首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Adsorption studies are important to determine the retention and release of applied plant nutrients and the efficiency of fertilization. The present study was conducted to delineate the zinc (Zn) adsorption behavior of soils with varying characteristics. In this study, adsorption behavior of Zn was studied at varying Zn concentrations and temperatures in three different soils collected from the Research Farm of Indian Agricultural Research Institute (IARI), New Delhi (Inceptisols, Typic Haplustepts), soil (Inceptisols, Typic Ustocrept) from a farmer’s field in Shamgarh, Karnal, Harayana, and the Hayathnagar Research Farm of Central Research Institute For Dryland Agriculture (CRIDA), Hyderabad, (Haplustalf). The results of this study revealed that the adsorption of Zn as well as differential buffering capacity (DBC) was greater in Typic Haplustepts of IARI and Typic Ustocrept of Karnal than Haplustalf of CRIDA, Hyderabad. However, the supply power as well as percentage saturation (% sat.) was greater in Haplustalf of CRIDA, Hyderabad, than Typic Haplustepts of IARI and Typic Ustocrept of Karnal The results also revealed that irrespective of the soil types, Zn adsorption increased with an increase in Zn concentration and increase in temperature from 20 °C to 35 °C. When the adsorption data were fitted to isotherms, Langmuir and Freundlich isotherm fits were excellent, as evidenced by high r2 (0.71 to 0.99) values. Thermodynamic parameters such as standard free energy (ΔG) were negative in both Typic Haplustepts and Typic Ustocrept soils, indicating spontaneous Zn adsorption reaction, but nonspontaneous reaction was observed in the case of Haplustalf soils.. Interestingly, both standard enthalpy (ΔH) and standard entropy (ΔS) were negative in all the three types of soils studies. The analogy and results of the present study would be useful in deciding the Zn fertilizer needs for a given soil type.  相似文献   

4.
The effects of different fertilization techniques—mineral [21% nitrogen (N)], organomineral (10% N), mycorrhiza inoculumns, wine-producing residues (three different formulas: distiller's residue, 2.2% N; anaerobic digestate, 2.8% N; and the same plus mycorrhizas inoculum), and compost by farm residues (2.0% N)—on adsorption of boron (B) were investigated. The soils, collected after a triennial lettuce (Lactuca sativa L. cv. ‘Bacio’) cultivation, were equilibrated using six B concentrations [0, 1, 5, 20, 50, and 100 mg B L?1, as boric acid (H3BO3)]. The B adsorption was studied at two soil mass (ms) to solution volume (vs) ratios, ms/vs = 0.5 and 1, and the Langmuir, Eadie–Hofstee, Freundlich, and Temkin adsorption equations were fitted to the B adsorption data. The proportion of adsorbed B was gradually less in the more concentrated solutions, with differences in ms/vs ratio and in treatments: the percentage of B adsorbed was greater for ms/vs = 0.5 and for distiller's residue and mineral fertilizer. The Freundlich isotherm represented the measured B adsorption data well; at ms/vs = 0.5, the values of Freundlich adsorption maxima Xm varied from 93.14 to 111.88 mg kg?1 (organomineral fertilizer and distiller's residue, respectively; at ms/vs = 0.5) and from 32.14 to 40.32 mg kg?1 (mineral fertilizer and control, respectively; at ms/vs = 1). In our study, generally the B adsorption was greater with mineral fertilizers and distiller's residue, whereas the organomineral fertilizer led to a decrease in B adsorption. The parameters of adsorption isotherms were significantly correlated, at various degrees, with the exchangeable cation sodium. The adsorption isotherms were well explained by the lower soil mass to volume solution ratio in the order Freundlich > Temkin ≌ Langmuir > Headie–Hofstee.  相似文献   

5.
The adsorption isotherms indicated that the adsorption of boron (B) increased with its increasing concentration in the equilibrium solution. The Langmuir adsorption isotherm was curvilinear and it was significant when the curves were resolved into two linear parts. The maximum value of adsorption maxima (b1) was observed to be 7.968 mg B kg?1 in Garhi baghi soil and the bonding energy (k) constant was maximum at 0.509 L mg?1 in Jodhpur ramana soil. The Langmuir isotherm best explains the adsorption phenomenon at low concentrations of the adsorbent, which of course was different for different soils. There was significant correlation between b1 and clay (r = 0.905**), organic matter contents (r = 0.734*), and cation exchange capacity (CEC; r = 0.995**) of soils. A linear relationship was observed in all the soils at all concentration ranges between 0 and 100 mg B L?1, indicating that boron adsorption data conform to the Freundlich equation. Soils that have a higher affinity for boron adsorption, like Garhi baghi, tended to desorb less amount of boron, that is, 43.54%, whereas Ballowal saunkhari desorbed 48.00%, Jodhpur ramana 48.42%, and Naura soil 58.88% of the adsorbed boron. Boron desorption by these soils is positively and significantly correlated with the sand content (r = 0.714**) and negatively with clay content (r = ?0.502*) and CEC (r = ?0.623**). The maximum value of 37.59 mg kg?1 for desorption maxima (Dm) was observed in Garhi baghi soil and also a constant related to B mobility (Kd) was found to be maximum in Garhi baghi (0.222 L kg?1) soil Note: *P<0.05; **P<0.01.  相似文献   

6.
Abstract

The adsorption of nutrient elements is one of the most important solid‐ and liquid‐phase interactions determining the retention and release of applied plant nutrients and the efficiency of fertilization. The study showed that the soils with high cation exchange capacity (CEC), CaCO3, organic matter contents, and heavy texture adsorbed more zinc (Zn). The alkaline soils from Pakistan adsorbed more Zn than English acidic soils. Langmuir and Freundlich isotherm fit was excellent, and r2 values for the Langmuir isotherm were highly significant (r2=0.84 to 0.99). The Langmuir b values, representing the adsorptive capacity of a soil, increased as the texture fineness increased in the soil, with increases in the concentration of adsorptive material (such as organic matter and CaCO3) and with increases in CEC and pH. The alkaline soils from Pakistan had higher bonding energy constant and higher log Kf values than the acidic English soils. Sequential extraction of Zn in these soils showed that most of the Zn was held in CaCO3 pool in the alkaline soils, whereas in acidic soils adsorbed Zn was in exchangeable form.  相似文献   

7.
8.
Carbon-based sorbents have been proven to be cost-effective in removing pollutants from wastewater. Biochar from plant residue and agricultural waste is an emerging treatment technology. However, there is a limited number of studies on the effects of various biochar sources on metal adsorption. The aim of this study was using batch experiment to evaluate the adsorption of heavy metals in single- and multi-metal conditions onto pepper stem biochar. The maximum adsorption capacities (mg g?1) of metals by pepper stem biochar were in the order of Pb (131) ? Cr (76) > Cd (67) > Cu (48) > Zn (31) in the single-metal adsorption isotherm and Pb (91) ? Cu (39) > Cr (29) > Zn (20) > Cd (13) in the multi-metal adsorption isotherm. Lead was the most retained cation, whereas Cr and Cd could be easily exchanged and substituted by other metals (Pb or Cu). For pepper stem biochar, the Langmuir model provided a slightly better fit than the Freundlich model. Results from the batch experiments show that competitive adsorption among metals increases the mobility of these metals. Particularly, Cd adsorption capacity in multi-metal conditions was significantly reduced. Overall, the results suggested that competitive adsorption studies are necessary for obtaining an accurate estimation of the metal retention capacity of pepper stem biochar in natural environments.  相似文献   

9.
Leaching of boron (B) and zinc (Zn) can be significant in some pedomorphic conditions, which can cause contamination of shallow groundwater and economic losses. Boron and Zn adsorption and transport was studied using 8.4 cm diameter × 28 cm long intact columns from two calcareous soil series with differing clay contents and vadose zone structures: Lyallpur soil series, clay loam (fine-silty, mixed, hyperthermic Ustalfic Haplargid), and Sultanpur soil series, sandy loam (coarse-silty, mixed, hyperthermic Ustollic Camborthid). The adsorption isotherms were developed by equilibrating soil with 0.01 tool L^-1 CaCl2 aqueous solution containing varying amounts of B and Zn and were fitted to the Langmuir equation. The B and Zn breakthrough curves were fitted to the two-domain convective-dispersive equation. At the end of the leaching experiment, 0.11 L 10 g L^-1 blue dye solution was also applied to each column to mark the flow paths. The Lyallpur soil columns had a slightly greater adsorption partition coefficient both for B and Zn than the Sultanpur soil columns. In the Lyallpur soil columns, B arrival was immediate but the peak concentration ratio (the concentration in solution at equilibrium/concentration applied) was lower than that in the Sultanpur soil columns. The breakthrough of B in the Sultanpur soil columns occurred after about 10 cm of cumulative drainage in both the columns; the rise in effluent concentration was fast and the peak concentration ratio was almost 1. Zinc leaching through the soil columns was very limited as only one column from the Lyallpur soil series showed Zn breakthrough in the effluent where the peak concentration ratio was only 0.05. This study demonstrates the effect of soil structure on B transport and has implications for the nutrient management in field soils.  相似文献   

10.
Zinc (Zn) is a vital plant nutrient that is widely deficient in Thai cultivated calcareous soils. The chemical fractionation and adsorption of Zn are among the most important solid- and liquid-phase interactions that determine the retention of Zn in the soils. This study aimed to investigate the fractionation and adsorption isotherms of Zn in cultivated Thai calcareous soils. The results of sequential extractions showed that Zn is mainly distributed in residual fractions followed by organic-bound, iron and manganese oxides-bound, carbonate-bound, and exchangeable Zn, respectively. Zinc adsorption was well fitted by the Langmuir and Freundlich isotherms. Thai calcareous soils had high Zn adsorption capacity. Soil pH, organic carbon, calcium carbonate, cation exchange capacity, and extractable calcium were the major soil properties that affected the Zn adsorption isotherms in these soils. Zinc hydroxide was the solid precipitate and the Zn hydroxide ion (ZnOH+) was the dominant Zn ion in alkaline equilibrium solution.  相似文献   

11.
A laboratory incubation study was conducted to study the influence of liming on extractable boron (B) in acidic soil. Six soils, three each from the Inceptisols and Alfisols, were incubated for 30 days with combinations of lime and B. The soils were acutely deficient in plant-available B (0.09–0.21 mg kg?1). Only <50 percent of applied B was recovered from the soils in available form. Such recovery was lower in Alfisols than that in Inceptisols due to adsorption of a greater amount of added B with iron (Fe?) and aluminium (Al?) oxides in the former soil group. Required dose of lime showed an increase in availability of native soil B, particularly in Inceptisols (26 percent), and a net decrease in recovery of added B (32.5 percent) as compared to no lime control (41.6 percent). The results thus suggest that liming to acidic soils increases extractable B.  相似文献   

12.
The Relative Agronomic Effectiveness (RAE) of rock phosphates as compared to water soluble Triple Super Phosphate was measured on direct, residual, and cumulative application of the P fertilizers in a field experiment with rice on an Oxic‐Rhodustalf in the eastern plateau region of India. The fertilizers were Morocco Rock Phosphate (MORP), Mussoorie Rock Phosphate (MRP), Partially Acidulated Rock Phosphate (PARP), and Triple Super Phosphate (TSP). The RAE of the rock phosphates were lower for direct application (54–80 %) and cumulative application (70–93 %) of P but roughly equal or larger for the residual effect (92–142 %) as compared to TSP. The P adsorption characteristic of the experimental soil conformed to the linear relationship of both Freundlich and Langmuir isotherm equation. The adsorption data when plotted according to Langmuir equation deviated from a single linear relationship at higher concentration (10 μg ml–1), thereby giving two adsorption maximum values ( 68.49 μg g–1 and 256.41 μg g–1) and binding energies ( 2.86 ml μg–1 and 0.089 ml μg–1) for the soil. Two populations of P adsorption site with widely different affinity for P probably existed in the soil.  相似文献   

13.
Soil acidification in mountainous regions of the Czech Republic presents a serious problem. This paper summarizes several projects dealing with this problem exploiting different methods and having different objectives: 1) Long-term soil and forest development in the Krkonoše Mountains. 2) Soil and forest development along an elevation transect in the Šumava Mountains. 3) Long-term effects of liming. 4) Comparison of soil acidification between three mountainous regions, with emphasis on labile Al content. 5) Spatial distribution and factors of soil acidification and Al release in the Jizera Mountains. The results of these projects showed that acidification in forest soils in the mountainous areas is caused by a combination of different factors, especially by the type of vegetation, atmospheric deposition, parent rock, altitude, and others. A slight improvement of soil properties is apparent after the decrease of immissions in the 1990's.  相似文献   

14.
通过盐酸酸化法来去除4种不同利用方式黄棕壤的活性有机碳(AOC),得到相对稳定的有机碳土壤,用于研究去除活性有机碳前后对Cu2+吸附行为的影响。结果表明,黄棕壤去除有机碳前后,对Cu2+吸附量与平衡液浓度的关系符合Langmuir方程和Freundlich方程,其拟合都呈现极显著相关(P〈0.01),去除AOC后,黄棕壤各层次对Cu2+的最大吸附量明显降低,是原土Cu2+最大吸附量的10%~30%。盐酸酸化法对4种不同利用方式的黄棕壤有机碳的去除率为30%~75%,对Cu2+吸附的减少率为54%~86%。去除活性有机碳前后,有机碳含量与对Cu2+的吸附量都呈显著线性相关。土壤有机碳的去除率与对Cu2+吸附的减少率间相关性达到极显著水平。  相似文献   

15.
The mobility, bioavailability, and environmental fate of heavy metals in soil are controlled by their adsorption onto soil minerals and solid organic matter. The adsorption is strongly affected by the presence of various low-molecular-weight organic acids. In this study, effect of hydroxamate siderophore desferrioxamine B (DFOB) on cadmium (Cd) and zinc (Zn) adsorption onto two micaceous clay minerals, muscovite and phlogopite, was evaluated in batch experiments. Results showed that the presence of DFOB diminished the adsorption of Cd and Zn onto both minerals, particularly under neutral to alkaline pH conditions. For instance, at pH 8.2, the presence of DFOB caused a decrease in the adsorption of Zn onto phlogopite by nearly 50%. The equilibrium adsorption of Cd and Zn was satisfactorily described using Freundlich isotherm. The adsorption isotherms showed that the affinity of Cd and Zn onto the minerals decreased in the presence of DFOB. For example, at pH 8.0, the presence of siderophore caused a decrease in the Freundlich adsorption isotherm coefficient KF for Zn adsorption onto muscovite and phlogopite from 4.60 to 0.07 L g-1 and from 3.56 to 0.36 L g-1, respectively. These findings confirm the potential influence of siderophore on the fate of Cd and Zn in arid soils containing substantial contributions of micaceous silicate minerals.  相似文献   

16.
向海湿地河道土壤吸附铅、镉能力的研究   总被引:1,自引:0,他引:1  
利用向海湿地河道上、下游土壤样品进行了吸附铅、镉的热力学实验,结果表明土壤样品吸附铅、镉的过程符合Langmuir和Freundlich等温吸附曲线(n=8,p=0.01),吸附铅的能力约是吸附镉能力的一个数量级,下游断面土壤样品吸附铅、镉的能力明显大于上游断面,且土壤样品吸附铅、镉的最大吸附量与土壤中的细粒土壤、有机质和铁、锰氧化物含量存在显著的相关性,即土壤样品的理化性质是影响土壤吸附铅、镉能力的主要因素;同时,根据向海湿地河道上、下游土壤样品理化性质的差异,可以推测向海湿地净化污染物功能在逐渐减弱。  相似文献   

17.
Abstract

Zinc (Zn) deficiency is believed to be a consequence of reactions taking place between soluble Zn and the soil solid phase. This study was carried out to obtain quantitative relationships between Zn in equilibrium solution and that retained by the soil solids in calcareous soils. Twenty calcareous soils (saturated paste pH 6.9–7.9; calcium carbonate equivalent 4.64–22.80%) from Tehran province, Iran, were equilibrated with varying solution concentrations of Zn, and the amounts removed from the solution were used to check the fit to five adsorption isotherms, namely, Freundlich, Langmuir, Temkin, Gunary, and two‐surface Langmuir. Adsorption data of all soils showed statistically significant fit to the first four adsorption isotherms, but only 7 of the 20 soils tested showed fit to the two‐surface Langmuir. Coefficients of the adsorption isotherms showed statistically significant relationship with soil characteristics. Clay percentage, calcium carbonate equivalent percentage, and cation exchange capacity appeared to be the most influential soil characteristics with regard to Zn adsorption, whereas soil organic matter seemed to be of no importance under the conditions of this study.  相似文献   

18.
The Brazilian Cerrado region which covers an area of 180 million ha is characterized by soils with favorable topography but very poor soil fertility, and due for that, it was considered until recently, unsuitable for agriculture. Liming for base saturation of 50%, in general, together with PKS and micronutrients correction allowed this region to become one of the most important "break baskets" of the world. In recent years the adoption of the notillage system is showing the relevant role of organic matter on soil fertility improvement. This region is now responsible for over 50% of the country soybean, corn, coffee and beef production.  相似文献   

19.
模拟酸雨对荔枝果园土壤磷素等温吸附与解吸特性的影响   总被引:1,自引:0,他引:1  
采用等温吸附试验方法研究了模拟酸雨对荔枝果园土壤磷的吸附与解吸特性的影响。试验结果表明,不同处理间土壤对磷的最大吸附量(Xm)为pH2.5>pH4.5>CK=pH6.5,其中pH2.5的酸雨淋溶处理对磷的最大吸附量(Xm)与其它处理间差异显著;土壤吸附磷的解吸量(Xd)分别与相应的吸附量(X)和原平衡溶液浓度(C)呈显著的指数相关和线性相关,随着土壤对吸附量的增加,土壤磷的解吸量呈指数增长。  相似文献   

20.
The Brazilian Cerrado region which covers an area of 180 million ha is characterized by soils with favorable topography but very poor soil fertility, and due for that, it was considered until recently, unsuitable for agriculture. Liming for base saturation of 50%, in general, together with PKS and micronutrients correction allowed this region to become one of the most important “break baskets” of the world. In recent years the adoption of the notillage system is showing the relevant role of organic matter on soil fertility improvement. This region is now responsible for over 50% of the country soybean, corn, coffee and beef production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号