首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorus (P) fertilizers are usually supplied prior to or at planting of potato even though most P is taken up 40 to 80 d after emergence. This may lead to inefficient P use as a result of P leaching or fixation in the soil. This study evaluates the effects of split P application at multiple times during the growth period according to the plant's need for P. Potato (Solanum tuberosum L. cv. Ditta) was grown in pots in climate chambers, and radioactive 32P isotope was used to distinguish between the fertilizer and soil‐derived P sources. Two soils were tested in combination with five application rates of P, and the plants were harvested at four dates. The results show that the recovery of P fertilizer can be significantly enhanced if the P supply is split. The result also showed that the proportion of soil‐derived P, accumulated in the plant, was significantly reduced both when more fertilizer P was applied to the soil and when P supply was split into several applications. The positive effects of multiple P applications on the P recovery were greatest in the soil with low P status and low buffer capacity.  相似文献   

2.
Abstract

The present study investigated how foliar zinc (Zn) application affects seedling growth and Zn concentration of rice grown in a Zn-deficient calcareous soil with different soil Zn treatments. Seeds were sown in soil with five rates of Zn (0, 0.02, 0.1, 0.5 and 5.0?mg kg?1 soil) with and without foliar application of 0.5% ZnSO4. Seedlings were harvested at 35?days and separated into (i) the youngest leaves, (ii) the remaining shoot parts and (iii) roots. In soil with no Zn supply, shoot and root dry weight of the rice seedlings were significantly increased by foliar and soil Zn treatments. Plant growth was not clearly increased in low soil Zn treatments, while at each soil Zn treatment, foliar Zn application promoted growth of plants. Plants with adequate Zn supply had the highest Zn concentrations in the youngest leaf. Foliar Zn spray improved Zn concentration of the new growth formed after foliar spraying which shows that Zn is phloem mobile and moved from treated leaves into youngest new leaves. The results indicate clearly in rice seedlings that shoot growth shows more responsive to low Zn than the root growth. The results obtained in the present study are of great interest for proper rice growth in Zn-deficient calcareous soils but needs to be confirmed in other rice genotypes.  相似文献   

3.
Fertilization of common bean (Phaseolus vulgaris) plants with amino-acids (AAs) near the beginning of flowering may increase productivity. This procedure is aimed to avoid waste and increase nutrient use efficiency at the end of the crop cycle, improving the leaf area in the translocation of these nutrients to the common bean. In order to test this hypothesis, a field experiment was conducted on a typic Eutrortox (Oxisol) in randomized block design, with three replicates. Four rates of a solution composed of amino-acids (6.8% glycine, 4.4% proline, 3.3% glutamic acid, 2.7% alanine, 1.9% arginine, 1.7% aspartic acid, 1.3% lysine, 1.3% histidine, and 1.0% leucine) applied 45 days after plant emergence were studied. There was no interaction between years of cultivation × amino-acids. However, the productivity of common bean was significantly influenced by the AAs rates, with the highest seed yield obtained at estimated concentration in 0.0094% of the product in foliar sprays. The increases in the rates resulted in increased foliar nitrogen (N) and zinc (Zn) concentrations and decreased sulfur (S) concentration. The macronutrient uptake was nitrogen>potassium>phosphorus>magnesium > calcium > sulfur (N > K > P > Mg > Ca > S), while for micronutrients it was iron>zinc>boron>copper>manganese (Fe > Zn > B > Cu > Mn). In the soil, the concentrations of organic carbon (C) and available P were negatively affected by the AAs rates.  相似文献   

4.
施磷对玉米吸磷量、产量和土壤磷含量的影响及其相关性   总被引:16,自引:0,他引:16  
为了给玉米磷高效利用提供理论依据, 在低磷土壤(Olsen-P 4.9 mg·kg-1)上, 通过田间试验, 研究了施磷0(T0)、50 kg(P2O5)·hm-2(T1)、100 kg(P2O5)·hm-2(T2)、200 kg(P2O5)·hm-2(T3)、1 000 kg(P2O5)·hm-2(T4)对两个玉米品种"鲁单9002" (LD9002)、"先玉335"(XY335)的产量、磷素吸收利用及根际磷动态变化的影响。结果表明: 两玉米品种根际土、非根际土速效磷含量在不同生育时期都表现为T12O5)·hm-2的T3处理非根际土转化为根际土土壤磷的量最大, 同时玉米生物量、产量、磷转移量也达到最高, 而施磷1 000 kg(P2O5)·hm-2处理玉米生物量、产量与中磷水平相比没有显著增加, 但植株吸磷量较高。XY335的花后磷转移量小于LD9002。相关分析表明, LD9002根际土、非根际土速效磷含量与茎、叶吸磷量之间显著相关, 以播种后79 d与茎、叶磷浓度、吸磷量、生物量、产量之间的相关系数最高; 而XY335根际土、非根际土速效磷含量与茎、叶磷浓度之间显著相关, 在播种后47 d期间与茎、叶磷浓度、吸磷量、生物量、产量之间的相关性最好。因此, 在低磷土壤上, LD9002和XY335分别在播种后79 d和47 d时是植株对磷的敏感期, 可以通过测试根际土、非根际土速效磷含量来反映土壤的供磷状况; LD9002在79 d时最大吸磷量需要的根际土、非根际土速效磷含量分别为54.95 mg·kg-1、32.99 mg·kg-1, XY335品种在47 d时最大吸磷量需要的根际土、非根际土速效磷含量分别为51.24 mg·kg-1、35.35 mg·kg-1; 施磷量1 000 kg(P2O5)·hm-2处理两品种玉米产量、生物量、磷积累量与施磷量100~200 kg(P2O5)·hm-2处理没有显著差异。  相似文献   

5.
ABSTRACT

Soil compaction interferes in soil nutrient transport and root growth. The aim of this work was to evaluate eucalypt growth and phosphorus (P) nutritional efficiency as affected by soil compaction and P rates. The treatments were composed of a 3 × 4 factorial scheme (soil bulk densities levels versus P fertilization rates) for two weathered tropical soils, a clayey Ferralsol (FClayey) and a sandy Ferralsol (FSandy). The soil bulk densities assessed were 0.90, 1.10 and 1.30 g cm?3 for FClayey, and 1.35, 1.55 and 1.75 g cm?3 for FSandy. The P rates were 0, 150, 300 and 600 mg kg?1 for FClayey, and 0, 100, 200 and 400 mg kg?1 for FSandy. Soil compaction reduced root growth, P content in the plant, P utilization efficiency and P recovery efficiency; and increased average root diameter. Phosphorus fertilization increased root length density, root surface area, dry matter, P content in the plant, P utilization efficiency and P uptake efficiency; and decreased P recovery efficiency. It was concluded that P fertilization is not effective to offset the deleterious effects of soil compaction on eucalypt growth and nutrition.

Abbreviations: FClayey: clayey Ferralsol; FSandy: sandy Ferralsol; RDens: root length density; RDiam: root diameter; RSurf: root surface area; RDM: root dry matter; SDM: shoot dry matter; WPDM: whole-plant dry matter; RP: root P content; SP: shoot P content; WPP: whole-plant P content; PUtE: P utilization efficiency; PUpE: P uptake efficiency; PRE: P recovery efficiency.  相似文献   

6.
Rice yield and water use as affected by soil management practices   总被引:1,自引:0,他引:1  
A field experiment was conducted at the Shenyang Experimental Station of Ecology, Chinese Academy of Sciences,to study the effects of soil management practices on water use and rice (Oryza sativa L.) yield in an axtuic brown soil during 2001 and 2002. A completely random experimental design with three replications was employed, having four soil management practices as treatments, namely: an undisturbed plow layer (CK), a thin plastic film (TN), a thick plastic film (TI) and subsoil compacting (CP). Results indicated no significant differences among all treatments for rice biomass and grain yields. Also, water consumption was about the same for treatments TN and CK, however the treatments TI and CP were much lower with more than 45% and 40% of the irrigation water in the treatments TI and CP, respectively,saved each year compared to CK. Therefore, water use efficiency was higher in the treatments TI and CP. These results will provide a scientific basis for the water-saving rice cultivation.  相似文献   

7.
不同水分条件下分层施磷对冬小麦根系分布及产量的影响   总被引:5,自引:1,他引:5  
研究不同水分条件下分层施磷对冬小麦根长分布、水分利用效率(water use efficiency,WUE)及产量的影响,旨在找出旱地农业最佳水肥处理方式。试验设不施磷(CK)、表施磷(surface P,SP)、深施磷(deep P,DP)和侧深施磷(deep-band P,DBP)4种处理,每个施磷水平下设补充灌溉(W1)和干旱(整个生育期无补充灌溉)(W2)2种水分处理。结果表明,施磷位置及补充灌溉显著(P0.05)影响冬小麦孕穗期根长分布、WUE及产量,同时会改变根系空间分布。干旱胁迫使冬小麦0~30 cm土层根长密度下降,降低17.5%,却促进了30 cm以下土层根长发育,增加13.3%,促进对土壤水分和磷素的吸收,从而提高产量。无论灌溉与否,施磷处理0~30 cm土层根长密度、吸磷量、WUE及产量均显著高于CK(P0.05)。施磷位置对冬小麦WUE和产量的影响随土壤水分而异,无补充灌溉时,与磷肥表施相比,磷肥深施显著增加WUE和产量(P0.05),分别平均增加28.5%和16.0%,且深层根长(30~100 cm)与吸磷量、WUE和产量的变化趋势一致;而在补充灌溉时,与磷肥表施相比,磷肥深施却显著降低WUE(P0.05),平均降低13.3%,且深层根长与WUE、产量的关系缺乏规律性。该试验结果表明,土壤水分供应不足时,磷肥深施有利于促进冬小麦深层土壤根系生长发育,提高对土壤水分吸收利用能力,从而利于形成高产。该研究可为理解作物生长及产量对水分养分空间耦合的响应提供理论依据。  相似文献   

8.
为探寻节水灌溉减施磷肥对黑土稻作磷利用及土壤磷平衡的影响,于2020年和2021年开展大田试验,以常规淹灌+常规施磷肥(CK,45 kg/hm2)作对照,节水灌溉模式下设置5个磷肥施用梯度:0(CP0,不施磷肥)、18 kg/hm2(CP1,减磷60%)、27 kg/hm2(CP2,减磷40%)、36 kg/hm2(CP3,减磷20%)、45 kg/hm2(CP4,常规施磷)。分析节水灌溉模式下减施不同程度磷肥对稻田产量、地上部植株吸磷量和土壤剖面各土层有效磷含量的影响,并计算土壤磷素表观平衡量和磷肥利用率。结果表明:2020年水稻收获后节水灌溉减施磷肥各处理表层土壤有效磷含量均显著低于CK处理的土壤有效磷含量(P<0.05);2021年水稻收获后CP3处理表层土壤有效磷含量显著高于CK处理(P<0.05)。CP3处理2020年和2021年的地上部植株磷素积累量显著高于常规施肥CP4处理和CK处理,分别为14.64和15.86 kg/hm2(P<0.05)。地上部植株各器官磷素积累量由大到小为籽粒、茎鞘、叶。与常规施肥相比,2 a年CP3处理均显著提高了磷肥的吸收利用效率、农学利用率,显著降低土壤磷素盈余量(P<0.05)。综合考虑,节水灌溉下减施常规磷肥用量20%为黑土区适宜的磷肥施用量,2 a均提高水稻产量和磷肥利用率,且土壤磷素盈余量低。研究可为黑土区磷肥施用提供理论依据。  相似文献   

9.
Vertical distribution and plant availability of soil P under subsurface irrigation were investigated in a 5‐year tomato‐grown‐greenhouse experiment. Irrigation was applied when soil water condition reached the predefined maximum allowable depletion (MAD) for different treatments, e.g., –10 kPa, –16 kPa, –25 kPa, –40 kPa, and –63 kPa. Results show that P distribution with soil depth was significantly affected by irrigation schedules. The general trend is that concentrations of soil total P and inorganic P were greater in topsoil than in subsoil, whereas the concentrations of soil organic P were larger at the depths of 0–10 cm, 30–40 cm, and 40–60 cm than at other soil depths. Comparison of different irrigation schedules indicates that more soil organic P was retained in the soils under the MAD of –25 kPa, –40 kPa, and –63 kPa, implying that irrigation of relatively low frequency and large water quantity of each irrigation event favored the accumulation of organic P in soils. In addition, we found that the concentrations of plant‐available P decreased with soil depth and were largest under the MAD of –16 kPa and –25 kPa. This result suggests that irrigation of relatively high frequency and low water quantity of each irrigation event led to greater P availability for plant uptake. Overall, this study suggests that the transformation and plant availability of soil P can be manipulated, to some degree, by soil‐water management. Maximum allowable depletion controlled between –16 kPa and –25 kPa could result in high availability of soil P in clay‐textured soils.  相似文献   

10.
底墒和磷肥对渭北旱塬冬小麦产量与水肥利用的影响   总被引:6,自引:3,他引:6  
在陕西杨凌渭北旱塬进行5年定位试验,在施N160kg/hm2的基础上,设施P2O5 0、50、100、150 kg/hm2 4个施磷水平,结合5年降水情况,分析了播前底墒、施磷对旱地冬小麦产量及水肥利用的影响。结果表明,夏季7~9月的降水是决定渭北旱塬小麦播前底墒的关键因素,两者呈线性相关夏季每增加1 mm降水,土壤贮水增加0.5mm。要保持这一地区小麦稳产或高产,底墒应保持550 mm左右,夏季降水应有380 mm左右。夏季降水充足的年份,施磷量增加造成的下季小麦播前底墒下降不明显;降水偏少的(350mm)的年份,合理施磷能够促进小麦生长,导致生育期内对土壤水分消耗较多,降低土壤含水量,使前季小麦每增施磷50 kg/hm2,下季小麦播前底墒减少9~12 mm。除底墒外,关键生育期的充足降水也是保证旱地小麦产量重要因素,每毫米播前底墒能形成9.0~9.9 kg/hm2、生育期降水形成28.6~33.3 kg/hm2小麦子粒产量。施磷水平决定了作物生物量、产量高低;底墒决定了水分和磷肥利用的程度或水平,同时水分也制约着作物累积的干物质向收获器官(子粒)转移的多少或比例。在底墒充足的年份,较低的施磷量,就可实现较高的产量和水肥利用效率;底墒较差的年份,则要求较高的磷肥投入量。  相似文献   

11.
Fertilization with nitrogen (N) or phosphorus (P) can improve plant growth in saline soils. This study was undertaken to determine wheat (Triticum aestivum L; cv Krichauff) response to the combined application of N and P fertilizers in the sandy loam under saline conditions. Salinity was induced using sodium (Na+) and calcium (Ca2+) salts to achieve four levels of electrical conductivity in the extract of the saturated soil paste (ECe), 2.2, 6.7, 9.2 and 11.8?dS?m?1, while maintaining a low sodium adsorption ratio (SAR; ≤1). Nitrogen was applied as Ca(NO3)2?·?4H2O at 50 (N50), 100 (N100) and 200 (N200)?mg?N?kg?1 soil. Phosphorus was applied at 0 (P0), 30 (P30) and 60 (P60)?mg?kg?1?soil in the form of KH2PO4. Results showed that increasing soil salinity had no effect on shoot N or P concentrations, but increased shoot Na+ and chlorine ion (Cl?) concentrations and reduced dry weights of shoot and root in all treatments of N and P. At each salinity and P level, increasing application of N reduced dry weight of shoot. At each salinity and N level P fertilization increased dry weights of shoot and root and shoot P concentration. Addition of greater than N50 contributed to the soil salinity limiting plant growth, but increasing P addition up to 60?mg?P?kg?1 soil reduced Cl? absorption and enhanced the plant salt tolerance and thus plant growth. The positive effect of the combined addition of N and P on wheat growth in the saline sandy loam is noticeable, but only to a certain level of soil salinity beyond which salinity effect is dominant.  相似文献   

12.
水、磷对紫花苜蓿产量及水肥利用效率的影响   总被引:5,自引:0,他引:5  
【目的】紫花苜蓿作为畜牧业生产中最主要的优质绿色饲料,是发展草食畜牧业的物质基础,同时它也是一种需水需肥较多的作物。如何从技术方面提高单位面积苜蓿产量,实现苜蓿高产栽培是科学研究人员及生产者研究的重点。北京市东南部接壤的蓟县、宝坻及南部接壤的廊坊、武清等地区,是北京市在生态和环境优先发展原则下畜牧养殖业外移的重要承接区域,苜蓿在当地种植缺乏科学指导,年干重产量仅为7500~10000 kg/hm2,盐碱地年产量更低,为4500~6000 kg/hm2。本研究通过苜蓿水肥试验确立紫花苜蓿达到高产的最佳磷肥施用水平和灌水量,为京南地区苜蓿高产及水肥的高效利用提供可借鉴的水肥管理技术。【方法】实验在低磷砂壤土条件下进行,选用紫花苜蓿中苜2号品种,设置全生育期不灌水(W0)、以及返青后及第1、2茬刈割后灌水且每次灌水25 mm (W1)、50 mm (W2)、75 mm (W3)4个灌水处理;每个灌水处理下设置不施磷(F0)、施P2O5 105 kg/hm2(F1)、210 kg/hm2(F2)3个施磷量处理,研究了灌水和施磷对紫花苜蓿产量、水分和磷肥利用效率的影响。【结果】1)灌水对1、2茬苜蓿产量的影响有显著差异,对3、4茬及全年产量的影响无显著差异;施磷肥对第3茬苜蓿产量没有显著影响,但对第1、2、4茬及全年苜蓿产量的影响均存在显著差异。2)灌水和施磷肥对紫花苜蓿的水分和肥料利用效率均有显著影响,随着施磷量的增加,苜蓿的水分利用率逐渐增大,说明施磷可以提高水分利用效率;随着灌水量的增加,苜蓿的磷肥利用效率呈先增加后降低的趋势,说明适当的增加灌水量可以提高苜蓿的磷肥利用效率。【结论】综合考虑紫花苜蓿产量、水分和肥料利用效率等指标,最优试验处理为每次灌水量50 mm,施P2O5 210 kg/hm2,其次为每次灌水量25 mm, 施P2O5 210 kg/hm2。  相似文献   

13.
不同磷水平下小麦蚕豆间作对根际有效磷及磷吸收的影响   总被引:5,自引:0,他引:5  
【目的】探明不同磷水平下小麦–蚕豆间作对根际有效磷含量及作物磷吸收量的影响,提高磷肥利用率。【方法】2015—2016和2016—2017两季田间试验在云南农业大学试验基地耕作红壤上进行,供试小麦品种为云麦-52,蚕豆品种为玉溪大粒豆。设施P2O5 0 (P0)、45 (P45)和90 kg/hm^2 (P90)三个水平,和单作(M,包括小麦单作MW和蚕豆单作MF)和间作(I)两种种植模式。每季在小麦分蘖期、拔节期、抽穗期、灌浆期和成熟期,蚕豆分枝期、开花期、结荚期、籽粒膨大期、收获期采取根际土样测定有效磷含量。在小麦蚕豆收获期测定单、间作小麦、蚕豆产量,并测定作物地上部磷含量。计算土地当量比(LER)来衡量间作优势,并用磷肥农学利用率来反映磷肥的吸收效率。【结果】与单作相比,在P0、P45、P90水平下,2016年间作种植显著提高了小麦籽粒产量12.5%、21.7%和17.3%,2017年间作蚕豆产量较单作分别降低了16.8%、11.7%和8.2%。三个磷水平下,小麦–蚕豆间作具有产量优势,土地当量比(LER)为0.95~1.18。与常规施磷水平(P90)下的单作相比,小麦–蚕豆间作条件下,磷肥减施1/2 (P45)并未降低小麦和蚕豆产量。间作种植对小麦根际有效磷含量无显著影响(除2016年成熟期外),但2017年,在蚕豆分枝期、开花期、结荚期,间作则分别降低蚕豆根际有效磷含量20.8%、44.5%和18%。与P90单作相比,间作P45处理几乎不会降低小麦、蚕豆根际有效磷含量。小麦、蚕豆磷吸收量主要受磷水平的调控,种植模式对小麦和蚕豆磷的吸收量及磷肥农学利用率均没有影响。【结论】在本试验条件下,小麦–蚕豆间作提高了小麦籽粒产量,降低了蚕豆产量;间作种植主要是改变了蚕豆生育前期根际有效磷含量,但对作物的磷吸收量没有影响。小麦–蚕豆间作具有减施磷肥、维持作物产量和根际土壤有效磷的潜力。  相似文献   

14.
Phosphorus (P) deficiency is one of the most yield limiting factors for dry bean (Phaseolus vulgaris) production in tropical acid soils. Dry beans are invariably grown as mono-crops or as inter-crops under the perennial tropical crops. Information is limited regarding the influence of phosphorus fertilization on dry bean yield and yield components and P use efficiency in tropical acid soils. A greenhouse experiment was conducted to evaluate the influence of phosphorus fertilization on dry bean growth, yield and yield components and P uptake parameters. Phosphorus rates used were 0, 50, 100, 150, 200, and 250 mg P kg?1 of soil. Soil used in the experiment was an acidic Inceptisol. Grain yield, shoot dry weight, number of pods, and 100 grain weight were significantly (P < 0.01) increased with phosphorus fertilization. Maximum grain yield, shoot dry matter, number of pods, and 100 grain weight were obtained with the application of 165, 216, 162, and 160 mg P kg?1 of soil, respectively, as calculated by regression equations. Grain yield was significantly and positively associated with shoot dry weight, number of pods, P concentration in grain and total uptake of P in shoot and grain. Phosphorus use efficiency defined in several ways, decreased with increasing P rates from 50 to 250 mg P kg?1 of soil. Maximum grain yield was obtained at 82 mg kg?1 of Mehlich 1 extractable soil P. Results suggest that dry bean yield in Brazilian Inceptisols could be significantly increased with the use of adequate rates of phosphorus fertilization.  相似文献   

15.
Phosphorus (P) treatments were used to evaluate APSIM-SoilP-Wheat model and phosphorus use efficiency (PUE) of two wheat cultivars (NARC-2009 and Chakwal-50) during 2011–2013. Overall, the Agricultural Production Systems Simulator (APSIM) model accurately simulated dry matter, grains per spike, grain yield, biomass P, and grain P for two years, for both genotypes in response to all P fertilizer treatments. NARC-2009 had 55% higher PUE compared to Chakwal-50. Information on PUE will be helpful in breeding high PUE cultivars. Modeling results showed that the production of wheat depends on growth as well as on P uptake of the plants. The close agreement between observed and simulated results confirmed the accuracy of the model which was validated with skill scores like R2 and RMSE. APSIM simulation proved to be valuable tool to evaluate PUE under rainfed conditions.  相似文献   

16.
【目的】研究长期连续过量施用磷肥下蔬菜的产量响应、磷肥去向及土壤各形态磷库的动态变化。 【方法】在太行山山前平原典型潮褐土上,连续进行11年21茬露地蔬菜的长期定位肥料试验,P2O5年施用量设0 (P0)、360 (P1)、720 (P2)、1080 (P3)、1440 (P4) kg/hm2共5个处理,分别测定每茬蔬菜产量及各年土壤不同形态磷素含量。 【结果】与不施磷肥处理比较,单季P2O5用量180、360、540、720 kg/hm2均显著增加大白菜、菜豆产量,不同磷肥用量间蔬菜产量均无显著差异。P2O5年用量为360、720、1080、1440 kg/hm2,土壤年盈余磷为41.2~478.7 kg/hm2,积累率为26.2%~76.1%。与基础土比较,随着磷肥用量的增加,土壤有效磷、全磷、无机磷总量及无机磷中的Ca2-P、Ca8-P、Al-P、Fe-P含量均呈显著增加趋势,无机磷中的O-P、Ca10-P含量无显著变化。P2O5年用量为720、1080、1440 kg/hm2处理土壤的有效磷年均增加量为2.3、4.2、5.0 mg/kg;土壤有效磷增加量与磷盈余量呈显著直线正相关关系,土壤磷素每盈余100 kg/hm2,有效磷、Ca2-P、Ca8-P、Al-P、Fe-P 含量分别增加1.13、2.41、15.27、4.14、1.37 mg/kg。随着土壤磷盈余量和施肥年限的增加,有效磷占全磷比重、Ca2-P、Ca8-P、Al-P占无机磷比重逐渐增加。 【结论】施用磷肥显著增加大白菜和菜豆产量,过量施用磷肥蔬菜产量无显著变化;土壤磷素处于盈余状态下,随着磷肥用量的增加或种植年限的增加,土壤积累磷的有效性随之增加。基于蔬菜对磷肥产量响应和土壤磷素收支表观平衡状况,露地大白菜P2O5推荐用量180 kg/hm2,菜豆270 kg/hm2。  相似文献   

17.
Abstract

Efficient crop use of nitrogen (N) fertilizer is critical from economic and environmental viewpoints, especially under irrigated conditions. Nitrogen fertilizer (15N‐labeled urea) and irrigation methods (drip and furrow) were evaluated on spring and fall potato cultivars under Syrian Mediterranean climatic conditions. Field experiments were conducted in the El‐Ghab Valley near Hama in fall 2000 and spring 2001 on a heavy clay soil. Four N‐fertilizer applications (70, 140, 210, and 280 kg N/ha) were applied in five equally split treatments for both irrigation methods. Potato was irrigated when soil moisture in the specified active root depth reached 80% of the field capacity as indicated by the neutron probe.

Higher marketable tuber yield of spring potato was obtained by fertigation compared to furrow irrigation; the magnitude of tuber yield increases was 4, 2, 31, and 13%, whereas for fall potato the tuber yield increases were 13, 27, 20, and 35% for N fertilizer rates of 70, 140, 210, and 280 kg N/ha, respectively. Shoot dry matter and tuber yields at the bulking stage were not good parameters to estimate marketable tuber yield. The effect of N treatments on potato yield with furrow irrigation and fertigation was limited and not significant. Drip fertigation improved tuber yield of fall potato relative to national average yield. Nitrogen uptake increased with increasing N input under both irrigation methods. Reducing N input under both irrigation methods improved N recoveries. Increasing N input significantly increased total N content in plant tissues at the bulking stage. Spring potato yields were almost double those of fall potato under both irrigation methods and all N treatments.

Nitrate (NO3) movement in the soil solution for fall potato was monitored using soil solution extractors. Furrow irrigation resulted in greater movements of NO3‐N below the rooting zone than drip fertigation.

Harvest index did not follow a clear trend but tended to decrease upon increasing N fertilization rates beyond 140 kg N/ha under both irrigation methods. Drip fertigation improved field water‐use efficiencies at the bulking and harvest stages. Fertigation increased specific gravity of potato tubers relative to furrow irrigation. Higher N input decreased specific gravity of potato tubers under both irrigation methods.  相似文献   

18.
Abstract

The aim of this study was to evaluate the effect of forms of application and application rates of phosphate fertilizer on the agronomic characteristics of carrot. A field experiment was carried out in a 2?×?7 factorial arrangement, consisting of two forms of application of the P source (over the whole area or specifically in the strip of the double row), and seven application rates of P2O5 in randomized blocks, with four replicates. Shoot dry matter yield increased linearly, and root dry matter yield increased exponentially with an increase in P rate. Total and commercial yields increased exponentially, with higher yield for P application over the whole area. However, the agronomic efficiency for site-specific application was higher. Higher rates of P application caused increases in the soil attributes and technical traits of carrot, and the application of phosphorus fertilizer is more efficient when performed in a site-specific manner.  相似文献   

19.
【目的】 腐植酸可提高磷肥的肥效,对于其在磷肥中适宜添加量的研究可为我国磷肥的增效减量提供依据。【方法】 将腐植酸增效剂按1%、5%、10%和20%的比例添加到磷酸一铵中,制成四种腐植酸磷肥试验产品(HP1、HP2、HP3和HP4),利用土柱栽培试验研究在等磷量(施P2O5量0.1g/kg干土)投入及等肥料重量(施磷肥实物量0.16g/kg干土,即施P2O5量分别减少1%、5%、10%、20%)投入情况下,腐植酸磷肥对玉米产量、磷素吸收利用及土壤速效磷含量的影响。【结果】 1)在等磷量施用情况下,与普通磷肥(P)相比,四种腐植酸磷肥处理玉米籽粒产量增加4.5%~13.6%,且腐植酸添加量越大产量越高,均显著高于普通磷肥处理;在等肥料重量施用下,随着腐植酸磷肥施入P2O5量的减少,玉米籽粒产量逐渐降低,当P2O5施用量减少20%时籽粒产量与普通磷肥处理相比仍未显著降低。2)腐植酸磷肥处理在等磷量施用下较普通磷肥处理可显著提高玉米籽粒磷吸收量和地上部吸磷总量,分别增加6.0%~15.4%和6.3%~14.0%,但秸秆磷吸收量无显著变化;当腐植酸磷肥施入P2O5量减少20%时籽粒磷吸收量和地上部磷吸收总量会显著低于普通磷肥处理。3)与普通磷肥处理相比,在等磷量施用下,腐植酸磷肥的表观利用率提高5.9~13.1个百分点,农学利用率、偏生产力分别提高26.5%~79.1%、4.5%~13.5%,且均达到显著水平。4)施入腐植酸后主要影响050cm土层的土壤速效磷含量,其中1530cm土层速效磷含量增加最为显著,与普通磷肥处理相比增加18.1%~36.6%。【结论】 腐植酸增效剂在1%~20%的添加比例范围内对磷肥均具有较好的增效作用,可提高玉米产量、磷素吸收量及磷肥利用效率,并可提高土壤中的速效磷含量,且腐植酸添加量越大效果越好;利用腐植酸的增效作用来减少磷肥施用量是可行的,在当前磷肥施用量的基础上可减少磷肥用量20%左右而保证玉米不减产。  相似文献   

20.
利用大田试验研究了不同磷肥用量对甘蓝型春油菜产量、养分积累、磷素利用效率和经济效益的影响。结果表明,在低磷土壤上施用125 kg/hm2N和135 kg/hm2K2O基础上增施磷肥,可显著增加油菜不同部位产量,其中籽粒产量平均提高12.5%,生物量平均提高29.0%。施磷明显提高油菜地上部P素含量,有利于促进油菜K素营养累积,但对N素、K素含量无显著影响。随磷肥施用量的增加,磷肥偏生产力显著下降,施磷后磷肥农学效率、磷肥表观利用率和磷肥生理利用率平均分别为4.6 kg/kg P2O5、13.0%和40.2 kg/kg P2O5,磷肥对籽粒产量的贡献率仅为10.9%。根据经济效益分析结果,青海甘蓝型春油菜生产中磷肥用量以75 kg/hm2为宜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号