil respiration increased with grasslandification. The decrease of SOC, TN, and TP contents was attributed to the reduction of aboveground biomass and mineralization of SOM, and the decrease of soil C:N, C:P, and N:P ratios was mainly attributed to the faster decreasing speeds of SOC than TN and TP. The reduction of aboveground biomass and increased SOC release led by enhanced soil respiration were the main reasons of SOC stock decrease.

Conclusions

Grasslandification led to lowers levels of SOC, TN, TP, and soil C:N, C:P, and N:P ratios. Grasslandification also led to higher SOC loss, and increased soil respiration was the main reason. Since it is difficult to restore grassland to original wetland, efficient practices should be conducted to reduce water drainage from wetland to prevent grasslandification.

  相似文献   

15.
Phosphorus loss from land can be a major factor affecting surface water quality. We studied P‐release mechanisms in wetland soils that had been drained and cultivated for four decades and then re‐flooded. We measured redox, pH and solution composition in two sites in the field and in four peat and calcareous soils incubated in biogeochemical microcosms. The redox and pH measurements during the 120 days of incubation and the resulting soil solution composition indicated that the main process leading to P release is reductive dissolution of ferric hydroxides on which P was adsorbed and in which P was occluded. The molar Fe:P ratio increased with period of reduction from below 1 in the first week of re‐flooding to 15–60 after 120 days. This suggests an increased P‐retention capacity upon reoxidation of the soil solution, whether within the soil profile or in the drainage canals. Prolonged flooding of the calcite‐poor, gypsum‐rich peat soils increased the oversaturation of soil solutions with respect to hydroxyapatite and occasionally β‐Ca3(PO4)2(c), indicating that in spite of the large Ca concentration, the rate of Ca‐P precipitation was insufficient to maintain the saturation status of the Ca‐P system. In the calcareous soils the Ca‐P system effectively controlled the P activity in soil solution throughout the incubation period. In both cases the precipitation of Ca‐P minerals could be an important P‐retention mechanism.  相似文献   

16.
Abstract

A preliminary survey using 20 conventionally farmed fields in which fumigants have been applied every year showed that the root-lesion nematode Pratylenchus penetrans was distributed both in the upper (0–30?cm) and lower (30–60?cm) soil layers. In six of the 20 fields, P.?penetrans was detected in the lower layers exclusively, suggesting that the most appropriate depth to sample soil is 0–60?cm to estimate the relationship between the density of P.?penetrans and its damage to radish. There was a highly significant correlation (r?=?0.923) between the density of P.?penetrans in the 0–60?cm depth and the number of spots on a radish. No damage to radish was observed in soils with <2.5 individuals of P.?penetrans per 20?g soil before cultivation. However, in cases in which the density of P.?penetrans was 3.4–6.2 individuals per 20?g soil, the number of spots on a radish showed more variation (0–131.5 per radish) and there was no significant correlation between them. The nematode community structure of soils with 3.4–8 individuals of P.?penetrans per 20?g soil, evaluated by polymerase chain reaction-denaturing gradient gel electrophoresis, was significantly different (anova, PC2, P?<?0.05) between soils with low (0–42) and high (more than 80) damage levels, suggesting that radish damage might be predicted on the basis of the prevailing soil nematode community structure.  相似文献   

17.
Abstract

Long‐term potassium (K) fertilization practices are likely to affect the K content of soils. This study assessed the effect of long‐term K fertilization strategies for corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] rotations on extractable K in the soil profile of a major Iowa soil type at two locations. The soil type was a Webster fine‐loamy, mixed, mesic, Typic Haplaquoll at both sites. Soil samples were collected from the 0–15, 15–30, 30–60, and 60–90 cm depths after 17 years (Site 1) or 19 years (Site 2) of K fertilization with combinations of two initial rates and four annual rates. The initial rates were 0 and 1,344 or 1,120 kg K ha‐1 at Site 1 and 2, respectively, and the annual rates ranged from 0 to 100 kg K ha‐1. Samples were analyzed for ammonium acetate‐extractable K (STK) and nitric acid (HNO3)‐extractable nonexchangeable K (HNO3‐K). Concentrations of STK and HNO3‐K in the top 0–15 cm soil layer at the two sites were higher for the high initial K rates and were linearly related with the annual K rate. Results for the subsoil layers varied between sites and extractants. At Site 1, annual rates of 30 kg K ha‐1 or higher resulted in a relative accumulation of HNO3‐K in the 15–30 cm layer. At Site 2, these rates resulted in relative accumulations of STK in the 30–60 cm layer and of HNO3‐K in the 60–90 cm layer, but with relative depletions of STK in the 15–30 and 60–90 cm layers. Thus, use of one extractant may not always be sufficient to evaluate cropping and fertilization effects on subsoil K. Long‐term K fertilization of corn and soybean rotations affected extractable K of both the topsoil and subsoil. The effects on subsoil K, however, were smaller compared with effects on the topsoil and varied markedly between sites, subsoil layers, and extractants.  相似文献   

18.
The effects of 25 years of annual applications of P fertilizer on the accumulation and migration of soil Olsen‐P, and the effects of soil residual P on crop yields by withholding P application for the following 5 years, were evaluated in a subtropical region. Annual application of P fertilizer for 25 years to crops in summer (groundnut), winter (wheat, mustard or rapeseed) or in both seasons raised the Olsen‐P status of the plough layer (0–15 cm) from initially very low (12 kg P ha?1) to medium (18 kg P ha?1) and very high levels (40–59 kg P ha?1), depending on the amount of P surplus (amount of fertilizer applied in excess of removal by crops) (r = 0.86, P 0.01). However, only 4–9% of the applied P fertilizer accumulated as Olsen‐P to a depth of 15 cm (an increase of 2 mg kg?1per 100 kg ha?1 surplus P) in the sandy loam soil. In the following 5 years, the raising of 10 crops without P fertilizer applications decreased the accumulated Olsen‐P by only 20–30% depending upon the amount of accumulated P and crop requirements. After 29 years, 45–256 kg of residual P fertilizer had accumulated as Olsen‐P ha?1 in the uppermost 150 cm with 43–58% below 60 cm depth; this indicates enormous movement of applied P to deeper layers in this coarse textured soil with low P retention capacity for nutrients. Groundnut was more efficient in utilizing residual P than rapeseed; however, for both crops the yield advantage of residual P could be compensated for by fresh P applications. These results demonstrated little agronomic advantage above approximately 20 mg kg?1 Olsen‐P build‐up and suggested that further elevation of soil P status would only increase the risk of environmental problems associated with the loss of P from agricultural soils in this region.  相似文献   

19.
The iodine content in successive 10 cm horizons of eighteen soil profiles from England and Wales was determined and correlated with contents of‘free’ aluminium and iron oxides (oxalate-soluble) and organic matter. The pattern of change in iodine content with depth varied considerably with soil type. In the rendzina soils, the content was relatively high in the surface 10 cm but declined markedly with depth. In the podsols, iodine was low at the surface but increased in the B horizon: in one of these soils an iron pan of about 1 cm thickness had an iodine content as high as 37.6 mg/kg. In two soils derived from Ordovician, and one from igneous, rock material, the iodine content was relatively high (up to 25 mg/kg) with maximum values at intermediate depths. In contrast, soils derived from river alluvium and from lowland clays generally had low iodine contents (< 6 mg/kg) which showed little variation with depth in the profile. In a peat soil the iodine content was relatively high in the horizons above 60 cm but was low (1. 3 mg/kg) in the underlying clay. In all 154 samples from the eighteen sites, iodine content was closely correlated with oxalate-soluble aluminium (r= 0.834***) but not with oxalate-soluble iron (r= 0. 35) or organic matter (r= 0.37). However, in the five most acidic soils, with pH below 4. 8, the iodine content was more closely correlated with iron than with aluminium.  相似文献   

20.
Abstract

Soils under the main mangrove (Rhizophora racemosa and Avicennia germinans) forest in the Niger Delta, Nigeria, were characterized, and their capacities to retain heavy metals were examined by using soil column leaching experiments, using 20 mg L?1 Cu, 50 mg L?1 Zn, 20 mg L?1 Cd, and 100 mg L?1 Mn solutions. At the end of the leaching experiments, soil samples from each column were divided into two layers (0–5 cm and 5–10 cm) and analyzed for total metal retained. The fractionation of heavy metals in the surface soil samples (0–5 cm) was investigated by the sequential extraction technique. The study showed that the soils were influenced by tidal flow and characterized by the presence of very fine textured, thin (0–5 cm) to moderately thick (10–15 cm) layer of alluvium (mud) on the surface. The fibric soil material beneath the surface mud varies in thickness from about 70 to 100 cm, and beyond the histic layer is the plastic, very sticky, massive clay. In situ, the soils were neutral in reaction (pH 7.0–7.2), but became strongly acid (pH 3.3–4.8) upon drying. They are saline, high in soluble salts, highly reduced, with CEC that is low in the fibric layer, but high in the mineral, clayey subsoil horizon. The soils are saturated with water for much more than 30 days in a year and have fiber content that is more than 40 cm thick, with the fibric sphagnum constituting more than three‐fourths by volume to a depth greater than 90 cm. The soils, classified as Typic Sphagnofibrists, sequestered considerable amounts of copper (Cu), zinc (Zn), cadmium (Cd), and manganese (Mn) with most of the metals retained in the surface soils. The anthropogenic heavy metals were mostly adsorbed probably to the negatively charged sites of organics and clay. These loosely bound metals may be desorbed and reenter the aqueous phase, thus becoming a secondary source of metal pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号