首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[目的] 探究滴灌对北京市大兴区林场5—6年生欧美107杨树人工林细根分布的影响,为干旱沙地条件下营建人工林提供理论支持。[方法] 采用根钻取样法,对比滴灌和常规灌溉条件下细根生物量在不同方向、不同水平距离和不同土层深度的差异。[结果] 滴灌没有改变细根的空间分布格局,细根在水平方向的距树干50 cm内,垂直方向的0—40 cm土层集中分布,不同方向的细根分布表现为:株间>对角>行间。滴灌对细根生长和分布的影响受滴灌后形成的湿润带范围影响,株间方向细根生物量在水平和垂直方向的分布特征与对角和行间方向差异明显,湿润带范围内细根生物量均与常规灌溉差异极显著(p<0.01)。[结论] 滴灌条件下的杨树人工林较常规灌溉有更多的细根分布,可以更充分利用地下资源,促进林木生长,提高林地生产力。  相似文献   

2.
The influence of different fertilization practices [i.e., nitrogen (N), phosphorus (P), and potassium (K) fertilizers, crop residue, and manure] on dry matter production of white yam (Dioscorea rotundata) “kokoro” a late variety of yam, tuber biomass and dry matter distribution to the plant parts was determined in upper Oueme basin (Republic of Benin) in the years 2001, 2002 and 2003. The experimental design was a randomized complete block with four replications. Altogether there were eight plots divided into two groups consisting of four plots each, one was treated with manure (at the rate of 10 ton ha?1), second plot with mineral fertilizer (N30:P30:K60), third plot with combination of manure and mineral fertilizer, whereas the fourth plot was left as control (no application of fertilizer). In year 2002 and 2003 the same combinations were made taking crop residues (at the rate of10 ton ha?1) from external sources as a source of organic matter at the place of manure. Manure application did not have a significant effect on yam total biomass production nor on tuber yield when applied on fields after fallow. Whereas crop residue application had a positive significant effect on yam tuber and total biomass production when applied after cotton and maize and with adequate rainfall amount and distribution. Regarding partitioning pattern in yam crop, no effect of different practices of fertilization has been noticed. The crop behaves identically (i.e, partitioning rate) in both fertilized and unfertilized management practice.  相似文献   

3.
梨树根系在土壤中的分布状况直接影响施肥的效果,采用壕沟法研究不同土表管理措施下梨树根长、 根表面积、 根体积和不同径级根系特征指标的水平及垂直分布。结果表明, 1)梨树根系水平方向主要集中在距树干3090 cm范围内,垂直方向主要集中在2060 cm土层中; 2)行间种植三叶草与覆膜处理下梨树根长、 根表面积、 根体积均高于清耕对照; 3)3种土表处理下,不同径级根系间都以0~1 mm径级根长、 根数量最多,根体积最小,以1~3 mm径级根表面积最大。行间三叶草处理下总根长、 根表面积最大,根体积最小。因此建议梨树施肥在水平方向距主干3090 cm, 垂直深度2060 cm土层为宜,可促进梨树根系的生长,又可提高肥料利用率。  相似文献   

4.
Abstract

Yams (Dioscorea spp.) are known to be very demanding in terms of soil fertility. The influence of deleterious soil fertility on the growth of yams, however, has not yet been studied. A field study was carried out in Côte d'Ivoire, in a fertile forest site and in a low fertility savanna site, submitted to identical climatic conditions, to determine how soil fertility affects Leaf Area Index, Leaf Area Ratio, Crop Growth Rate, Tuber Bulking Rate, Radiation Interception, Radiation Use Efficiency and final tuber yields in D. alata and D. rotundata, grown in the presence of adequate fertilizers. While germination and establishment of both species were not affected by the site, growth parameters of D. alata were superior to those of D. rotundata. This resulted in higher yields of D. alata, when compared to D. rotundata. Only the radiation use efficiency was higher in D. rotundata than in D. alata. Both species reached higher Crop growth rate and Tuber bulking rate and produced higher fresh tuber yields at the forest site than at the savanna site, reflecting the known demand of yams for high fertility soil. Correlation analyses showed significant relationships between the mean Leaf Area Index measured over the entire growth period, Tuber Growth Rate calculated between tuber initiation and harvest, and fresh tuber yields, suggesting that the development of leaf area is determining the growth rate of the tuber which itself determines the fresh tuber yield. The decrease in D. alata tuber yields at the savanna site was explained by a decrease in Leaf Area Index, while the decrease in D. rotundata tuber yields at this site was explained by a decrease in Radiation Use Efficiency. Both effects might have been the consequence of a suboptimal nitrogen and potassium nutrition at the savanna site.  相似文献   

5.
The important root characteristics of root length density (RLD) and root mass density (RMD) generally differ among irrigation managements and potato cultivars. The objective of this study was to investigate the RLD and RMD variations and their functional relationships with gross potato tuber yield for two commercial potato cultivars, Agria and Sante, under different irrigation strategies. Full irrigation and water‐saving irrigation strategies, deficit and partial root drying irrigations, were applied statically (S) and dynamically (D) based on daily crop evapotranspiration. Results showed that SPRD had significantly greater RLD (3.64 cm/cm3) and RMD (132.7 μg/cm3) than other irrigation treatments. Between the potato cultivars, Agria had significantly larger values of RLD (3.50 cm/cm3) and RMD (138.7 μg/cm3) than Sante. The functional relationship between the root growth characteristics and tuber yield showed that under water‐saving irrigations, Agria increased root mass at the expense of gross tuber yield but Sante increased root mass to maintain larger gross tuber yields. However, Agria produced more roots and gross tuber yield than Sante, and it is concluded that Agria is a more drought‐tolerant potato cultivar, which is recommended for tuber production in regions where water might be scarce. It was shown that larger root production in potatoes was associated with improved tolerance to water stress.  相似文献   

6.
Agricultural soil landscapes of hummocky ground moraines are characterized by 3D spatial patterns of soil types that result from profile modifications due to the combined effect of water and tillage erosion. We hypothesize that crops reflect such soil landscape patterns by increased or reduced plant and root growth. Root development may depend on the thickness and vertical sequence of soil horizons as well as on the structural development state of these horizons at different landscape positions. The hypotheses were tested using field data of the root density (RD) and the root lengths (RL) of winter wheat using the minirhizotron technique. We compared data from plots at the CarboZALF‐D site (NE Germany) that are representing a non‐eroded reference soil profile (Albic Luvisol) at a plateau position, a strongly eroded profile at steep slope (Calcaric Regosol), and a depositional profile at the footslope (Anocolluvic Regosol). At each of these plots, three Plexiglas access tubes were installed down to approx. 1.5 m soil depth. Root measurements were carried out during the growing season of winter wheat (September 2014–August 2015) on six dates. The root length density (RLD) and the root biomass density were derived from RD values assuming a mean specific root length of 100 m g?1. Values of RD and RLD were highest for the Anocolluvic Regosol and lowest for the Calcaric Regosol. The maximum root penetration depth was lower in the Anocolluvic Regosol because of a relatively high and fluctuating water table at this landscape position. Results revealed positive relations between below‐ground (root) and above‐ground crop parameters (i.e., leaf area index, plant height, biomass, and yield) for the three soil types. Observed root densities and root lengths in soils at the three landscape positions corroborated the hypothesis that the root system was reflecting erosion‐induced soil profile modifications. Soil landscape position dependent root growth should be considered when attempting to quantify landscape scale water and element balances as well as agricultural productivity.  相似文献   

7.
为了研究坝上地区不同退化程度小叶杨的细根分布特征,使用土柱法对比了未退化、中度退化和重度退化小叶杨的细根在水平和垂直方向的根系参数的分布规律以及差异,并分析了根系参数在不同土层中的占比。结果表明:(1)随着林地土壤含水率逐渐减小,小叶杨的退化程度加重,细根在表层的占比逐渐增加,在深层的占比逐渐减小。(2)在垂直方向上,3种退化程度小叶杨的细根生物量在0—20 cm土层显著高于其他土层(P0.05),并随土层加深而出现细根的根长密度、根表面积密度、根体积密度的较明显下降趋势。在0—20,20—40,40—60,60—80,80—100 cm土层,细根的根表面积密度和根体积密度均表现为未退化中度退化重度退化。(3)在离开树干的水平方向上,未退化和中度退化小叶杨的细根的根长密度呈现出先增加后减小的变化趋势,而重度退化在0—50,50—100,100—150 cm处相差不大,在150—200 cm处显著增加并达到最大(0.465 7 cm/cm~3)(P0.05)。细根的根表面积密度和根体积密度在4个水平距离上均表现为未退化中度退化重度退化,未退化小叶杨的细根生物量均为最大(19.53,15.74,14.17,14.20 g)。根体积密度整体上随水平距离增加而逐渐减小。研究结果可为探索防护林的细根分布格局和退化原因以及为指导坝上高原地区的植被恢复与重建提供科学参考。  相似文献   

8.
Soil‐frost events may influence the dynamics of fine roots and therefore affect root‐derived C fluxes to the soil. We studied the impact of soil frost on the fine‐root dynamics of Norway spruce (Picea abies [L.] Karst.) by a replicated snow‐removal experiment in a mature forest in SE Germany. Snow removal in the three treatment plots reduced soil temperature significantly with minima <–5.5°C in the O layer while the snow‐covered control plots never reached temperatures below the freezing point. Sequential soil coring in the O layer at the beginning and at the end of the soil‐frost period as well as after thawing revealed that the soil frost treatment increased fine‐root mortality by 29%. However, enhanced fine‐root production in the snow‐removal plots nearly compensated for the fine‐root losses caused by low temperatures. These findings were confirmed by minirhizotron observations in the O layer and the upper 25 cm of the mineral soil showing that relative fine‐root loss was by far higher in the snow‐removal plots than in the control plots. Compensatory fine‐root production in the snow‐removal plots exceeded fine‐root production in the control plots during a period of 8 weeks after the soil frost application by 39% in the O layer while it was similar in both plot types in the mineral soil. Sequential coring and minirhizotron observations led to substantially different fine root–longevity estimates for the soil frost period. However, in both cases, the snow‐removal treatment was characterized by a significant reduction in root longevity indicating a faster fine‐root turnover. As a consequence, experimental soil frost enhanced the C input to the soil via root death at our study site by approx. 42 g m–2 and stimulated the C investment towards the root system of the spruce trees due to a higher sink activity.  相似文献   

9.
A root system has the plasticity to adapt to environmental change and species interaction. Root biomass and distribution were studied in three comparable stands in the fifth growth year (2005) in a semiarid region of northwest China: (1) pure switchgrass, (2) pure milk vetch, and (3) mixed switchgrass and milk vetch in 2:1 row replacement. The measurements were carried out three times (April, September, and November) in 2005 during the vegetation period using a soil core method (9 cm). For each species, the vertical distribution of root biomass (RB) was measured in six consecutive layers (0–20, 20–40, 40–60, 60–90, 90–120, and 120–150 cm deep) between rows, between plants, and at the center of the plant, respectively. Results indicated a flexible distribution strategy of switchgrass that tended to increase soil exploitation and space sequestration efficiency in soil layers. Milk vetch followed a more conservative strategy: its roots reached the same soil depth in the pure and mixed stands but showed greater root densities in shallower soil layers in the latter. Under intercropping, RB input and root/shoot ratio in switchgrass were reduced, while milk vetch put more photosynthate into root growth. The shift toward a more superficially distributed system of milk vetch in the mixture with switchgrass together with the high RB and wide vertical and horizontal distribution of switchgrass in the study indicates the greater belowground competitive ability of switchgrass in the mixture.  相似文献   

10.
Crop species differ in root plasticity response to localised P supply   总被引:1,自引:0,他引:1  
The effect of localised phosphorus (P) fertiliser placement and in particular, deep P fertiliser placement, on the comparative root growth and P uptake of fibrous vs tap‐rooted crops is not known. In this study, we examined the root growth and P uptake of wheat (Triticum aestivum L.), canola (Brassica napus L.), and narrow‐leaf lupin (Lupinus angustifolius L.) in a split‐root system and in columns with deep (19 cm) or shallow (5 cm) P fertiliser sources in glasshouse conditions. In the split‐root system, plants of all three species grown under heterogeneous soil P conditions absorbed more P and produced greater root and shoot biomass than those under homogeneous P supply. Root plasticity differed between species under heterogeneous soil P supply: canola and wheat allocated relatively more root biomass and root length to the high P zone than narrow‐leaf lupin. In the column experiment, there was no difference in the amount of P accumulated in shoots of any crops grown in the deep vs shallow P fertiliser treatments. Root proliferation occurred within the shallow and deep‐P fertiliser bands in all three species; however, root distribution above or below the bands did not differ between deep or shallow P fertiliser treatments in any species. Whilst root plasticity responses to heterogeneous soil P supply differed among species, root architecture (fibrous vs taproot) did not confer any advantage or disadvantage to the acquisition of P from deep vs shallow P fertiliser bands. Moreover, whilst roots proliferate in the vicinity of P fertiliser bands, root distribution outside of the bands appears to remain unaltered in both fibrous and tap‐rooted crops during early growth.  相似文献   

11.
黄河三角洲盐碱地人工刺槐混交林细根分布研究   总被引:1,自引:0,他引:1  
为研究黄河三角洲盐碱地人工刺槐混交林及纯林细根空间分布格局,选取绒毛白蜡刺槐混交林、臭椿刺槐混交林、刺槐纯林,采用土柱法取样,从细根生物量密度、表面积密度、体积密度、根长密度等方面研究盐碱地中不同林分中树木细根的垂直分布情况,从细根生物量分析不同林木细根垂直分布情况,研究不同人工林细根分布差异及土壤影响因子。结果表明:绒毛白蜡刺槐混交林在细根的生物量、表面积、体积、根长等方面都显著高于臭椿刺槐混交林和刺槐纯林;绒毛白蜡刺槐混交林95.77%细根生物量分布在0~60 cm土层,臭椿刺槐混交林85.37%细根生物量分布在0~40 cm土层,而刺槐纯林的细根在土壤中分布则比较均匀,0~40 cm土层细根占生物量总量的66.38%。绒毛白蜡细根生物量最高,显著高于其他林木。绒毛白蜡刺槐混交林细根表面积密度、体积密度、根长密度显著高于刺槐纯林;臭椿刺槐混交林高于刺槐纯林,差异不显著。绒毛白蜡刺槐混交林、臭椿刺槐混交林细根总根尖数分别是刺槐纯林的2.34倍、1.23倍,总分叉数分别为刺槐纯林的6.15倍、1.66倍。绒毛白蜡刺槐混交林、臭椿刺槐混交林、刺槐纯林树木细根生物量与土壤有效磷、速效钾含量呈显著正相关关系;绒毛白蜡刺槐混交林细根生物量碱解氮、有机质含量呈极显著正相关关系。适当的混交模式在一定程度上提高了人工林细根生物量,增强植物吸收土壤营养物质的能力,混交使人工林在盐碱立地条件下适应能力提高。  相似文献   

12.
Abstract

Single and combined effects were studied of root length, burial depth, cutting and competition from a seasonal green manure crop on the growth and development of C. arvense from roots found in the upper soil layer. The experiment was performed under field conditions and partly repeated in a green house. The green manure consisted of a mixture of phacelia, common vetch, red clover and Italian ryegrass. Root fragments of 5 and 10 cm length were buried at 5 and 15 cm soil depth, simulating soil tillage. Use of green manure alone reduced growth of C. arvense more than any other single factor (81–99%), while root length and burial depth were more variable in their effect (0–96% reduction). Combined treatments involving both green manure, deep root burial (15 cm) and short root length (5 cm) reduced growth of C. arvense consistently by 95–100%. At the minimum regenerative capacity of C. arvense the number of leaves was 3–7 in plots with no green manure, at which time cutting had the greatest effect on regrowth the following year. The level for minimum regenerative capacity was not possible to decide for C. arvense growing in competition with green manure. Combined multiple treatments in spring, including use of green manure and mechanical operations in the upper soil layers, appear to be a potential means of reducing C. arvense infestations.  相似文献   

13.
Intercropping is an important and widespread land‐management system in the tropics. At two agricultural sites in Central Kenya differing in elevation and soil type Haplic Nitisols (eutric) and Vitric Gleysols (eutric, epiclayic, endoclayic), we investigated the vertical root distributions using the trench wall profile method in single‐crop systems of maize (Zea mays L.) and in intercropping systems of maize and legumes (common bean, Phaseolus vulgaris L.; pigeon pea, Cajanus cajan [L.] Millsp.) to test for possible differences in the use of water and nutrient resources. The physico‐chemical soil properties of the sites were similar and imposed no restrictions to the vertical growth of the roots into soil depths of 1.4 m. The vertical distributions of the fine roots (?? 0.5–2 mm) and very fine roots (?? < 0.5 mm) were quantified by calculating the parameter β which was computed from the cumulative fraction (Y) of the root densities along the depth (d) of the soil profiles (Y = 1 – βd). We found no consistent differences between the single‐crop and the intercropping systems in the rooting depth down to 1.4 m. However, higher β values for fine roots of the intercropping systems were indicative of a more homogeneous vertical root distribution than in the single‐crop fields. In the intercropping fields, 50% of the total number of fine roots were distributed over the uppermost 36 cm of the soil, whereas in the single‐crop fields, 50% of the fine roots were concentrated in the uppermost 15–21 cm. Medium‐sized roots (?? > 2–5 mm) were detected in the intercropping fields only. The more homogeneous root distribution in the intercropping fields likely indicates a more efficient use of the limited resources nutrients and water.  相似文献   

14.
为了探明苗木培育方式与根系发育的关系,以侧柏、刺槐、白榆的幼苗为对象,研究种基盘苗与营养钵苗对幼苗根系形态的影响。结果表明:由于空气断根效应,种基盘苗抑制了侧柏和白榆主根的生长,促进了刺槐主根的生长,但种基盘能有效促进3个树种的主根沿着重力方向生长,使主根发达而且通直,侧根粗壮且分布比较均匀,营养钵苗的根系主根不明显,根系盘绕现象严重;侧柏和白榆2树种种基盘苗的一级侧根条数分别比其营养钵苗增加181.8%和128.6%,并能显著增加白榆种基盘苗的一级侧根直径;侧柏、刺槐和白榆种基盘苗的一级侧根均匀分布在1-2、2-3、3-4和4-5 cm 4个区间,而营养钵苗则集中分布在1-2和2-3 cm 2个区间;种基盘可以促进苗木一级侧根条数增加和均匀分布,对提高苗木吸收水肥能力和保土固土能力有着积极的作用。  相似文献   

15.
Shallow soil A horizon (topsoil) caused by soil erosion and soil movement from cultivation is known to reduce soil and crop productivity. The reduction may be related to limitation of root growth. A field study was conducted to investigate the effects of topsoil thickness on distributions of root density and growth. Soybeans [Glycine max (L.) Merr.] were grown on plots of Mexico silt loam (fine, montmorillonitic, mesic Mollic Endoaqualfs) with topsoil thicknesses of 0, 12.5, 25.0, and 37.5 cm above the Bt horizons. Root density was measured 60 and 90 days after planting using a minirhizotron video‐camera system. Root density was significantly reduced as topsoil thickness decreased from 37.5 to 0 cm. Mean density and net change of the density across profile between 30 and 60 days of growth had a linear function of topsoil thickness. The reduction and lower activity induced by shallow topsoil were attributed to detrimental properties in the Bt horizons. Root distribution pattern and rooting depth were not significantly affected by topsoil thickness. The roots appeared to be accumulated on the upper layers of the Bt horizons. Roots growing in thicker topsoil were more active than roots growing without topsoil. High soil moisture content during the growing season may mitigate the detrimental effects of shallow topsoil, inhibit root penetration, and enhance root activity.  相似文献   

16.
为探究灌木根系对异质空间的适应策略,以紫穗槐和胡枝子两种灌木为研究对象,采用盆栽控制生长空间的研究方法,以放置不同形状的木板在盆内模拟不同喀斯特异质空间条件(孔隙型、圆形裂缝型、条形裂缝型和孔隙+岩石阻挡型),研究了异质空间条件下两种灌木根系分布特征。结果表明:(1)异质空间条件下紫穗槐和胡枝子根系各项指标均高于均质空间,异质空间条件对根系生长有促进作用。不同植物受异质空间的影响程度不同,胡枝子在异质空间下的根系生物量显著高于均质空间。不同异质空间对根系生长的影响不同,紫穗槐和胡枝子根系均在孔隙型和圆形裂缝型两种空间条件下最为发达。(2)紫穗槐和胡枝子根生物量分布特征受异质空间影响。在异质空间下两种树种根生物量的垂直分布均集中分布在土层深度5—10 cm和15—20 cm范围内,水平分布均集中分布在距植株中心0—3 cm内。紫穗槐根系生物量的水平分布受异质空间具体形状影响较大,孔隙型空间和圆形裂缝型空间对其水平分布影响较为显著。(3)两种灌木对异质空间的适应策略不同,紫穗槐根系对异质空间的适应策略为寻找更多空间,而胡枝子根系对异质空间的适应策略为占据有限空间。综上,紫穗槐和胡枝子根系生...  相似文献   

17.
The influence of mineral fertilization on root uptake and arbuscular mycorrhizal fungi-mediated 15N capture from labeled legume (Medicago polymorpha) residue was examined in winegrapes (Vitis vinifera) in the greenhouse, to evaluate compatibility of fertilization with incorporation of cover-crop residue in winegrape production. Plants grown in marginal vineyard soil were either fertilized with 0.25× Hoagland’s solution or not. This low fertilization rate represents the deficit management approach typical of winegrape production. Access to residue in a separate compartment was controlled to allow mycorrhizal roots (roots + hyphae), hyphae (hyphae-intact), or neither (hyphae-rotated) to proliferate in the residue by means of mesh core treatments. Leaves were weekly analyzed for 15N. On day 42, plants were analyzed for 15N and biomass; roots were examined for intraradical colonization; and soils were analyzed for 15N, inorganic N, Olsen-P, X-K, and extraradical colonization. As expected, extraradical colonization of soil outside the cores was unaffected by mesh core treatment, while that inside the cores varied significantly. 15N atom% excess was highest in leaves of roots + hyphae. In comparison, leaf 15N atom% excess in hyphae-intact was consistently intermediate between roots + hyphae and hyphae-rotated, the latter of which remained unchanged over time. Fertilization stimulated host and fungal growth, based on higher biomass and intraradical colonization of fertilized plants. Fertilization did not affect hyphal or root proliferation in residue but did lower %N derived from residue in leaves and stems by 50%. Our results suggest that even low fertilization rates decrease grapevine N uptake from legume crop residue by both extraradical hyphae and roots.  相似文献   

18.
Fields experiments were conducted on an Ultisol in southeastern Nigeria to study the effects of no-tillage and disc plowing, with and without residue mulching, on soil properties and the growth and yield of cassava and yam. Plowing to a depth of 10 cm and then applying mulch decreased soil bulk density. Of the no-till plots, those with mulch had the greatest soil moisture retention at low suctions; those without mulch had low moisture retention for suctions exceeding 0.1 bar. Cassava plants in plowed plots were more vigorous than those in no-till plots, and mulching decreased plant height of cassava in the initial stages and increased plant height at about 38 weeks after planting. In the first 10 cm, yam root length density was 0.31 cm cm−3 for no-till plots vs. 0.27 cm cm−3 for plowed plots. Mulch application increased root length density of yam. The root length density of cassava was 0.32 cm cm−3 for no-till plots versus 0.16 cm cm−3 for plowed plots. Mulch application, however, significantly increased root length density of cassava in no-till plots only. Yield of yam tubers was more for plowed plots than no-till plots — 12.4 vs. 10.9 t ha−1. The increase in yam tuber yield due to mulching was 21% for no-till and 28% for plowed treatments. The cassava tuber yield was more in no-till than in plowed plots, and application of mulch increased cassava tuber yield.  相似文献   

19.
Row crops such as potatoes (Solanum tuberosum L.) and carrots (Daucus carota L.) are of high economic value in the Nordic countries. Their production is becoming more and more specialized, including continuous arable cropping and heavier farm machinery, with increased risk of soil compaction. The result may be restricted root development and economic losses. Potatoes have widely branched adventitious roots, whereas carrots have taproots with fibrous roots extending from them. Under optimal soil conditions, total root length per surface area may reach more than 10 km m?2 for both species. Maximal root depth is about 140 cm for potato and more than 200 cm in carrots. Most of the root mass is usually distributed within the upper 100 cm, whereof more than 50% may be deeper than 30 cm. Soil compaction causes a dense soil with few large pores, poor drainage and reduced aeration, especially in wet soils with low organic matter content and high proportions of silt or clay. With compacted subsoil layers, roots will be concentrated more in the upper layers and thus explore a smaller soil volume. This will lead to reduced water and nutrient uptake, reduced yields and low nutrient utilization efficiency. In this review article, we describe the interactions between root development and soil conditions for potatoes and carrots, with special focus on sub-optimal conditions caused by soil compaction. We also discuss the effects of tilling strategies, organic material, irrigation and fertilization strategies and controlled traffic systems on root and yield development. To reduce subsoil compaction there is a need to implement practises such as controlled traffic farming, new techniques for ploughing, better timing of soil operations, crop rotations with more perennial crops and supplements of organic material. Moreover, there is a need for a stronger focus on the impacts of farm machinery dimensions.  相似文献   

20.
 研究根系在植被演替过程中的变化对揭示植被演替的一般规律有重要意义。采用以空间代替时间的方法,对黄土高原不同退耕年限的草地植被根系的动态变化及其垂直分布特征进行研究。结果表明:在根系样品采集方法上,挖掘法比根钻法更有利于真实反映深层根系的分布状况;根系在0~150cm土层的总生物量,随演替时间并不是线性增长,而是呈分阶段的阶梯式的上升趋势;从根系的垂直分布来看,根系生物量与根长密度均表现为随土层的加深而降低,不同土层中,又以表层0~15cm土壤中的根系生物量与根长密度数值最高;拟合不同演替年限的根系垂直分布特征系数后发现,演替初期,根系有向深层土壤分布的趋势,到演替的第10~22a,根系分布趋于向表层土壤集中,演替后期,根系再次趋于向深层土壤分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号