首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The period after ploughing of grass–clover leys within a ley‐arable rotation is when nitrogen accumulated during the ley phase is most vulnerable to loss. We investigated how ploughing date and timing of cessation of grazing before ploughing affected nitrous oxide (N2O) losses of the first cereal crop. Ploughing dates were July and October for a winter wheat pilot study and January and March for spring barley in the main experiment. Timings of cessation of grazing (main experiment only) were October, January and March. Spring barley yield, nitrogen uptake and soil mineral nitrogen were also assessed. A separate large‐scale laboratory incubation was made to assess the effect of temperature and rainfall on nitrous oxide emissions and nitrate leaching under controlled conditions. Nitrous oxide emissions in the 1‐ to 2‐month period after autumn or spring ploughing, or sowing were typically between 20 and 150 g N ha?1 day?1 and increased with temperature and rainfall. Tillage for crop establishment stimulated N2O emissions with up to 2.1 kg N ha?1 released in the month after spring tillage. Cumulative nitrous oxide emissions were greatest (~8 kg ha?1 over 17 months) after cessation of grazing in March before March ploughing, and lowest (~5.5 kg ha?1) after cessation of grazing in January before January ploughing. These losses were 1.2–3.9% of the N inputs. In the laboratory study, winter ploughing stimulated nitrate leaching more than nitrous oxide emissions. The optimum time of ploughing appears to be early spring when the cold restricts nitrogen mineralization initially, but sufficient nitrogen becomes available for early crop growth and satisfactory N offtake as temperature increases. Early cessation of grazing is advantageous in leaving an adequate supply of residues of good quality (narrow C:N ratio) for ploughing‐in. Restricting tillage operations to cool, dry conditions, being aware of possible compaction and increasing the use of undersown grass–clover should improve the sustainability of organic farming.  相似文献   

2.
Abstract. Large nitrogen (N) inputs to outdoor pig farms in the UK can lead to high nitrate leaching losses and accumulation of surplus N in soil. We investigated the residual effects of three contrasting outdoor pig systems as compared to an arable control on nitrate leaching and soil N supply for subsequent spring cereal crops grown on a sandy loam soil during 1997/98 and 1998/99 harvest seasons. Previously, the pig systems had been stocked for 2 years from October 1995 and were designated current commercial practice (CCP, 25 sows ha?1 on stubble), improved management practice (IMP, 18 sows ha?1 on undersown stubble) and best management practice (BMP, 12 sows ha?1 on established grass). Estimated soil N surpluses by the end of stocking in September 1997 were 576, 398, 265 and 27 kg ha?1 N for the CCP, IMP, BMP and continuous arable control, respectively. Nitrate leaching losses in the first winter were 235, 198, 137 and 38 kg ha?1 N from the former CCP, IMP and BMP systems and the arable control, respectively. These losses from the former pig systems were equivalent to 41–52% of the estimated soil N surpluses. Leaching losses were much smaller in the second winter at 21, 14, 23 and 19 kg ha?1 N, respectively. Cultivation timing had no effect (P>0.05) on leaching losses in year 1, but cultivation in October compared with December increased nitrate leaching by a mean of 14 kg ha?1 N across all treatments in year 2. Leaching losses over the two winters were correlated (P<0.001) with autumn soil mineral N (SMN) contents. In both seasons, spring SMN, grain yields and N offtakes at harvest were similar (P>0.05) for the three previous pig systems and the arable control, and cultivation timing had no effect (P>0.05) on grain yields and crop N offtake. This systems study has shown that nitrate leaching losses during the first winter after outdoor pig farming can be large, with no residual available N benefits to following cereal crops unless that first winter is much drier than average.  相似文献   

3.
Catch crop strategy and nitrate leaching following grazed grass-clover   总被引:1,自引:0,他引:1  
Cultivation of grassland presents a high risk of nitrate leaching. This study aimed to determine if leaching could be reduced by growing spring barley (Hordeum vulgare L.) as a green crop for silage with undersown Italian ryegrass (Lolium multiflorum Lam.) compared with barley grown to maturity with or without an undersown conventional catch crop of perennial ryegrass (Lolium perenne L.). All treatments received 0, 60 or 120 kg of ammonium‐N ha?1 in cattle slurry. In spring 2003, two grass‐clover fields (3 and 5 years old, respectively, with different management histories) were ploughed. The effects of the treatments on yield and nitrate leaching were determined in the first year, while the residual effects of the treatments were determined in the second year in a crop of spring barley/perennial ryegrass. Nitrate leaching was estimated in selected treatments using soil water samples from ceramic cups. The experiment showed that compared with treatments without catch crop, green barley/Italian ryegrass reduced leaching by 163–320 kg N ha?1, corresponding to 95–99%, and the perennial ryegrass reduced leaching to between 34 and 86 kg N ha?1, corresponding to a reduction of 80 and 66%. Also, in the second growing season, leaching following catch crops was reduced compared with the bare soil treatment. It was concluded that the green barley/Italian ryegrass offers advantages not only for the environment but also for farmers, for whom it provides a fodder high in roughage and avoids the difficulties with clover fatigue increasingly experienced by Danish farmers.  相似文献   

4.
Introducing autumn-sown legumes into Central European farming systems could be beneficial for addressing two challenges for European agriculture, i.e., the substantial deficit of protein sources for livestock and expected changes in agroclimatic conditions. Therefore, a two-year field experiment was conucted under Pannonian climate conditions in eastern Austria to assess nitrogen (N) yield and N fixation of several winter faba bean varieties from different European countries as compared to a spring faba bean. Winter wheat was used as a reference crop for estimating atmospheric N fixation. Winter faba beans were susceptible to frost damage especially in the harder of the two winters. Winter faba bean varieties could not achieve a higher grain yield and a higher grain N yield than the spring faba bean but had a higher grain N concentration (except for one variety). Grain yield and grain N yield of faba beans were severely impaired by drought in one year (with a mean of varieties of 8.3 g N m?2, winter wheat: 6.4 g N m?2); in the other year, grain N yield of faba beans considerably surpassed that of winter wheat (with a mean of varieties of 21.5 g N m?2, winter wheat: 8.8 g N m?2). After harvest, faba beans left higher nitrate residues in the soil, especially in the subsoil, and higher amounts of N in above-ground residues compared to winter wheat. Faba beans showed high N fixation under optimum conditions (with a mean of varieties of 21.9 g N m?2) whereas drought considerably impaired N fixation (with a mean of varieties of 6.3 g N m?2; with no differences between autumn- and spring-sown faba beans). In conclusion, growing winter faba bean varieties in eastern Austria did not result in higher grain yield, grain N yield, and N fixation compared to growing a spring faba bean.  相似文献   

5.
Application of nitrogen (N) fertilizers without knowing the N-supplying capacity of soils may lead to low N use efficiency, uneconomical crop production, and pollution of the environment. Based on the results from pot experiments treated with soil initial nitrate leaching and native soil, long-term alternate leaching aerobic incubation was conducted to study the disturbed and undisturbed soil N-supplying capacity of surface soil samples in 11 sites with different fertilities on the Loess Plateau. The results indicated that the entire indexes and ryegrass (Lolium perenne) uptake N with soil initial nitrate leaching showed a better correlation than that without soil initial nitrate leaching. Except the correlation coefficients for soil initial nitrate (NO3 ?)-N and mineral N extracted by calcium chloride (CaCl2) before aerobic incubation with ryegrass uptake without soil initial nitrate leaching, the correlation coefficients for soil initial NO3 ?-N and mineral N extracted by CaCl2 before aerobic incubation with ryegrass uptake with soil initial nitrate leaching and those for mineralizable N extracted by aerobic incubation, soil initial mineral N and mineralizable N extracted by aerobic incubation, potentially mineralizable N (N0) and soil initial mineral N + N0 with ryegrass uptake N under the two cases in disturbed treatment were all higher than those in undisturbed treatment. We concluded that NO3 ?-N in soil extracted by CaCl2 before aerobic incubation can reflect soil N-supplying capacity but cannot reflect soil potential N-supplying capacity. Without soil initial nitrate leaching, the effect of disturbed and undisturbed soil samples incubated under laboratory conditions for estimating soil N-supplying capacity was not good; however, with soil initial nitrate leaching, this method could give better results for soil N-supplying capacity. Based on the results from pot experiments treated with soil initial nitrate leaching and native soil, the mineralization of disturbed soil samples can give provide better results for predicting soil N-supplying capacity for in situ structure soil conditions on the Loess Plateau than undisturbed soil samples.  相似文献   

6.
The aim of the present investigation was to study the effect of white clover (var. Milka and Donna), red clover (var. Fanny) and ryegrass (var. Tove) undersown in winter wheat on a succeeding oat crop. Under the climatic conditions prevailing in Sweden, growing a catch crop after winter cereals is of particular interest because the latter are usually followed by a spring sown crop, leaving the ground bare during autumn and winter. Field trials were carried out during three growing seasons in an integrated farming system and for one year in an organic farming system. Competition from the dense wheat crop in the integrated farming system had a negative effect on the undersown species, and at harvest of the wheat they showed quite poor growth in all three years, with nitrogen contents under 5 kg ha?1. No significant yield increase was measured without added nitrogen when the averages for all three years were calculated. On average, the grain yields were improved by 750 kg ha?1 (14% moisture content) for the treatments with undersown clover for all three years when 90 kg N ha?1 were added. The experiment within the organic system showed a different pattern with a better development of the undersown clover species, with nitrogen contents approximately 25 kg ha?1 and an improvement in oat grain yield, from around 2?000 kg ha?1 for the control to almost 3?500 kg ha?1 with clover undersown the previous year.  相似文献   

7.
Abstract. Nitrate leaching after one year of a cut grass/clover ley was measured in two succeeding years to investigate how the postponing of ploughing leys from early to late autumn or spring, in combination with spring or winter cereals affected leaching of nitrate. The experiment was conducted as three field trials, two on a coarse sandy soil and one on a sandy loam soil. For calculation of nitrate leaching, soil water samples were taken using ceramic suction cups. The experiments started in spring in a first year ley and ended in spring three years later. Total nitrate leaching for the three year periods for each trial ranged between 160–254 and 189–254 kg N/ha on the coarse sand and 129–233 kg N/ha on the sandy loam. The results showed that winter wheat ( Triticum aestivum L.) did not have the potential for taking up the mineralized N in autumn after early autumn ploughing of grass/clover leys, and that the least leaching was generally found when ploughing was postponed until spring, and when winter rye ( Secale cereale L.) was grown as the second crop rather than spring barley ( Hordeum vulgare L.). Nevertheless, leaching was generally high in the winter period even when winter rye was grown. On these soil types ploughing out should be postponed, whenever possible, to spring. Crop systems that maximize the utilization of mineralized N and thereby minimize nitrate leaching need to be further developed. Based on N balances, the data were further used to estimate the biological N fixation by the clover.  相似文献   

8.
The effects of an intercrop catch crop (Italian ryegrass) on (i) the amounts and concentrations of nitrate leached during the autumn and winter intercrop period, and (ii) the following crop, were examined in a lysimeter experiment and compared with that from a bare fallow treatment. The catch crop was grown in a winter wheat/maize rotation, after harvest of the wheat, and incorporated into the soil before sowing the maize. A calcium and potassium nitrate fertilizer labelled with 15N (200 kg N ha?1; 9.35 atom per cent excess) was applied to the winter wheat in spring. Total N uptake by the winter wheat was 154 kg ha?1 and the recovery of fertilizer-derived N (labelled with 15N) was 60%. The catch crop (grown without further addition of N) yielded 3.8t ha?1 herbage dry matter, containing 43 kg N ha?1, of which 4.1 % was derived from the 15N-labelled fertilizer. Two-hundred kg unlabelled N ha?1 was applied to the maize crop. During the intercrop period the nitrate concentration in water draining from the bare fallow lysimeters reached 68 mg N1?1, with an average of 40 mg N1?1. With the catch crop, it declined rapidly, from 41 mg N I?1 to 0.25 mg N I?1, at the end of ryegrass growth. Over this period, 110 kg N ha?1 was leached under bare fallow, compared with 40 kg N ha?1 under the catch crop. 15N-labelled nitrate was detected in the first drainage water collected in autumn, 5 months after the spring application. The quantity of fertilizer-N that was leached during this winter period was greater under bare fallow (18.7% of applied N) than when a catch crop was grown (7.1 %). In both treatments, labelled fertilizer-N contributed about 34% of the total N lost during this period. With the ryegrass catch crop incorporated at the time of seedbed preparation in spring, the subsequent maize grain-yield was lowered by an average of 13%. Total N-uptake by the maize sown following bare fallow was 224 kg N ha?1, compared with 180 kg ha?1 with prior incorporation of ryegrass; the corresponding values for uptake of residual labelled N were 3% (bare fallow) and 2% (ryegrass) of the initial application. Following the maize harvest, where ryegrass was incorporated, 22.7% of the previous year's labelled fertilizer addition was present in an organic form on the top 30 cm of lysimeter soil. This compares with 15.7% for the bare fallow intercropping treatment. Tracer analyses showed overall recoveries of labelled N of 91.7% for the winter wheat/ ryegrass/maize rotation and 97% for the winter wheat/bare fallow/maize rotation. The study clearly demonstrated the ecological importance of a catch crop in reducing N-leaching as well as its efficient use of fertilizer in the plant-soil system from this particular rotation. However, the fate of the organic N in the ploughed-down catch crop is uncertain and problems were encountered in establishing the next crop of maize.  相似文献   

9.
Nitrate leaching as influenced by soil tillage and catch crop   总被引:1,自引:0,他引:1  
Because of public and political concern for the quality of surface and ground water, leaching of nitrate is of special concern in many countries. To evaluate the effects of tillage and growth of a catch crop on nitrate leaching, two field trials were conducted in spring barley (Hordeum vulgare L.) under temperate coastal climate conditions. On a coarse sand (1987–1992), ploughing in autumn or in spring in combination with perennial ryegrass (Lolium perenne L.) as a catch crop was evaluated. Furthermore, rotovating and direct drilling were included. The experiment was conducted on a 19-year-old field trial with continuous production of spring barley. On a sandy loam (1988–1992), ploughing in autumn or in spring in combination with stubble cultivation and perennial ryegrass, in addition to minimum tillage, was evaluated in a newly established field trial. For calculation of nitrate leaching, soil water isolates from depths of 0.8 or 1.0 m were taken using ceramic cups. No significant effect of tillage was found on the coarse sand; however, a significant effect of tillage was found on the sandy loam, where leaching from autumn ploughed plots without stubble cultivation was 16 kg N ha−1 year−1 higher than leaching from spring ploughed plots. Leaching was significantly less when stubble cultivation in autumn was omitted. Leaching on both soil types was significantly reduced by the growth of a catch crop which was ploughed under in autumn or in spring. It was concluded that soil cultivation increased leaching on the sandy loam but not on the coarse sand, and that the growth of perennial ryegrass as a catch crop reduced leaching on both soil types, particularly when ryegrass was ploughed under in spring.  相似文献   

10.
Efficient use of nitrogen (N) by wheat crop and hence prevention of possible contamination of ground and surface waters by nitrates has aroused environmental concerns. The present study was conducted in drainage lysimeters for three years (1998–2000) to identify whether spring wheat genotypes (Triticum aestivum L.) that differ in N-related traits differ in N leaching and to relate parameters of N use efficiency (NUE) with parameters of N leaching. For this reason two spring wheat cultivars (‘Albis’ and ‘Toronit’) and an experimental line (‘L94491’) were grown under low (20 kg N ha?1) and ample N supply (270 kg N ha?1). The genotypes varied in parameters of NUE but not in N leaching. Grain yield of the high-protein line (‘L94491’) was, on average, 11% lower than that of ‘Toronit’ but among genotypes had significantly higher N in the grain (%), grain N yield, and N harvest index. Nitrogen lost through leaching was considerably low (0.42–0.52 g m?2) mainly due to low volume of percolating water or the ability of the genotypes to efficiently exploit soil mineral N. There were no clear relationships between N-related genotype traits and N leaching, but across all treatments significantly negative correlations between volume of leachate and the amount of N in the total biomass and grain N yield existed.  相似文献   

11.
Abstract

A field experiment was conducted in 2004–2006 to investigate the effect of green manure treatments on the yield of oats and spring barley. In the experiment, different green manure crops with undersowing and pure sowing were compared for amounts of N, C, and organic matter driven into soil and their effect on cereal yield. The spring barley field had a total of 41.7–62.4 kg N ha?1 and 1.75–2.81 Mg C ha?1 added to the soil with straw, weed, and roots, depending on the level of fertilisation; with red clover, and both common and hybrid lucerne undersowing, with barley straw and roots, the values were 3.45–3.96 Mg C ha?1 and 139.9–184.9 kg N ha?1. Pure sowings of these three leguminous green manure crops had total applications of 3.37–4.14 Mg C ha?1 and 219.7–236.8 kg N ha?1. The mixed and pure sowing of bird's-foot trefoil provided considerably less nitrogen and carbon to the soil with the biomass than with the other leguminous crops. Application of biomass with a high C/N ratio reduced the yield of the succeeding spring cereals. Of the green manures, the most effective were red clover and both common and hybrid lucerne, either as undersowing or as pure sowing. Undersowings with barley significantly increased the N supply for the succeeding crop without yield loss of the main crop compared with the unfertilised variant. Compared with ploughing-in of green manure in autumn, spring ploughing gave a 0.2–0.57 Mg ha?1 larger grain yield.  相似文献   

12.
Spring-sown crops are expected to have a higher risk of drought during summer in the next decades in Central Europe due to expected climate change. Therefore, a two-year experiment was conducted under Pannonian growing conditions in Eastern Austria to investigate the effect of autumn- and spring-sowing of facultative wheat. Autumn-sowing of facultative wheat enhanced crop development, soil coverage, crop stand height, crop growth rate, and nitrogen (N) utilization efficiency during the vegetation period compared to spring-sowing; duration of growth stages was prolonged and crops were earlier ripe. In contrast, spring-sowing resulted in higher relative growth rates, higher N concentrations of aboveground dry matter, higher relative N uptake rates, and more mineral N in the soil. At harvest, grain yield and yield components ears m?2 and thousand kernel weight (TKW) were higher in autumn-sown than in spring-sown wheat, resulting thereby in an increased seed yield. Spring-sown wheat had higher N concentrations in grain and in straw. Anyhow, N yield was slightly higher with autumn-sowing due to the higher grain and straw yields. Grain and straw yield, plant stand height, ears m?2, and TKW were impaired in the second experimental year by a severe drought for both sowing dates as well as N concentrations and N yields of grain and straw, partial factor N use efficiency and N utilization efficiency. But the yield components harvest index, grains m?2, and grains ear?1 were strongly impaired with spring-sowing under drought conditions. Thus, autumn-sowing of wheat resulted in higher yield stability across both years, based on these yield components highlighting possible benefits of autumn-sowing with expected summer drought under climate change.  相似文献   

13.
This experiment was conducted on a clay loam Cambisol and set out to determine the effects of combining catch crops, variable fertilisation levels, and straw management on the productivity of a spring barley-catch crop agrosystem, on the enrichment of soil with organic matter and nitrogen (N), and on soil mineral N control. Research was carried out in a spring barley (Hordeum vulgare L.) crop without catch crops, with undersown red clover (Trifolium pratense L.), and with post-crop white mustard (Sinapis alba L.). The barley was unfertilised, fertilised at moderate rates or at high rates. Straw was managed by either removing it from the field or chopping and spreading it. The quantity of organic matter and N incorporated into the soil depended on the fertilisation level of the barley crop. Soil mineral N stocks in the spring were reduced when straw was used together with red clover. When white mustard mass was incorporated alone in the autumn during ploughing, soil mineral N was reduced in the spring; however, when it was incorporated with straw, the effect was the opposite. Soil mineral N content is controllable when organic matter components are combined according to their decomposition rates, masses, and incorporation times.  相似文献   

14.
Organic farming is considered an effective means of reducing nitrogen losses compared with more intensive conventional farming systems. However, under certain conditions, organic farming may also be susceptible to large nitrogen (N) losses. This is especially the case for organic dairy farms on sandy soils that use grazed grass–clover in rotation with cereals. A study was conducted on two commercial organic farms on sand and loamy sand soils in Denmark. On each farm, a 3‐year‐old grass–clover field was selected. Half of the field was ploughed the first year and the other half was ploughed the following year. Spring barley (Hordeum vulgare L.) was sown after ploughing in spring. Measurements showed moderate N leaching during the pasture period (9–64 kg N ha?1 year?1) but large amounts of leaching in the first (63–216 kg N ha?1) and second (61–235 kg N ha?1) year after ploughing. There was a small yield response to manure application on the sandy soil in both the first and second year after ploughing. To investigate the underlying processes affecting the residual effects of pasture and N leaching, the dynamic whole farm model farm assessment tool (FASSET) was used to simulate the treatments on both farms. The simulations agreed with the observed barley N‐uptake. However, for the sandy soil, the simulation of nitrate leaching and mineral nitrogen in the soil deviated considerably from the measurements. Three scenarios with changes in model parameters were constructed to investigate this discrepancy. These scenarios suggested that the organic matter turnover model should include an intermediate pool with a half‐life of about 2–3 years. There might also be a need to include effects of soil disturbance (tillage) on the soil organic matter turnover.  相似文献   

15.
Return of high nitrogen (N) content crop residues to soil, particularly in autumn, can result in environmental pollution resulting from gaseous and leaching losses of N. The EU Landfill Directive will require significant reductions in the amounts of biodegradable materials going to landfill. A field experiment was set up to examine the potential of using biodegradable waste materials to manipulate losses of N from high N crop residues in the soil. Leafy residues of sugar beet were co‐incorporated into soil with materials of varying C:N ratios, including molasses, compactor waste, paper waste, green waste compost and cereal straw. The amendment materials were each incorporated to provide approximately 3.7 t C per hectare. The most effective material for reducing nitrous oxide (N2O) production and leaching loss of NO3? was compactor waste, which is the final product from the recycling of cardboard. Adding molasses increased N2O and NO3? leaching losses. Six months following incorporation of residues, the double rate application of compactor waste decreased soil mineral N by 36 kg N per hectare, and the molasses increased soil mineral N by 47 kg N per hectare. Compactor waste reduced spring barley grain yield by 73% in the first of years following incorporation, with smaller losses at the second harvest. At the first harvest, molasses and paper waste increased yields of spring barley by 20 and 10% compared with sugar beet residues alone, and the enhanced yield persisted to the second harvest. The amounts of soil mineral N in the spring and subsequent yields of a first cereal crop were significantly correlated to the lignin and cellulose contents of the amendment materials. Yield was reduced by 0.3–0.4 t/ha for every 100 mg/g increase in cellulose or lignin content. In a second year, cereal yield was still reduced and related to the cellulose content of the amendment materials but with one quarter of the effect. Additional fertilizer applied to this second crop did not relieve this effect. Although amendment materials were promising as tools to reduce N losses, further work is needed to reduce the negative effects on subsequent crops which was not removed by applying 60 kg/ha of fertilizer N.  相似文献   

16.
Abstract

Four rates of straw (0, 4, 8 and 12 t ha?1 yr?1) were incorporated in a field experiment with continuous spring barley. The experiment was conducted on a sandy soil (5.5% clay) and a sandy loam soil (11.2% clay). After eight years, the straw incorporation was combined with catch-crop growing with and without winter application of animal slurry and also spring fertilization with mineral fertilizer (0, 50, 100 or 125 kg N ha?1 yr?1). The combined experiment was conducted for three lyears on the sandy soil and for four years on the sandy loam soil. The effects on barley dry matter yield and N uptake are presented together with the long-term effects of the straw incorporations on crop growth and soil C and N. Grain yield on the sandy loam was unaffected by straw incorporation. On the sandy soil the highest straw application rates reduced grain yield in the unfertilized barley. When the barley received mineral fertilizer at recommended levels (100 kg N ha?1 yr?1), grain yield on this soil was also unaffected by the high straw rates. Including a catch crop had a positive effect on the grain yield of barley on both soils. The total N uptake in grain and straw generally increased with straw application up to 8 t ha?1 yr?1. With the highest straw application rate (12 t ha?1 yr?1), the total N uptake decreased but still exceeded N uptake in barley grown with straw removal. The barley accumulated higher amounts of N when a catch crop was included. The total N uptake in the barley was significantly higher after animal slurry application. The extra N uptake, however, was much lower than the amounts of N applied with the slurry. Incorporation of straw had only a small influence on N uptake after slurry application. The straw, therefore, was not able to store the applied N during winter. In the two four-year periods before the combined experiment, grain yield on the sandy loam was generally negatively affected by straw incorporations. In the second period, N uptake began to show a positive effect of the straw. On the sandy soil, grain yield and N uptake during the whole period were generally positively affected by the straw incorporations except for the highest straw rate (12 t ha?1 yr?1). The sandy loam soil showed higher increases in C and N content after the repeated straw incorporations and catch-crop growing than the sandy soil. When application of animal slurry was combined with the catch crop, no further increases in soil C and N were found relative to soil where a catch crop was grown without slurry application. Large amounts of the N applied with the slurry may therefore have been lost by denitrification or nitrate leaching.  相似文献   

17.
Rice is one of the essential foods of the human diet and advances in agronomic crop management, such as nitrogen (N) rate management, can improve productivity and profitability and reduce adverse environmental impacts. Nitrogen fertilization rates in Chile are generally based on crop yield without considering the soil's capacity to supply it. Five rice soils of the Inceptisol, Alfisol, and Vertisol orders in central Chile were incubated at 20°C for 21 d in the 2011–2012 season, and their N mineralization capacity was determined before sowing the rice crop. These soils were cropped in field conditions with rice fertilized with 0, 80, and 160 kg N ha?1; grain yield, harvest index, and grain sterility were determined. Mineralized N was associated with some chemical properties of each soil, and with the response to N rates in grain yield and grain sterility. Results indicated that the N rates to be used in rice must consider soil N mineralization capacity and crop yield potential. Finally, the best response to the N rates used in this study and the effect on both harvest index and grain sterility was achieved with 80 kg N ha?1.  相似文献   

18.
The availability of nitrogen (N) contained in crop residues for a following crop may vary with cultivar, depending on root traits and the interaction between roots and soil. We used a pot experiment to investigate the effects of six spring wheat (Triticum aestivum L.) cultivars (three old varieties introduced before mid last century and three modern varieties) and N fertilization on the ability of wheat to acquire N from maize (Zea mays L.) straw added to soil. Wheat was grown in a soil where 15N‐labeled maize straw had been incorporated with or without N fertilization. Higher grain yield in three modern and one old cultivar was ascribed to preferred allocation of photosynthate to aboveground plant parts and from vegetative organs to grains. Root biomass, root length density and root surface area were all smaller in modern than in old cultivars at both anthesis and maturity. Root mean diameter was generally similar between modern and old cultivars at anthesis but was greater in modern than in old cultivars at maturity. There were cultivar differences in N uptake from incorporated maize straw and the other N sources (soil and fertilizer). However, these differences were not related to variation in the measured root parameters among the six cultivars. At anthesis, total N uptake efficiencies by roots (total N uptake per root weight or root length) were greater in modern than in old cultivars within each fertilization level. At maturity, averaged over fertilization levels, the total N uptake efficiencies by roots were 292?336 mg N g?1 roots or 3.2?4.0 mg N m?1 roots for three modern cultivars, in contrast to 132?213 mg N g?1 roots or 0.93?1.6 mg N m?1 roots for three old cultivars. Fertilization enhanced the utilization of N from maize straw by all cultivars, but root N uptake efficiencies were less affected. We concluded that modern spring wheat cultivars had higher root N uptake efficiency than old cultivars.  相似文献   

19.
This model analysis of catch crop effects on nitrate retention covered three soil texture classes (sand, loamy sand, sandy loam) and three precipitation regimes in a temperate climate representative of northern Europe (annual precipitation 709–1026 mm) for a period of 43 years. Simulations were made with two catch crops (ryegrass and Brassica) with different rooting depths, and soil N effects in the next spring were analysed to 0.25, 0.75 and 2.0 m depth to represent the catch crop effect on following crops with different rooting depths. Nitrate retained without a catch crop was generally located in deeper soil layers. In the low precipitation regime the overall fraction of nitrate retained in the 0–2.0 m soil profile was 0.23 for the sandy soil, 0.69 for the loamy sand and 0.81 for the sandy loam. Ryegrass reduced leaching losses much less efficiently than Brassica, which depleted nitrate in the 0–0.75 m soil layer more completely, but also in the deeper soil layer, which the ryegrass could not reach. A positive N effect (Neff, spring mineral N availability after catch crop compared with bare soil) was found in the 0–0.25 m layer (that is shallow rooting depth of a subsequent main crop) in all three soil texture classes, with on average 10 kg N/ha for ryegrass and 34 kg N/ha for Brassica. Considering the whole soil profile (0–2.0 m deep rooting of next crop), a positive Neff was found in the sand whereas generally a negative Neff was found in the loamy sand and especially the sandy loam. The simulations showed that for shallow‐rooted crops, catch crop Neff values were always positive, whereas Neff for deeper‐rooted crops depended strongly on soil type and annual variations in precipitations. These results are crucial both for farmers crop rotation planning and for design of appropriate catch crop strategies with the aim of protecting the aquatic environment.  相似文献   

20.
ABSTRACT

In humid climates, the risk of nitrate leaching and topsoil loss due to erosion is high on bare soil in the fall after potato (Solanum tuberosum L.) harvest and in the spring with snowmelt. This 2-year study (2016–2017) compared three winter cover crops. Two of these are used as cash crops (winter rye [Secale cereale L.], winter wheat [Triticum aestivum L.]), and one is a winter-killed cover crop (spring barley, Hordeum vulgare L.). They were all seeded on two dates after potato harvest (end of September or first week of October) in Prince Edward Island, Canada. The measured parameters included soil nitrate measured at different times in fall and in the following spring and summer, splash detachment, C and N contents in splashed sediments, cereal straw dry matter yield, and cereal grain yield. In both years, all winter cover crops decreased splash detachment compared with the no winter cover control, with winter rye having the greatest reduction. A similar trend was observed for C and N contents in splashed sediments. There was a trend toward lower soil nitrate following winter cover crops in comparison with bare soil, but the trend was not consistent across trials and sampling dates. Winter wheat grain yield ranged from 4.5 to 7.6 Mg ha?1, while that associated with winter rye ranged from 3.2 to 5.1 Mg ha?1. Therefore, winter cereal seeded after potato harvest can constitute a good source of revenue while mitigating the risk of soil erosion and reducing nitrate leaching in some cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号