首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ammonia concentrations in water can affect the severity of Flavobacterium columnare infections in fish. Two trials lasting 7 d each were conducted to determine the effect of a single immersion flush treatment of total ammonia nitrogen (TAN; 15 mg/L) on the survival of channel catfish Ictalurus punctatus infected with E columnare; the chemical was added while the water flowed continuously through the tanks. Both trials consisted of four treatments: (1) no ammonia exposure and no bacterial challenge (control), (2) ammonia exposure only, (3) bacterial challenge only, and (4) both ammonia exposure and bacterial challenge. Two hours after exposure to ammonia, the highest un-ionized ammonia level was 0.43 mg/L. The percent un-ionized ammonia is based on TAN, temperature, and pH. Caudal fins from three fish in each treatment were sampled at 24 h posttreatment to be analyzed by quantitative real-time polymerase chain reaction (qPCR). No significant difference in survival (mean +/- SE) was noted between the channel catfish in treatment 1 (95.2 +/- 1.2%) and those in treatment 2 (95.6 +/- 1.0%); however, survival in both treatments 1 and 2 differed significantly from that in treatments 3 (8.5 + 4.5%) and 4 (41.8 +/- 12.7%). Treatment 4 catfish had significantly higher survival than treatment 3 catfish. Quantitative PCR data showed that treatment 4 fish had significantly less F. columnare (7.6 x 10(5)) than did treatment 3 fish (1.2 x 10(7)), and treatment 2 fish (8.5 x 10(3)) had significantly less bacteria than did treatment 1 fish (6.9 x 10(4)), indicating that ammonia limited the F. columnare infection. The highest mean concentration of the bacteria (3.9 x 10(7)) was found on moribund fish. The ammonia concentrations tested did not negatively influence fish survival but interfered with the infection process. An in vitro assay was also conducted to evaluate the direct effects of ammonia on F columnare.  相似文献   

2.
Abstract

Juvenile Norris strain channel catfish Ictalurus punctatus, blue catfish I. furcatus, and Norris strain channel catfish female × blue catfish male hybrids were challenged with Edwardsiella ictaluri by bath immersion or intraperitoneal injection (high or low dose) in aquaria. Survival (%) after bath immersion was highest for blue catfish (89.5 ± 2.8), intermediate for hybrids (73.8 ± 6.7), and lowest for channel catfish (62.0 ± 4.2). Prechallenge antibody levels to E. ictaluri, measured by enzyme-linked immunosorbent assay, were negative (mean ± SE optical density [OD] = 0.010 ± 0.003). Postchallenge antibody response for blue catfish (OD = 0.132 ± 0.045) was significantly lower than that of channel catfish (OD = 0.350 ± 0.045), whereas the response of the channel × blue catfish F1 hybrids (OD = 0.263 ± 0.051) was intermediate and not significantly different from either parental species. Intraperitoneal injections of E. ictaluri resulted in significant mortality only in channel catfish (88.3 ± 2.6% survival) and were sublethal to hybrid catfish and blue catfish with 100.0% and 99.3 ± 0.4% survival, respectively. Antibody responses after the injection challenge were significantly different among catfish groups and injection dose with no group × dose interaction. Antibody responses after the injection challenge were consistent with the immersion challenge, and means of high and low challenge doses were lowest in blue catfish (OD = 0.061 ± 0.014), intermediate in hybrids (OD = 0.187 ± 0.014), and highest in channel catfish (OD = 0.272 ± 0.014). For all fish groups combined, the high injection challenge dose resulted in higher antibody levels (OD = 0.206 ± 0.011) than low injection challenge dose (OD = 0.140 ± 0.012). Overall results indicate greater resistance to E. ictaluri and lower antibody response in blue catfish, and show the potential to identify molecular markers linked with disease resistance and introgression of resistance genes from blue catfish into channel catfish.  相似文献   

3.
Flavobacterium columnare, the causative agent of columnaris disease in fish, affects many economically important freshwater fish species. A colorimetric method of loop-mediated isothermal amplification with the pre-addition of calcein (LAMP–calcein) was developed and used to detect the presence of F. columnare in farmed tilapia (Nile Tilapia Oreochromis niloticus and red tilapia [Nile Tilapia × Mozambique Tilapia O. mossambicus]) and rearing water. The detection method, based on a change in color from orange to green, could be performed within 45 min at 63°C. The method was highly specific, as it had no cross-detections with 14 other bacterial species, including other fish pathogens and two Flavobacterium species. The method has a minimum detection limit of 2.2 × 102 F. columnare CFU; thus, it is about 10 times more sensitive than conventional PCR. With this method, F. columnare was detected in gonad, gill, and blood samples from apparently healthy tilapia broodstock as well as in samples of fertilized eggs, newly hatched fry, and rearing water. The bacteria isolated from the blood were further characterized biochemically and found to be phenotypically identical to F. columnare. The amplified products from the LAMP–calcein method had 97% homology with the DNA sequence of F. columnare.

Received May 21, 2014; accepted August 10, 2014  相似文献   


4.
Abstract

Edwardsiella ictaluri and Flavobacterium columnare are two bacterial pathogens that affect channel catfish Ictalurus punctatus aquaculture. At the Catfish Genetics Research Unit (U.S. Department of Agriculture, Agricultural Research Service), some progress has been made in selectively breeding for resistance to E. ictaluri; however, the susceptibility of these families to F. columnare is not known. Our objectives were to obtain baseline information on the susceptibility of channel catfish families (maintained as part of the selective breeding program) to E. ictaluri and F. columnare and to determine whether the spleen index and plasma levels of mannose-binding lectin (MBL) are predictive indicators of susceptibility to these pathogens. Four channel catfish families were used: family A was randomly chosen from spawns of fish that were not selectively bred for resistance; families B, C, and D were obtained after selection for resistance to E. ictaluri. All four families were immersion challenged with both bacterial pathogens; the spleen index and plasma MBL levels of unchallenged fish from each family were determined. Mean cumulative percent mortality (CPM) after E. ictaluri challenge ranged from 4% to 33% among families. Families A and B were more susceptible to F. columnare (mean CPM of three independent challenges = 95% and 93%) than families C and D (45% and 48%), demonstrating that there is genetic variation in resistance to F. columnare. Spleen index values and MBL levels were not significantly different, indicating that these metrics are not predictive indicators of F. columnare or E. ictaluri susceptibility in the four tested families. Interestingly, the two families that exhibited the highest CPM after F. columnare challenges had the lowest CPM after E. ictaluri challenge. Further research on larger numbers of families is needed to determine whether there is any genetic correlation between resistance to E. ictaluri and resistance to F. columnare.

Received November 18, 2011; accepted February 23, 2012  相似文献   

5.
Abstract

A neutralizing monoclonal antibody against infectious hematopoietic necrosis virus (IHNV) was used to select neutralization-resistant mutants from isolates of virus obtained from adult steelhead Oncorhynchus mykiss returning to the Round Butte Hatchery (RB mutants) on the Deschutes River in Oregon, USA, and from rainbow trout (nonanadromous O. mykiss) at a commercial hatchery in the Hagerman Valley of Idaho, USA (193-110 mutants). Two of the mutants, RB-1 and 193-110-4, were significantly (P < 0.001) attenuated compared with parental strains. Vaccination of rainbow trout by waterborne exposure to the mutants conferred solid protection against challenge with wild-type virus. In some trials, fish vaccinated with the RB-1 mutant at 50% tissue culture infectious doses (TCID50) of 1 × 104–1 × 105 TCID50/mL or with the 193-110-4 mutant at 1 × 102–1 × 103 TCID50/mL, held for 14 d, then challenged with the homologous wild-type strain at 1 × 105 TCID50/mL showed relative percent survival of 95–100% (P < 0.005). There was no significant difference (P > 0.05) in protection among fish exposed to the RB-1 vaccine strain at a dose of 1 × 105 TCID50/mL for periods of either 1, 12, or 24 h, held for 14 d, and then challenged with the wild-type RB isolate, although the 1-h exposure seemed to be somewhat less effective. Fish were vaccinated with the RB-1 strain at 1 × 103–1 × 105 TCID50/mL for 24 h then challenged after 1, 7, 14, or 21 d with the wild-type RB isolate. No significant (P > 0.1) protection was observed at 1 d postvaccination, but the relative percent survival increased progressively at each subsequent challenge period, becoming statistically significant by day 7 (P < 0.001) and beyond. These results suggested that resistance to challenge with wild-type virus resulted from development of IHNV-specific immunity and not from viral interference or interferon induction, and they reinforce the potential of an attenuated vaccine to control this important disease.  相似文献   

6.
Abstract

Plasma and brain glutamine levels in channel catfish Ictalurus punctatus showed inconsistent changes resulting from exposure to un-ionized ammonia, unlike results from studies of other teleosts. The results of this study strongly suggest that plasma and brain glutamine levels are unsuitable as clinical indicators of ammonia toxicosis in channel catfish.  相似文献   

7.
Enteric septicemia of catfish (ESC), caused by Edwardsiella ictaluri, is the most problematic bacterial disease affecting catfish aquaculture in the southeastern United States. Efforts to develop an effective ESC vaccine have had limited industrial success. In commercial settings, ESC vaccines are typically administered by immersion when fry are transferred from the hatchery to rearing ponds. While this approach is a practical method of mass delivery, this strategy administers vaccines to very young fish, which lack a fully developed immune system. To circumvent this limitation, an oral vaccination strategy was evaluated as a means of immunizing catfish at the fingerling stage of production, when fish possess a more complete immune arsenal. A virulent E. ictaluri isolate (S97-773) was attenuated by successive passage on media containing increasing concentrations of rifamycin. In laboratory trials, cultured vaccine was diluted and mixed with feed (100 mL diluted vaccine/454 g feed). This mixture was then fed to Channel Catfish Ictalurus punctatus fingerlings. Two separate dilutions of cultured vaccine (1:10 and 1:100) were used to create the vaccine–feed mixture, equating to estimated doses of 5 × 107 and 5 × 106 CFU/g of feed, respectively. After 30 d, catfish were exposed by immersion (1 × 106 CFU/mL) to the virulent parental strain of E. ictaluri. The target dose (1:100 dilution, ~5 × 106 CFU/g of feed) offered exceptional protection (relative percent survival = 82.6–100%). In addition, negligible deaths occurred in fish vaccinated at 10 times the target dose (1:10 dilution, ~5 × 107 CFU/g of feed). In pond trials, antibody production increased 18-fold in orally vaccinated fish. When compared with nonvaccinated controls, vaccination significantly improved survival, feed fed, feed conversion, biomass produced, and total harvest. This research demonstrates Channel Catfish can be successfully immunized in a commercial setting against E. ictaluri with a single dose of an orally delivered, live attenuated, E. ictaluri vaccine.

Received July 31, 2014; accepted March 2, 2015  相似文献   


8.
Abstract

The effects of environmental calcium and salinity on toxicities of ammonia and nitrite for sunshine bass (female Morone chrysops × male M. saxatilis) were investigated, and the effects of pH, sodium chloride, and calcium chloride on uptake and depuration of ammonia and nitrite were characterized. The concentration of un-ionized ammonia-nitrogen (UIA-N) lethal to 50% of the fish within 96 h (96-h LC50) ranged from 0.32 to 0.60 mg/L and increased significantly with increased concentration of environmental calcium over the range tested (5–80 mg/L). The acute toxicity of UIA-N was not affected by salinity over the range tested (1–24 g/L), and the 96-h LC50 was 0.70 ± 0.04 mg UIA-N/L (mean ± SE) over all salinities tested. The rate and degree of ammonia uptake was greater at elevated environmental pH. Environmental pH did not affect the rate of depuration of ammonia. Environmental calcium did not affect nitrite toxicity, and the 96-h LC50 of nitrite-nitrogen (nitrite-N) was 12.8 ± 1.6 mg/L (mean ± SE) over all calcium concentrations tested. The 96-h LC50 of nitrite-N for fish acclimated to a salinity of 1 g/L was 35.0 ± 2.3 mg/L (mean ± SE), whereas LC50s of nitrite-N for fish acclimated to salinities of or higher than 8 g/L were greater than 100 mg/L (the highest exposure level). The addition of chloride to freshwater environments reduced the accumulation of nitrite in the plasma. Chloride was more effective in reducing the accumulation of nitrite in the plasma when added as calcium chloride rather than as sodium chloride. This study indicates that sunshine bass are relatively sensitive to both ammonia and nitrite. Tolerance to ammonia can be increased in freshwater environments by increasing calcium levels or decreasing environmental pH. Tolerance to nitrite can be increased by addition of chloride to freshwater environments or through the use of saltwater environments.  相似文献   

9.
Abstract

Commercial Vibrio anguiliarum-V. ordalii bacterin was used to vaccinate hybrid striped bass (Morone saxatilis ♀ × M. chrysops ♂) to test the vaccine efficacy against vibriosis. Vaccination by direct immersion of fish in diluted Vibrio vaccine for 20 s resulted in increased protective immunity. The relative percent survival of hybrid striped bass challenged 35 d after vaccination was 66.7% for those challenged by 1-h immersion exposure to 7.03 × 107 V. anguillarum cells/mL, 75.0% for those challenged by injection with 3.51 × 105 cells/fish, and 86.7% for those challenged by injection with 3.51 × 104 cells/fish.  相似文献   

10.
Juvenile channel catfish, Ictalurus punctatus, were fed diets supplemented with yeast or yeast subcomponents (YYS) as commercial preparations of β‐glucan (MacroGard® and Betagard A®), mannan oligosaccharide (Bio‐Mos® Aqua Grade), or whole‐cell Saccharomyces cerevisiae (Levucell SB20®) at the manufacturers’ recommended levels. Fish were fed experimental diets for 1 or 2 weeks prior to disease challenge (pre‐challenge feeding periods) and sampled at the end of each feeding period to measure haematological and immune parameters and to determine the effects of dietary YYS on resistance to Edwardsiella ictaluri, the causative agent of enteric septicaemia disease (ESC). Feeding of experimental diets continued for 3 weeks post‐challenge. In channel catfish fed diets supplemented with MacroGard®, Betagard A®, or Levucell SB20®, survival in the 1 week pre‐challenge feeding group and antibody titres in the 2 week feeding group were significantly higher post‐E. ictaluri challenge in relation to catfish fed with the control diet. In fish fed these same three diets, survival to ESC was significantly higher after 1 week vs. 2 weeks feeding, while the antibody response was significantly higher after 2 weeks vs. 1 week. Lysozyme activity was also higher in the 1 week feeding group, but the increased activity was unrelated to diet. Feeding YYS‐supplemented diets for a shorter duration of 1 week prior to challenge may prove beneficial in increasing resistance to ESC in channel catfish. However, we cannot discount that feeding YYS diets during the recovery period may have contributed to ‘glucan overload’ and reduced survival in the 2 week feeding group.  相似文献   

11.
A study with the objectives of estimating breed differences, heterosis and recombination effects as well as heritabilities (h2) and repeatabilities (r2) for age at first calving (AFC), calving interval (CI), days open (DO) and number of services per conception (SPC) was conducted using reproduction records collected from 1496 cows comprising purebred Boran (B), Friesian (F), crosses of Friesian and Jersey (J) with Boran breeds. The crossbred cow groups included four F × B crosses [1/2F:1/2B(F1), 1/2F:1/2B(F2), 5/8F:3/8B and 3/4F:1/4B], three J × B crosses [1/2J:1/2B(F1), 1/2J:1/2B(F2) and 3/4J:1/4B] and one three‐breed cross (1/4F:1/4J:1/2B). The crossbreeding parameters were estimated using a repeatability animal model for CI, DO and SPC, and a unitrait animal model for AFC. The overall least‐squares means estimated were: 38.3 ± 0.26 months, 435 ± 4 days, 145 ± 10 days and 1.58 ± 0.03 (number) for AFC, CI, DO and SPC, respectively. The breed additive effects of F and J were only significant (p < 0.01) for AFC. Relative to B, both F and J additive contributions for AFC were ?5.4 ± 0.5 and ?5.5 ± 1.9 months, respectively. Crossing the B with F and J breeds also resulted in significant heterosis (p < 0.05) ranging from 10 to 21% in all traits. The estimated recombination loss was only significant for AFC (2.8 ± 1.0 months) for F × B crosses. Heritability estimates were high for AFC (0.44 ± 0.05) and low for CI (0.08 ± 0.03), DO (0.04 ± 0.03) and SPC (0.08 ± 0.02). The corresponding estimates for the repeatability (r2) were 0.14 ± 0.02 and 0.14 ± 0.02 for CI and DO, respectively. The permanent environmental effect for SPC was zero. These findings show that breed differences between F or J and B, and the individual cow variations are low for reproductive traits studied, except for AFC. Heterotic effects seem to be the major genetic causes for the improved reproductive performances in both the F × B and J × B crossbred cows.  相似文献   

12.
Abstract

A vaccine comprising cells of Aeromonas bestiarum grown in tryptic soy broth and atypical A. salmonicida cells produced in iron-limited and iron-supplemented media protected goldfish Carassius auratus when administered by immersion (dosage ≈ 5 × 107 cells/mL for 60 s) followed after 28 d by an oral booster (dosage = 5 × 107 cells/g of feed), which was fed for 7 d so that each fish received about 1 g of vaccine-containing feed. After challenge by intramuscular injection of a virulent culture of atypical A. salmonicida, the relative percent survival (RPS) was more than 90%. The approach was more successful than using a commercial furunculosis vaccine with or without supplementation with A. bestiarum or atypical A. salmonicida cells. Moreover, a smooth derivative of the virulent rough culture of atypical A. salmonicida was less effective as a vaccine candidate, yielding an RPS of only 65%. Low antibody titers of 1:39–1:396 were found in the vaccinated fish. The vaccinated fish had a significantly higher proportion of dead head kidney macrophages (10.9 ± 3.5%; P = 0.0149) than did the controls (6.8 ± 3.1%). However, differences in the number of erythrocytes and leukocytes, the level of phagocytic and lysozyme activities, and the proportion of lymphocytes, monocytes, and polymorphonuclear cells were not statistically significant between the two groups.  相似文献   

13.
The efficacy of florfenicol for control of mortality associated with Edwardsiella icatluri was studied in fingerlings of Channel Catfish Ictalurus puntatus (Delta strain), Blue Catfish I. furcatus (D&B strain), and a hybrid catfish (Delta strain Channel Catfish × D&B strain Blue Catfish). On day 0, fish were immersion challenged in 65-L aquaria. For each of the three species of catfish, 10 aquaria were randomly assigned to two treatment groups, either treated with florfenicol at 0 mg/kg of body weight (unmedicated feed) or at 10 mg/kg (medicated feed). Fish were treated for 10 consecutive days, monitored for mortality during this treatment period, and observed for 14 d afterwards. Post observation, all survivors were humanely euthanized in tricaine methanesulfonate, cultured for E. ictaluri, and examined for gross pathology. The mean cumulative percent mortality from enteric septicemia of catfish (ESC) challenge among the three genotypes of catfish did not differ between Blue Catfish, hybrid, and Channel Catfish in treated or control groups. However, the florfenicol-treated fish had a significantly lower mean cumulative mortality (6%) than the controls (78%). All genotypes of catfish tested were responsive to treatment with florfenicol-medicated feed for control of mortality associated with ESC. There were no significant differences in mortality associated with hybrid catfish, blue catfish, and Channel Catfish (Delta strain).

Received July 20, 2014; accepted October 10, 2014  相似文献   


14.
Abstract

Zebrafish (also known as zebra danio) Danio rerio were injected intramuscularly with Edwardsiella ictaluri at doses of 6 × 103, 6 × 104, or 6 × 105 colony-forming units per gram (CFU/g) or sterile phosphate-buffered saline (sham) or were not injected. Mortality occurred from 2 to 5 d postinjection (dpi) at rates of 0, 76.6, and 81.3% for the low, medium, and high doses, respectively, and E. ictaluri was isolated from dead fish. Survivors were sampled at 10 dpi and E. ictaluri was not isolated. Sham-injected and noninjected controls did not suffer mortality. Histopathology trials were performed in which zebrafish were injected with 1 × 104 CFU/g or sham-injected and sampled at 12, 24, 48, 72, and 96 h postinjection for histological interpretation. Collectively, these zebrafish demonstrated increasing severity of splenic, hepatic, cardiac, and renal interstitial necrosis over time. To evaluate the progression of chronic infection, zebrafish were injected with 1 × 102 CFU/g and held for 1 month postinjection. Beginning at 12 dpi and continuing for an additional 2 weeks, zebrafish demonstrated abnormal spiraling and circling swimming behaviors. Histopathology demonstrated necrotizing encephalitis. In immersion trials, zebrafish were exposed to low, medium, and high doses (averaging 1.16 × 105, 1.16 × 106, and 1.16 × 107 CFU/mL of tank water) of E. ictaluri for 2 h. Mortality occurred from 5 to 9 d postexposure at rates of 0, 3.3, and 13.3% for the low, medium, and high doses, respectively; E. ictaluri was isolated from dead fish. Channel catfish Ictalurus punctatus exposed to the medium doses suffered 100% mortality, and E. ictaluri was isolated from these fish. This study demonstrates the potential use of zebrafish as a model for E. ictaluri pathogenesis.  相似文献   

15.
The external microbiome of fish is thought to benefit the host by hindering the invasion of opportunistic pathogens and/or stimulating the immune system. Disruption of those microbial communities could increase susceptibility to diseases. Traditional aquaculture practices include the use of potent surface-acting disinfectants such as potassium permanganate (PP, KMnO4) to treat external infections. This study evaluated the effect of PP on the external microbiome of channel catfish and investigated if dysbiosis leads to an increase in disease susceptibility. Columnaris disease, caused by Flavobacterium columnare, was used as disease model. Four treatments were compared in the study: (I) negative control (not treated with PP nor challenged with F. columnare), (II) treated but not challenged, (III) not treated but challenged, and (IV) treated and challenged. Ribosomal intergenic spacer analysis (RISA) and pyrosequencing were used to analyze changes in the external microbiome during the experiment. Exposure to PP significantly disturbed the external microbiomes and increased catfish mortality following the experimental challenge. Analysis of similarities of RISA profiles showed statistically significant changes in the skin and gill microbiomes based on treatment and sampling time. Characterization of the microbiomes using 16S rRNA gene pyrosequencing confirmed the disruption of the skin microbiome by PP at different phylogenetic levels. Loss of diversity occurred during the study, even in the control group, but was more noticeable in fish subjected to PP than in those challenged with F. columnare. Fish treated with PP and challenged with the pathogen exhibited the least diverse microbiome at the end of the study.  相似文献   

16.
Abstract

The digenean Bolbophorus damnificus infects commercial channel catfish Ictalurus punctatus, causing mortality, lower feed consumption, and reduced growth in surviving fish. The purpose of this study was to determine the length of time for which B. damnificus prodiplostomulum metacercariae (juvenile trematode stage that infects fish) would remain viable (parasite appearing to be intact or exhibiting movement) in channel catfish. Fish (n = 210) were infected with molecularly confirmed B. damnificus cercariae harvested from naturally infected marsh rams-horn snails Planorbella trivolvis. During the first sampling (at 20 d postinfection), 8.3 ± 3.6 metacercariae/fish (mean ± SD) were found in the host muscle and visceral organs. The channel catfish were then acclimated to a water temperature of either 18°C or 28°C. After 11 months, 6.8 ± 3.5 and 5.9 ± 3.0 metacercariae/fish were found in groups held at 18°C and 28°C, respectively. The mean number of parasites per fish did not significantly differ between fish held at the two temperatures and did not significantly decline over time at either temperature. Fish examined from 13 to 30 months postinfection all contained viable metacercariae that were morphologically and molecularly identified as B. damnificus. At 18 months, 12 metacercariae (of which 11 were intact and 10 displayed movement) were found in the one fish sampled; at 30 months, the last fish sampled contained three intact metacercariae (one displayed slight movement). Our results indicate that B. damnificus metacercariae can remain viable in channel catfish for at least an 18–30-month production cycle during which they have the potential to affect fish growth; in addition, infected fish may serve as intermediate hosts for these metacercariae for at least 2.5 years postinfection.

Received July 14, 2010; accepted March 6, 2011  相似文献   

17.
This study aimed to determine the effect of intranasal exposure to low doses of Pasteurella multocida B:2 on survival of goats challenged with high doses of the same organism. Eighteen goats were selected and divided into three groups. Goats of group 1 were exposed intranasally twice, with a two-week interval, to 7× 106 cfu/ml of live P. multocida B:2. Goats of group 2 were not exposed to P. multocida B:2 but were kept together with the exposed group 1. Goats of group 3 remained as unexposed controls and were kept separated from the other two groups. Serum samples were collected at weekly intervals to determine the antibody levels. At week 5 post exposure, all goats were challenged subcutaneously with 3.7× 1010 cfu/ml of live P. multocida B:2. Following challenge exposure, 8 (67%) goats (4 goats from each of groups 1 and 2) were killed owing to haemorrhagic septicaemia. Four goats were killed peracutely within 48 h post challenge, while the other four goats were killed acutely between 2 and 4 days post challenge. None of the goats of group 3 were killed for haemorrhagic septicaemia. Goats of groups 1 and 2 showed significantly (p<0.05) higher antibody levels following the first intranasal exposure to P. multocida B:2. However, only group 1 retained the significantly (p<0.05) high antibody levels following a second intranasal exposure, and remained significantly (p<0.05) higher than groups 2 and 3 at the time of challenge. P. multocida B:2 was successfully isolated from various organs of goats that were killed between 1 and 4 days post challenge.  相似文献   

18.
Abstract

A feeding trial was performed to assess the potential beneficial effect of two levels of mannanoligosaccarides (MOS) on the growth performance, feed utilization, hematological parameters, and liver histopathology of gilthead seabream Sparus auratus (also known as gilthead bream). Mannanoligosaccarides were added at the rates of 2 and 4 g/kg to a fish-meal-based control diet, and each diet was given (twice daily [midmorning and midafternoon] to apparent satiation) to triplicate groups of gilthead seabream growers (mean weight = approximately 170 g) in sea cages. The trial lasted 12 weeks, and the average ambient water temperature ranged from 19.6°C to 24.7°C during the experimental period. At the end of the experiment, fish attained market size (350–450 g) and their health status was evaluated by blood analysis and liver histology. There were no differences in survival rates among fish fed experimental diets. However, there were significant improvements in both growth and feed utilization among fish fed diets supplemented with MOS. Hemoglobin (Hb) and hematocrit (Ht) levels and erythrocyte, leukocyte, and thrombocyte (Thr) counts were unaffected by any dietary MOS. The levels of Hb (g/dL; mean ± SD) and Ht (%; mean ± SD) were 11.0 ± 2.5 and 45.6 ± 6.7 for the control group, 11.1 ± 1.7 and 39.3 ± 8.0 for the 2-g/kg group, and 11.2 ± 1.9 and 40.2 ± 8.4 for the 4-g/kg group. The mean Thr count ranged from 47.6 to 53.8 × 103/mm3. Despite the apparently higher Thr counts for fish fed diets supplemented with MOS, these differences were not significant. Moreover, no histopathological differences were observed in liver tissue cross sections between control and treatment groups. These results suggest that supplementation of diets with MOS had no significant effects on general fish health.

Received February 20, 2011; accepted September 12, 2011  相似文献   

19.
20.
Nonspecific cytotoxic cells (NCC) from fish (Ictalurus punctatus) were treated with different concentrations of retinolacetate and poly I:C. Both in vitro and in vivo experiments were conducted. Retinolacetate significantly increased NCC activity against chromium-51 labeled human B-cell lymphoma target cells (NC-37). Preincubation (treatment prior to adding the labeled target cells) of NCC for 4 to 8 h in 10?3 to 10?12 M concentration of retinolacetate produced significant increases in NCC activity compared to treatment during the killing assay only. Similar experiments with different concentrations of poly I:C had no NCC augmenting effects when tested by adding poly I:C either during preincubation periods or during the cytotoxicity assay. Retinolacetate probably produces positive modulation of cytotoxicity by increasing the killing effectiveness of individual NCC, rather than recruiting larger numbers of cytolytic cells. In vivo studies were also conducted by injecting catfish (i.p.) with 1 ×, 3 × and 5 × the daily recommended vitamin A dosages and determining NCC activity after 24, 48 and 72 h treatment. The 1 × dose significantly increased NCC activity at 72 h. This increase was not transient because NCC activity after 33–37 days' treatment was significantly higher than controls in the 1 ×, 2 × and 3 × groups. Intraperitoneal injections of fish with poly I:C produced no significant increases in NCC activity at 24 or 72 h post-inoculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号