首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Certain wild plants as well as crop plants, so-called hyperaccumulators, are able to accumulate large amounts of heavy metals in aerial parts. This property may be exploited for the clean-up of soil contaminated by metals (phytoremediation), if the yield and metal accumulation are big enough to finish remediation within a reasonable period (e.g. five years). Therefore, the ability of various plants to accumulate zinc and cadmium were compared in field trials. The wild species Thlaspi caerulescens and Alyssum murale as well as the tree Salix viminalis showed a strong ability to accumulate zinc and cadmium. However, phytoremediation of investigated soils contaminated with cadmium (6.6 ppm) or zinc (810 ppm) lasts too long based on present technology. Literature data and preliminary experiments indicate that major obstacles could be overcome: Yield and metal-uptake rates have to be increased dramatically in order to allow remediation within reasonable periods.  相似文献   

2.
利用土壤改良剂固定污染土壤中铅、镉的研究进展   总被引:21,自引:0,他引:21  
Since the inception of industrial revolution, metal refining plants using pyrometallurgical processes have generated the prodigious emissions of lead (Pb) and cadmium (Cd). As the core target of such pollutants, a large number of soils are nowadays contaminated over widespread areas, posing a great threat to public health worldwide. Unlike organic pollutants, Pb and Cd do not undergo chemical or microbial breakdown and stay likely in site for longer duration after their release. Immobilization is an in-situ remediation technique that uses cost-effective soil amendments to reduce Pb and Cd availability in the contaminated soils. The Pb and Cd contamination in the soil environment is reviewed with focus on source enrichment, speciation and associated health risks, and immobilization options using various soil amendments. Commonly applied and emerging cost-effective soil amendments for Pb and Cd immobilization include phosphate compounds, liming, animal manure, biosolids, metal oxides, and biochar. These immobilizing agents could reduce the transfer of metal pollutants or residues to food web (plant uptake and leaching to subsurface water) and their long-term sustainability in heavy metal fixation needs further assessment.  相似文献   

3.
The effect of a cation exchange resin on the uptake of heavy metals by grapevines and other cultivated plants grown in contaminated soils The effect of a cation exchange resin on the growth and heavy metal content of grapevine, sun flower, cress, wheat and Italian rye-grass was investigated in potted vineyard soil, contaminated by the long application of Cu-containing pesticides (total Cu content of the soil: 628 ppm), or a soil contaminated artificially with 20 ppm Cd. Roots of cress seedlings grown in a vineyard soil mixed with a cation exchange resin were 2.2 times longer than in the untreated soil. Rye-grass was not injured, whereas grapevine, sun flower and wheat showed varying degrees of growth reduction, chlorosis and necrosis when grown in untreated vineyard soil. However, wheat and sunflower grown in vineyard soil containing a cation exchange resin showed no injury and grapevines exhibited markedly reduced symptoms. The Cu content of the test plants decreased as follows: The Zn and Cd content of the plants also decreased considerably, whereas their Fe and Mn content was not influenced. Grapevine, grown in a calcareous soil contaminated with 20 ppm Cd, contained 447 ppm Cd in the roots (untreated: 1,9 ppm) and 0,20 ppm Cd in the leaves (untreated: 0,04 ppm). The Cd content of the roots declined to 113ppm, that of the leaves to 0,15 ppm when grown in the contaminated soil containing a cation exchanger.  相似文献   

4.
Contamination of soils with heavy metals becomes more and more a problem in many countries all over the world. In areas where metal contaminated soils are used for food crop production, metals relatively mobile within the plant, such as cadmium (Cd) and zinc (Zn) can easily come into the food chain with great risks for human health. Since bioavailability of heavy metals in soils varies with soil and plant characteristics, e.g., mineralogical and organic matter properties of the soil and plant metal susceptibility, prediction of heavy metal uptake by plants by the common soil and plant chemical analysis techniques is often unreliable. Recently, the use of biomarkers has been suggested to be a suitable technique complementing chemical soil analysis. Therefore, the usefulness of the biomarker phytochelatin (PC), a non‐protein thiol, specifically induced in plants suffering from heavy metal stress, was tested. Maize (Zea mays L.) plants were exposed to excess copper (Cu) or Cd in nutrient solution systems and metal and PC concentrations were monitored in plant shoot and root. Results clearly illustrated that very soon after plant exposure to the metal, PC induction started, especially in plant roots. Phytochelatin seems to be a useful early warning system for heavy metal stress in plants.  相似文献   

5.
Woody plant species that produce high biomass have been proposed for use in phytoremediation technology. We investigated the accumulation of cadmium (Cd) and zinc (Zn) in Salix babylonica, S. caprea, S. dasyclados, S. matsudana × alba, S. purpurea, S. smithiana, Populus tremula, and P. nigra clones grown in a pot experiment on a Calcaric and a Eutric Cambisol (pH 7.2 and 6.4) of different levels of contamination (total metal concentrations in mg kg–1 in soil A: 32.7 Cd, 1760 Zn; soil B: 4.34 Cd, 220 Zn). Generally, the tested clones tolerated large metal concentrations in soils and had larger Cd and Zn concentrations in leaves compared to the roots. The largest Cd concentrations in leaves were found in two clones of S. smithiana (440 mg kg–1 on soil A; 70 mg kg–1 on soil B). One of the S. smithiana clones had also the largest Zn concentrations (870 mg kg–1) on soil B but accumulated slightly less Zn than a S. matsudana × alba clone (2430 mg kg–1) on soil A. The Cd concentrations in leaves of both S. smithiana clones on soil A are the largest ever reported for soil‐grown willows. The bioconcentration factors of the best performing clone reached 15.9 for Cd and 3.93 for Zn on the less contaminated soil B. Also based on the metal contents in leaves, this clone was identified as the most promising for phytoextraction. The metal concentrations in leaves observed in the pot experiment do not reflect those found in a previous hydroponic study and the leaf‐to‐root ratios are clearly underestimated in hydroponic conditions. This demonstrates the need for testing candidates for phytoextraction crops on soils rather than in hydroponics. Our data also show that the phytoextraction potential should be tested on different soils to avoid misleading conclusions.  相似文献   

6.
为探索环境材料对种植于Pb、Cd污染土壤中的玉米生长、品质的影响, 以及对Pb、Cd重金属污染土壤的改良效应, 本文采用温室盆栽方法, 研究了不同环境材料[腐殖质类材料(HA)、高分子材料(SAP)、煤基复合材料(FM)及粉质矿物材料(FS)]及其复合处理对Pb-Cd复合污染土壤中玉米(Zea mays L.)生长、品质及根系土壤环境的影响。结果表明, 添加环境材料组合F22(FM+SAP)、F23(FS+SAP)及F32(HA+SAP+FS)能促进苗期玉米生长, 长势好于对照; 所有环境材料处理中玉米地上部粗灰分含量都低于对照, 添加单一环境材料对玉米地上部粗淀粉含量的提高效果高于对照、优于组合; 处理FM、F33(SAP+FM+FS)及F4(HA+SAP+FM+FS)对土壤中Pb固定效果显著, 抑制土壤中Pb向玉米体内迁移; 单一处理FM、FS及组合F33(SAP+FM+FS)对土壤重金属Cd固化效果明显, 抑制土壤中Cd向玉米体内迁移。环境材料的添加在一定程度上有助于土壤基本理化性质的改善, 促进土壤改良, 同时环境材料对阻止土壤重金属向植物体迁移有一定作用。  相似文献   

7.
为理解石灰岩地区农田土壤重金属积累特点及污染风险,以浙西石灰岩地区为例,随机选择了153块重金属污染农田,点对点采集了土壤和水稻样品,分析了土壤和糙米中镉的含量及土壤性状,探讨了石灰岩地区污染农田土壤与稻米镉积累特点及其与土壤性状的关系。结果表明,土壤全镉随粘粒含量的增加而增加,随土壤pH的下降而下降;土壤有效镉占全镉的比例与土壤pH呈负相关,糙米中镉含量与土壤有效镉、水溶性镉呈显著正相关;糙米中镉含量与土壤pH、有机质含量及粘粒含量均呈现显著负相关,土壤pH是影响石灰岩地区农田糙米镉积累最为重要的因素。《土壤环境质量-农用地土壤污染风险管控标准(试行)》(GB 15618—2018)的污染风险筛选值并不适用于石灰岩地区高pH的土壤。当6.5 < pH ≤ 7.5时,土壤重金属镉含量与农产品中重金属镉超标结果并不一致,其风险筛选值(0.60 mg kg?1)偏低,实际的风险筛选值可能在0.80 mg kg?1以上。土壤水溶性镉较土壤全镉和有效镉能更好地评估石灰岩地区农作物重金属镉的污染风险。  相似文献   

8.
A total of 222 surface soil samples and 40 plant samples were collected to investigate the spatial distribution and possible sources of soil heavy metals and to know the uptake and translocation of heavy metals from roots to different plant parts in a representative vegetable production area in the Baguazhou Island, a suburb of Nanjing City, East China. The arithmetic mean values of total Cd, Cr, Cu, Ni, Pb, and Zn concentrations in the soils were 0.314, 133, 41.0, 58.0, 31.8, and 114 mg kg-1, respectively. All of these values were above the topsoil background values in the Nanjing area. Multivariate and geostatistical analyses showed that soil Cd contamination was derived mainly from agricultural practices. In contrast, Cu and Zn were derived mainly from soil parent materials and Pb from atmospheric deposition from highway gasoline stations. Artemisia selengensis, a locally important specialty vegetable, accumulated heavy metals primarily in the edible leaves. The general distribution of heavy metal concentrations in this plant species showed that the highest occurred in the leaves, intermediate in the stems and lowest in the roots. Cd had the highest concentration factor (root-to-soil ratio) and may pose increased health risks in the future to the local population through the consumption of contaminated vegetables.  相似文献   

9.
3种有机酸对伴矿景天修复效率及土壤微生物数量的影响   总被引:2,自引:0,他引:2  
伴矿景天(Sedumplumbizincicola)是一种Cd和Zn的超积累植物,常用于Cd污染土壤的植物修复。有机酸能够提高土壤重金属的有效性,促进植物对重金属的积累,对重金属污染土壤的植物修复效率具有强化作用,并对土壤微生物数量有重要影响。以河潮土和红黄泥为供试土壤,探讨了乙二胺四乙酸(EDTA)、柠檬酸、草酸对伴矿景天修复效率和土壤微生物数量的影响。结果表明,有机酸能显著提高土壤有效态Cd含量,柠檬酸处理的效果最好,河潮土和红黄泥中有效态Cd含量较单种伴矿景天分别增加72.73%,12.99%(P<0.05);伴矿景天地上部Cd含量在河潮土和红黄泥中以EDTA处理最高,在河潮土和红黄泥中分别比单种伴矿景天增加99.24%和33.32%;与单种伴矿景天相比,添加有机酸处理河潮土和红黄泥中伴矿景天修复效率显著提高。添加有机酸比单种伴矿景天显著增加土壤中微生物数量,其中柠檬酸处理河潮土中细菌和真菌数量分别增加34.38%和68.42%(P<0.05),草酸处理红黄泥中放线菌数量增加150.00%。研究结果可为重金属污染土壤的植物强化修复提供理论支撑。  相似文献   

10.
Characteristics of heavy metal contamination in paddy soils were discussed with respect to the soil and field conditions influencing the metal contents in rice.

1. In contaminated areas along the Kuzuryu River, the heavy metal contents of rice (expressed as the average of each area) were largely related to contents of paddy soils in 0.1 N HCl soluble forms as well as in total contents. A correlation was also found for the ratio of Cd to Zn in their soluble forms in the soil.

2. Within a given contaminated field plot, the heavy metal contents were not uniform, i.e: they were high around the irrigation inlet and decreased towards the outlet. However, these changes seemed to alter the Cd rice level much less than expected.

3. Soil pH and exchangeable Ca were negatively correlated with the Cd content of rice at a highly significant level. An un-drained field condition with a low soil Eh remarkably lowered the Cd content, particularly during rainy weather after the heading of the plant.

4. Based on a comparison of the extractable heavy metal contents in the waste ores and their contaminated soils, sulfide minerals derived from the mining appeared to be weathered more rapidly in the soil. With some extraction methods, the Cd origin was distinguished as the solubility of the metal in the soil among the waste products from the zinc mining and refinery.  相似文献   

11.
Effects of heavy metals on rhizobia and the symbiotic association with leguminous hosts are currently unclear. To investigate this problem, we examined Rhizobium meliloti (microsymbiont) and alfalfa (Medicago sativa) (macrosymbiont) collected from soils contaminated with varying concentrations of heavy metals (varying distances from a Zn smelter operating 90 yr.). Soil populations of R. meliloti were not correlated with metal concentrations in soil. The lowest rhizobial population was found in the soil with the highest extractable metal concentrations, but the highest populations were found in soil which was moderately contaminated. A greenhouse study in which alfalfa was grown in the same soils showed no significant trend for nodulation or nitrogenase activity of roots. Highest nodule number and nitrogenase activity were observed in those soils which had the lowest population of R. meliloti. When the heavy metal Minimum Inhibitory Concentration (MIC) of individual isolates was examined, no correlation was found between the MIC and soil metal concentration (total, or water or 0.01 M Ca(NO3)2 extractable).These results indicate that even in highly contaminated soils, metal activity was not high enough to exert an antagonistic influence on the soil rhizobial population or the symbiotic association between alfalfa and R. meliloti.  相似文献   

12.
In the first series of studies aimed at addressing the environmental problems of soils and drainage systems, we attempted to isolate cadmium (Cd)-resistant bacteria from soils heavily contaminated with Cd and determine their growth rate in media with cadmium. In soils contaminated with heavy metals, there was on increase in the number of Cd-resistant bacteria. Among 14 Cd-resistant bacteria isolated from soils contaminated with heavy metals, only six strains (Flavobacterium sp., Comamonas testosteronii, Methylobacterium fujisawaense, Alcaligenes piechaudii, Alcaligenes xylosoxidans) were identified as new types of Cd-resistant bacteria. All the isolated resistant bacteria grew fast, and reached the maximum growth rates within 24 to 48 h (Growth conditions were as follows. Culture medium: nutrient broth, pH: 6.0, temperature: 30°C and of concentration of added Cd: 0.1, 1.0, 10.0, and 100.0 mg kg-1).  相似文献   

13.
Risk assessment of heavy metals in soil requires an estimate of the concentrations in the soil solution. In spite of the numerous studies on the distribution of Cd and Zn in soil, few measurements of the distribution coefficient in situ, Kd, have been reported. We determined the Kd of soils contaminated with Cd and Zn by measuring metal concentrations in the soil and in the soil solution and attempted to predict them from other soil variables by regression. Soil pH explained most of the variation in logKd (R2 = 0.55 for Cd and 0.70 for Zn). Introducing organic carbon content or cation exchange capacity (CEC) as second explanatory variable improved the prediction (R2 = 0.67 for Cd and 0.72 for Zn), but these regression models, however, left more than a factor of 10 of uncertainty in the predicted Kd. This large degree of uncertainty may partly be due to the variable degree of metal fixation in contaminated soils. The labile metal content was measured by isotopic dilution (E value). The E value ranged from 18 to 92% of the total metal content for Cd and from 5 to 68% for Zn. The prediction of Kd improved when metals in solution were assumed to be in equilibrium with the labile metal pool instead of the total metal pool. It seems necessary therefore to discriminate between ‘labile’ and ‘fixed’ pools to predict Kd for Cd and Zn in field contaminated soils accurately. Dilute salt extracts (e.g. 0.01 m CaCl2) can mimic soil solution and are unlikely to extract metals from the fixed pool. Concentrations of Cd and Zn in the soil solution were predicted from the concentrations of Cd and Zn in a 0.01 m CaCl2 extract. These predictions were better correlated with the observations for field contaminated soils than the predictions based on the regression equations relating logKd to soil properties (pH, CEC and organic C).  相似文献   

14.
采用温室盆栽试验研究了印度芥菜对土壤中锌镉污染的忍耐、积累能力 ,以检验这种植物修复Zn、Cd污染土壤的可能性及其潜力。在加入Zn 5 0 0和 1 0 0 0mgkg- 1 的土壤中 ,印度芥菜生长 66天后 ,叶片中积累Zn的平均浓度分别达 2 80和 662mgkg- 1 ,地上部带走的Zn分别为每盆 2 1 95和 341 2 μg。在加入Cd 2 0 0mgkg- 1 的土壤中生长的印度芥菜 ,叶片中积累Cd浓度为 1 61mgkg- 1 ,地上部带走的Cd为每盆 381 μg。和普通植物相比 ,印度芥菜更能将Zn和Cd从根运输到地上部。Zn 5 0 0mgkg- 1 处理的土壤在种植印度芥菜后其NH4NO3提取的Zn显著高于不种植物的处理 ;土壤添加Cd 2 0 0mgkg- 1 的处理NH4NO3提取的Cd也显著高于不种植物的处理 ,可能的原因是植物根分泌出特殊的分泌物 ,专一性地螯合溶解根系附近的难溶态Zn和Cd,从而提高土壤溶液中的浓度。印度芥菜对Zn、Cd有较强的忍耐和富集能力 ,是Zn、Cd污染土壤修复有潜力的植物。  相似文献   

15.
植物吸取修复及钝化处理对后茬水稻镉吸收的影响   总被引:2,自引:0,他引:2  
采集湖南湘潭县某地镉(Cd)污染酸性农田土壤及其经伴矿景天分别吸取修复两季和三季后的土壤,采用盆栽试验研究了经伴矿景天修复及钝化改良与否对土壤pH、有效态Cd、Zn以及水稻生长和稻米Cd、Zn浓度的影响。结果表明:未改良的处理,随着修复次数的增加,土壤pH显著降低,降低幅度为0.26~0.38个单位;且修复两季、三季土壤CaCl_2提取态Cd浓度较未修复土壤分别降低19.4%、24.0%;修复后土壤种植水稻品种W184,其糙米中Cd浓度显著降低,但依然超标;修复三季土壤种植低积累水稻品种IRA7190,其糙米中Cd由0.47 mg/kg降为0.03 mg/kg。施加钝化剂海泡石和石灰(10 g/kg+1 g/kg)后,修复两季、三季土壤的pH显著升高,较未施钝化剂处理土壤pH分别提高0.95、0.72;土壤CaCl_2提取态Cd浓度分别降低79.8%、79.5%;修复两季、三季土壤上水稻W184糙米的Cd浓度与未施加钝化剂相比,分别降低27.3%、44.4%,均降至国家食品安全限值0.2 mg/kg以下;无论是否添加钝化剂,伴矿景天吸取修复三季的土壤上水稻IRA7190糙米中Cd浓度均仅0.03 mg/kg。  相似文献   

16.
Arsenic (As) and cadmium (Cd) in soils can affect soil microbial function and community composition and, therefore, may have effects on soil ecosystem functioning. The aim of our study was to assess the effects of long-term As and Cd contamination on soil microbial community composition and soil enzyme activities. We analyzed soils that have been contaminated 25 years ago and at present still show enhanced levels of either As, 18 and 39 mg kg−1, or Cd, 34 and 134 mg kg−1. Soil without heavy metal addition served as control. Polymerase chain reaction (PCR) followed by denaturing gradient gel electrophoresis (DGGE) showed that bacterial community composition in As and Cd contaminated soils differed from that in the control soil. The same was true for the microbial community composition assessed by analysis of respiratory quinones. Soil fungi and Proteobacteria appeared to be tolerant towards As and Cd, while other groups of bacteria were reduced. The decline in alkaline phosphatase, arylsulphatase, protease and urease activities in the As- and Cd-contaminated soils was correlated with a decrease of respiratory quinones occuring in Actinobacteria and Firmicutes. Xylanase activity was unaffected or elevated in the contaminated soils which was correlated with a higher abundance of fungal quinones, and quinones found in Proteobacteria.  相似文献   

17.
Abstract

Heavy metals are dangerous environmental pollutants that can be transferred and accumulated in human and animal bodies causing deoxyribonucleic acid (DNA) damage and carcinogenic effects. A glass house experiment was conducted to evaluate the potential of Justicia gendarussa Burm F. to absorb heavy metals from textile industry sludge. Justicia gendarussa seedlings were planted on six different growth media (soil+sludge) comprising: 100% soil, 100% sludge, 80% sludge+20% soil, 60% sludge+40% soil, 40% sludge+60% soil and 20% sludge+80% soil. The maximum height increment and number of leaves were found in 20% sludge+80% soil while the highest basal diameter increment was recorded in the 100% sludge. Copper and iron were highly concentrated in the roots, zinc in the leaves, while aluminium was concentrated in both leaves and stems. Justicia gendarussa seems to have a high potential to absorb high amounts of Al and Fe in the leaves and roots. This species showed high translocation (TF) and low bioconcentration factor (BCF) in the contaminated soil. Justicia gendarussa was able to tolerate and accumulate a high concentration of heavy metals. Therefore, this species can be considered as a potential phytoremediator.  相似文献   

18.
The concentrations of heavy metals in water, sediments, soil, roots, and shoots of five aquatic macrophytes species (Oenanthe sp., Juncus sp., Typha sp., Callitriche sp.1, and Callitriche sp.2) collected from a detention pond receiving stormwater runoff coming from a highway were measured to ascertain whether plants organs are characterized by differential accumulations and to evaluate the potential of the plant species as bioindicators of heavy metal pollution in urban stormwater runoff. Heavy metals considered for water and sediment analysis were Cd, Cr, Cu, Ni, Pb, Zn, and As. Heavy metals considered for plant and soil analysis were Cd, Ni, and Zn. The metal concentrations in water, sediments, plants, and corresponding soil showed that the studied site is contaminated by heavy metals, probably due to the road traffic. Results also showed that plant roots had higher metal content than aboveground tissues. The floating plants displayed higher metal accumulation than the three other rooted plants. Heavy metal concentrations measured in the organs of the rooted plants increased when metal concentrations measured in the soil increased. The highest metal bioconcentration factors (BCF) were obtained for cadmium and nickel accumulation by Typha sp. (BCF = 1.3 and 0.8, respectively) and zinc accumulation by Juncus sp. (BCF = 4.8). Our results underline the potential use of such plant species for heavy metal biomonitoring in water, sediments, and soil.  相似文献   

19.

Purpose  

Two main pathways of phytoremediation of heavy metal-contaminated soils are phytostabilization and phytoextraction. Some soil amendments can strengthen phytostabilization or phytoextraction through either reducing heavy metal bioavailability in soil or increasing the heavy metal accumulation capacity of the hyperaccumulator (enhancing heavy metal concentration or shoot biomass of the hyperaccumulator). Urea and chicken manure are often used as fertilizers. This research will explore their effects on a newly found hyperaccumulator, Rorippa globosa (Turcz.) Thell., phytoremediating cadmium (Cd).  相似文献   

20.
在室内模拟实验条件下,重点研究了一步和二步生物淋滤过程中黑曲霉利用各种廉价碳源替代蔗糖产酸修复重金属污染土壤的效果。结果发现,杨树叶、桃树叶、土豆皮去除重金属效果较好。其中杨树叶对冶炼厂土壤中重金属去除率分别为Cu63.5%、Cd100%、Pb16.8%和Zn27%;桃树叶去除效果分别为Cu61.8%、Cd100%、Pb14.6%和Zn28.5%;土豆皮去除效果分别为Cu61%、Cd100%、Pb10.6%和Zn34%。廉价碳源的使用可降低污染土壤生物淋滤修复成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号