首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With diminishing world reserves of phosphorus (P) deposits and rising fertilizer prices, it is important to find alternate sources of P for crops. The aim of this research was to evaluate the effect of four different composts C1 (animal manure and straw), C2 (garden waste), C3 (wood chips and bark), and C4 (kitchen waste) on soil P pools and P uptake by wheat on 14, 28, and 72 days after compost application. The composts were applied as a 2.5 cm thick layer on the soil surface. During sampling, only the soil underlying compost was sampled. Soil pH and total organic carbon were not affected by the amendments. Soil respiration was significantly higher in compost-amended soils compared with the unamended soil except with C4 on day 72. Addition of composts increased plant growth, and P uptake being highest on day 72 with C1 and C4. With little effect on available P concentration on day 14, there was a conversion of organic P into inorganic P in the compost treatments suggesting net mineralization of organic P on day 28. On day 72, the concentrations of the less labile P forms were higher in the compost treatments compared with the unamended suggesting precipitation and fixation as well as synthesis of organic P. This study showed that mulching with composts having high available and total P concentrations can provide plants with P and also increase soil P concentrations which could reduce the fertilizer requirement for the following crop.  相似文献   

2.
In S Spain, the Andalusian olive oil industry generates annually 2.5–3.0 million tons of olive mill pomace, a by‐product which is comprised of the residues from the two‐phase oil‐extraction process. The agricultural policies of the EU have led to widespread interest in recycling these agricultural by‐products. Olive mill pomace might be evaluated as an organic fertilizer after composting, however, before wider use of composted olive mill pomace is advocated, characterization of the final product is needed. In this study, the physico‐chemical characteristics, net N mineralization, and the potential for N leaching of 7 out of the 11 olive‐mill‐pomace composts currently produced in the Andalusian olive mills were investigated. Compost of olive mill pomace differed in the proportions of raw materials co‐composted with the olive mill pomace, such as olive leaf material, manure, and straw. In all the composts tested, organic matter, total C and K were high with 60.5%, 30.7%, and 1.7% on average, respectively, whereas total P was low (0.4%) and with intermediate levels of N (1.5%). Compost pH (8.03), electrical conductivity (2.85 dS m–1), and germination index (65% on average) were adequate for agricultural use. Furthermore, principal component analyses revealed a clear relationship between the quality of the composts and the proportion of manure mixed with the raw materials. Net N mineralization was negative on average (–20 μg IN g–1) after 1 y, but positive after 2 y of incubation with up to 94% of available N from the total N added and the short‐term potential N leaching after compost application was negligible (less than 3.9% of added N) and much lower than the other N fertilizer with up to 80% added N leached. Overall, results of this study clearly show that these currently produced composts of olive mill pomace are suitable as soil improvers for agricultural purposes, but may not contribute significantly as a N fertilizer for up to 2 y after application.  相似文献   

3.
The amounts of olive husks produced in Mediterranean countries are very significant. Their treatment and disposal are becoming serious environmental problems. Increasing attention has been paid to finding a use for olive husks. A technological treatment is available to reduce their pollutant effects and to transform them into valuable products. The most suitable procedures are recycling instead of the detoxification of these wastes. It is possible to transform olive husks into organic fertilizers (composts) by composting with poultry manure. The compost has no phytotoxicity and may improve soil fertility and plant production. The composting process involves the microbial degradation of the polluting load of the solid wastes. Results of experiments using olive husk composts in crop production have shown that yields obtained with organic fertilization are similar, and sometimes higher, than those obtained with classic manure. Their bioavailability may be linked to the soil humic complexes originated by these organic fertilizers and to mineral components (active lime and clay). The composition of vegetable leaves improved similitude between compost and manure, normal concentrations but with deficiency in nitrogen, phosphorus and potassium.  相似文献   

4.
Olive oil pomace (OLP) contains organic matter and nutrients that could be recycled by composting and supplying it to crops, solving the problem of disposal.

The effects of two OLP composts (C1 and C2) were assessed on two leguminous forage crops commonly cropped in the local livestock farms. In particular, C1 was applied on proteic pea and C2 on clover, compared with a mineral fertilizer (Min) and a commercial organic–mineral fertilizer (Org-min). The influence of composts on some soil chemical properties was also investigated.

The application of C1 significantly increased proteic pea dry weight at the end of the cycle by 27.2% and 52.0% and grain yield by 23.2% and 43.6%, in comparison with Org-min and Min, respectively. The clover dry weight during the entire cycle was lower in C2, in comparison with the other treatments, while no significant difference was found between C2 and the Org-min treatment both in yield and plant height.

Soil nitrate decreased from the beginning to the end of the trial in C1 and C2 plots by 22.8% and 50.9%, respectively. Soil phosphorous content significantly increased in Min by 32.4 and 41.7% compared to C1 and C2, respectively. These results showed that the substitution of commercial fertilizers with compost could be an environmentally sustainable solution. The high presence of heavy metals in compost should not affect soil application at least in this short-term trial.  相似文献   

5.
We studied the effects of applying different composts (urban organic waste, green waste, manure and sewage sludge), mineral fertilizer and compost plus mineral fertilizer on chemical, biological and soil microbiological parameters over a 12‐year period. The organic C and total N levels in soils were increased by all compost and compost + N treatments. Microbial biomass C was significantly (P ≤ 0.05) increased for some compost treatments. In addition, basal respiration and the metabolic quotient (qCO2) were significantly higher in all soils that had received sewage sludge compost. The Shannon diversity index (H), based on community level physiological profiling, showed a higher consumption of carbon sources in soils treated with compost and compost + N compared with the control. The utilization of different guilds of carbon sources varied amongst the treatments (compost, compost + N or mineral fertilizer). Cluster analysis of polymerase chain reaction‐denaturing gradient gel electrophoresis patterns showed two major clusters, the first containing the mineral fertilization and compost treatments, and the second, the composts + N treatments. No differences in bacterial community structure could be determined between the different types of compost. However, the results suggest that long‐term compost treatments do have effects on the soil biota. The results indicate that the effects on the qCO2 may be due to shifts in community composition. In this study, it was not possible to distinguish with certainty between the effects of different composts except for compost derived from sewage sludge.  相似文献   

6.
A two-year field experiment (2001 and 2003) was carried out in a Mediterranean environment to study the effects of municipal solid waste (MSW) compost application compared with mineral nitrogen (N) fertilization on the agronomic performance and N utilization of a tomato crop, in rotation with durum wheat. The research was conducted in the south of Italy where five N treatments and two soil tillage depths (40-45 cm and 10-15 cm) were compared. The N treatments were: MSW compost at 140 kg ha?1 (Ncom); mineral N fertilizer at 140 kg ha?1 (Nmin); MSW compost combined with mineral N fertilizer (Nmix) (70 kg ha?1 as organic N plus 70 kg ha?1 as mineral N); mineral N fertilizer at 70 kg ha?1 combined with two applications of foliar fertilizer (Nfito) (3 kg ha?1 as hydrolyzed proteins), and an untreated control (Contr). During cropping cycles, growth parameters and plant N status (SPAD readings and petiole nitrate content) were determined; at harvest the marketable, overripe, green fruit, total yield, yield components, quality performance, total and fruit N uptake, and N efficiency were recorded. In addition, at the beginning and at the end of the two-year experiment, soil chemical characteristics and mineral N was measured, allowing for the calculation of the mineral N deficit in the soil. The results of this research indicate that the application of MSW compost to tomato plants can serve as a N source in Mediterranean conditions, especially when MSW compost is combined with mineral N fertilizer and deeper soil tillage is applied. In fact, deeper soil tillage increased total yield 7.0 t ha?1 compared to surface tillage, whereas soil amended with MSW compost increased total yield compared to the untreated control by approximately 6.4% when used alone and 11.1% when combined with mineral N fertilizer. Nitrogen utilization parameters and Harvest Index varied significantly across years and N treatments. Petiole nitrate content and SPAD readings did not vary between Nmin and Nmix treatments, but they were significantly different from the untreated control. This indicates that plant N status was an effective tool to monitor N supply. After the two-year experiment, the Nmix treatment was statistically not significant in total yield (86.1 and 88.2 t ha?1, respectively), marketable yield (66.9 and 67.7 t ha?1) and quality compared to the Nmin treatment. Furthermore, the Nmix treatment ensured the least N deficit in the soil, indicating that MSW applications were effectively used as alternative organic supplements. Finally, the results indicated a positive effect of MSW application on organic carbon content in the soil and did not show any significant increase of the heavy metals at the end of the two-year experiment.  相似文献   

7.
Long-term effects of compost application are expected, but rarely measured. A 7-yr growth trial was conducted to determine nitrogen availability following a one-time compost application. Six food waste composts were produced in a pilot-scale project using two composting methods (aerated static pile and aerated, turned windrow), and three bulking agents (yard trimmings, yard trimmings + mixed paper waste, and wood waste + sawdust). For the growth trial, composts were incorporated into the top 8 to 10 cm of a sandy loam soil at application rates of approximately 155 Mg ha?1 (about 7 yd3 1000 ft2). Tall fescue (Festuca arundinacea Schreb. ‘A.U. Triumph’) was seeded after compost incorporation, and was harvested 40 times over a 7-yr period. Grass yield and grass N uptake for the compost treatments was greater than that produced without compost at the same fertilizer N rate. The one-time compost application increased grass N uptake by a total of 294 to 527 kg ha?1 during the 7-yr. field experiment. The greatest grass yield response to compost application occurred during the second and third years after compost application, when annual grass N uptake was increased by 93 to 114 kg ha?1 yr?1. Grass yield response to the one-time compost application continued at about the same level for Years 4 through 7, increasing grass N uptake by 42 to 62 kg ha?1 yr?1. Soil mineralizable N tests done at 3 and 6 yr. after application also demonstrated higher N availability with compost. The increase in grass N uptake accounted for 15 to 20% of compost N applied after 7-yr. for food waste composts produced with any of the bulking agents. After 7-yr, increased soil organic matter (total soil C and N) in the compost-amended soil accounted for approximately 18% of compost-C and 33% of compost-N applied. This study confirmed the long-term value of compost amendment for supplying slow-release N for crop growth.  相似文献   

8.
采用15N示踪技术,选用水稻土和灰潮土在宜兴进行小麦盆栽试验,研究了稻草、猪粪及其堆肥与化肥配施对作物生长及氮素吸收的影响。结果表明,在水稻土和灰潮土上,不同有机物及其堆肥与化肥配施分别比单施化肥增产4.46%~24.82%和1.01%~20.53%,稻草堆肥和猪粪堆肥配施化肥处理籽粒产量分别高于稻草和猪粪直接与化肥配施处理。稻草和猪粪堆肥后更利于作物吸收氮素,增加植物体内15N累积。两种土壤上15N回收率表现为相同配比的堆肥处理未堆肥处理单施化肥处理。随着小麦生育期的推进,土壤微生物量氮和矿质态氮含量均呈下降趋势,稻草和猪粪处理的微生量氮含量始终高于稻草堆肥和猪粪堆肥处理。有机无机肥配施处理土壤矿质态氮在小麦生育前期低于单施化肥,成熟期则高于单施化肥。整个生育期中,稻草堆肥和猪粪堆肥处理土壤矿质态氮含量分别高于稻草和猪粪处理。因此,有机物堆肥后与化肥配施更有利于提高产量,促进作物对氮素的吸收利用。  相似文献   

9.
Despite the importance of fertilizing practices in the crop yield improvement, nitrogen (N) utilization, and N status, their management by farmers is still rather empirical, especially when new organic materials are applied. Therefore, the aim of this research was to study the possible bio-products (anaerobic digestates and on-farm compost) applications and to evaluate their effects on lettuce performance, N efficiency and soil properties. The plant and soil N indicators were also investigated to reduce the N supply in lettuce production. To accomplish these objectives a three-year field experiment was carried out comparing the following N fertilization strategies: organic, with anaerobic digestates, based on stabilized wine distillery wastewater (SAD) and not stabilized wine distillery wastewater (NSAD) and on-farm compost, based on olive pomace compost (OPC); mineral (MIN), with ammonium sulfate and ammonium nitrate; mineral-organic, with a slow N release commercial fertilizer (CORG). All treatments received 140 kg N ha?1 and they were compared with an unfertilized control (CONTR). The organic material application increased the marketable yield of 25.6, 20.3 and 10.1% for SAD, NSAD, and OPC treatments, respectively, in comparison with the CONTR. No significant reduction was found for both anaerobic digestates in respect to conventional fertilizers, while the OPC application significantly decreased the crop yield compared to MIN and CORG treatments. Moreover, the marketable head weight showed no significant difference among MIN, CORG, and SAD treatments, while a significant reduction of the weight was observed for NSAD and OPC. These findings highlighted the importance of organic fertilizer choice to sustain lettuce yield. The anaerobic digestates also enhanced head weight of 18.9 and 11.9% for SAD and NSAD, respectively, compared to CONTR, pointing out that the by-products application could be a valid agricultural practice to provide nutrients. Besides, no significant difference in N utilization parameters was found between SAD, MIN and CORG, indicating the effectiveness of the stabilized wine wastewater. Among the plant and soil N indicators tested, our results suggested that the leaves green index and nitrate contents in the leafstalks not only were the most reliable methods for evaluating N status, but they also offered potential advantages of both an easier sampling and a higher positive correlation with lettuce performance. Finally, since the agro-industrial residues did not significantly increase the soil potentially toxic elements level, the findings of this research pointed out that the organic materials can be usefully applied, at least in the short-term period.  相似文献   

10.
Previous studies have shown that deep tillage, so‐called subsoiling, is beneficial for yield development, and that tillage of deeper soil layers can promote water and nutrient availability during dry periods. The application of composts to the topsoil has been widely studied and evaluated, and it has been shown to improve soil stability and plant N uptake. These effects can differ over time depending on the compost type. Since dry periods have become more frequent, sustainable soil tillage and fertilizer practices must be developed. A combination of deep soil tillage and compost application might be a way to ensure proper plant supply during dry periods. Therefore, a field experiment on spring barley growth was carried out to evaluate the short‐term effects of in‐row subsoiling with simultaneous admixing of compost. Two types of composts and one organic fertilizer (Bio: decomposed organic waste, Green: decomposed green cuttings and CM: cattle manure) were admixed into the subsoil, and a control treatment received single deep loosening (DL) to a depth of 0.6 m. Yield development, yield parameters and grain quality were analysed and showed that the DL and Bio treatments resulted in the highest yields, and a significantly increased ear density and number of kernels. The TKW (100‐kernel weight) of the CM treatment was significantly lower than the other treatments. In all treatments, a clear trend of decreasing yields with increasing distance from the subsoil tillage was observed. Thus a subsoil tillage every meter can increase overall yield development and offers a new perspective for sustainable crop production.  相似文献   

11.
Abstract

Municipal solid waste composts are often inadequately stabilized for agricultural purposes. In addition, compost quality may be even more reduced by loss of nitrogen (N) during the composting process. We have utilized a compost with a high content of soluble sugars (11 mg g‐1, DM, indicating immaturity) and a low ? concentration (0.95%, DM). The compost had a low level of heavy metals. Results obtained in a germination bioassay conducted with cress, ryegrass and sunflower in a compost‐sand mixture reflected the immaturity of the compost. Such composts should be fortified with ? (in a complete fertilizer, when possible), at the same time avoiding an intimate contact with the soil (e.g., plowing down). When the compost (and raw wastes and wastes at the 4th week of composting) was mixed with a soil at a heavy rate (2.5 % w:w), ryegrass seedling emergence in pots was not affected, but the plantlets’ fresh weight in the compost treatment was significantly lower than that in the control (soil) and lower than that in the raw wastes, probably due to the lower ? concentration. As expected, plantlet fresh weight was notably increased by the combination of compost and wastes with a complete fertilizer. The application of compost in combination with a complete fertilizer or urea did not affect either dry matter production or nutrient uptake of ryegrass, despite the combination's being applied just at sowing (in pots). Results obtained in these experiments indicate that combining immature composts with urea [supplemented with phosphorus (P) and potassium (K), when possible] at a ratio of about 50:1 (about 200 kg urea per 101 compost) could be sufficient to prevent negative results in crop establishment. Such practices could contribute to overcoming the limited fertilizing capacity of the composts.  相似文献   

12.
Improved predictive relationships between compost maturity and nitrogen (N) availability are needed. A total of 13 compost samples were collected from a single windrow over a 91 d period. Compost stability and maturity were assessed using both standard chemical analyses (total C and N, mineral N, total volatile solids) and other methods (CO2 evolution, commercial maturity kits, and neutral detergent fiber, and lignin). Compost N and carbon (C) were evaluated during a 130 d aerobic incubation in a sandy loam soil after each compost was applied at 200 mg total kg?1 soil. The effect of compost maturity on plant growth was evaluated by growing two ryegrass (Lolium perenne L.) crops and one barley (Hordeum vulgare L.) crop in succession in compost-amended soil under greenhouse conditions. Potential phytotoxicity from compost was assessed by growing tomato (Lypersicum esculentum L.) seedlings in compost-amended soil. Regression and correlation analyses were used to evaluate the relationship between compost maturity parameters, the rate and extent of net N and C mineralization, plant yield and N uptake, and phytotoxicity. Commonly used maturity parameters like total C, total N, and C:N ratio were poorly correlated with the rate and extent of mineralization, and with plant growth parameters. The N mineralization rate during the first 48 d of aerobic incubation was strongly correlated (r= ?0.82 to ?0.86) to compost fiber and lignin concentration, and to the Maturity Index (r=0.85). Trends in C mineralization were similar. There were few differences in C mineralization between composts after 48 d of aerobic incubation in soil. Ryegrass harvested 35 and 70 d after compost application was not strongly affected by compost maturity, and relatively immature composts were phytotoxic to tomato seedlings. Methods of characterizing compost maturity and stability that more realistically reflect the composting process are better predictors of N release and potential plant inhibition after incorporation into soil.  相似文献   

13.
国内外堆肥标准分析及其对中国的借鉴启示   总被引:11,自引:2,他引:9  
中国农业废弃物产量巨大,堆肥是农业废弃物资源化利用的主要方式之一,也是养分和有机质回收到土壤中的方法。结合国内外堆肥标准制定情况,通过分析对比无害化指标、有机质、总养分、重金属、含水率等指标,指出中国存在就农业废弃物处理缺乏专业化堆肥及有机肥标准推进委员会、对堆肥产品中氮磷钾和有机质含量的最低限值较高及未建立堆肥标准体系等问题。建议国家组建堆肥标准制定专家委员会或堆肥协会,进一步规范有机肥生产运行管理,进一步修订有机肥、生物有机肥、沼肥等标准,建立完善的堆肥标准体系。  相似文献   

14.
Addition of organic amendments can alleviate the level of aluminum (Al) phytotoxicity in acid soils by affecting the nature and quantity of Al species. This study evaluated the transformation of Al in an acidic sandy Alaquod soil amended with composts (10 and 50 g kg?1 soil of yard waste, yard + municipal waste, GreenEdge®, and synthetic humic acid) based on soil Al fractionation by single and sequential extractions. Though the organic compost amendments increased total Al in soil, they alleviated Al potential toxicity in acidic soil by increasing soil pH and converting exchangeable Al to organically bound and other noncrystalline fractions, stressing the benefits of amending composts to improve acid soil fertility. The single‐extraction method appears to be more reliable for exchangeable Al than sequential extraction because of the use of nonbuffered pH extract solution.  相似文献   

15.
Municipal solid waste (MSW) composts have been frequently used as N and C amendments to improve soil quality and to support plant growth, with the additional benefit of reducing waste disposal costs. However, attention has been paid to the risks of MSW use for the soil environment. The presence of heavy metals in MSW composts can affect some microbiological characteristics of soil such as the structure of the soil microbiota, which are responsible for the transformations making nutrients available to plants. The effects of MSW compost and mineral-N amendments in a 2-year field trial on some physical-chemical properties, some enzyme activities and the genetic diversity of cropped plots (sugar beet-wheat rotation) and uncropped plots were investigated. Variations of pH were not statistically related to MSW compost and mineral-N amendments, or to the presence of the crop. Amendment with MSW compost increased the organic C and total N contents, and dehydrogenase and nitrate reductase activities of soil. In cropped plots amended with MSW compost, dehydrogenase activity was positively correlated with #-glucosidase activity, and both enzyme activities with organic C content. No MSW compost dosage effect was detected. No effects were observed on denaturing gradient gel electrophoresis and amplified rDNA restriction analysis patterns, indicating that no significant change in the bacterial community occurred as a consequence of MSW amendment.  相似文献   

16.
Combining composts made from industrial wastes with fertilizer in amounts to equal the N requirement of wheat (Triticum aestivum L.) was done with the purpose of determining the effect of such mixtures on yield and N content. Composts made from jute mill waste (JMW) or from sugar mill wastes (SIW) were mixed with fertilizer in a loam soil so that 0, 25, 50, or 100% of the N was supplied by the compost. Each treatment except the control received the equivalent of 125 kg N/ha and 75 kg P/ha. Wheat, variety Pb 81, was grown for 6 months. The 50% compost:50% fertilizer combinations were equal to or better than the 100% complete fertilizer treatment in terms of grain yield. The synergistic response from the compost-fertilizer treatment may have been the result of other ingredients in the compost such as micronutrients or organic matter. These data demonstrate that composts can substitute for a portion of mineral fertilizer which may result in a savings for farmers.  相似文献   

17.
  【目的】  化肥及畜禽粪便的不合理施用不仅影响作物增产,还严重威胁土壤健康和环境安全。探究不同发酵方式猪粪有机肥及有机肥替代化肥的比例对夏玉米氮素吸收及土壤碳、氮含量的影响,为规模化养猪场粪便快速处理,及制定其与化肥的适宜配比提供理论依据。  【方法】  以‘先玉335’为供试材料,在中国农业大学丰宁动物试验基地进行田间试验。设置5个处理:不施肥 (CK),100%化肥氮 (CF),100%自然堆肥猪粪氮 (PM),100%好氧发酵猪粪氮 (PC),50%好氧发酵猪粪氮 + 50%化肥氮 (FM)。分析猪粪不同发酵方式及有机氮替代比例对夏玉米氮素吸收及土壤碳氮的影响。  【结果】  在等氮条件下,与CF处理相比,FM处理产量、穗粒数、千粒重均以FM处理最高,其中FM处理显著增产13.2%,PC、PM处理与CF处理差异均不显著。FM处理玉米氮素积累量最高,两年平均为304.6 kg/hm2,较CF处理氮素累积量显著提高15.5%;PC、PM处理与CF处理氮素积累量差异不显著。与CF 处理相比,FM处理的氮素当季回收率、氮素农学利用率和偏生产力两年平均分别显著提高85.9%、59.5%和13.2% (P < 0.05),PC、PM处理与CF 处理之间无显著差异。在玉米拔节期和抽穗期,FM处理0—40 cm土壤无机氮含量均最高,与 CF 无显著差异;在成熟期,FM处理土壤无机氮含量较CF处理显著增加41.8%,而PC和PM处理与CF处理无显著差异。此外,施用有机肥可不同程度地增加土壤有机碳和全氮含量,与CF处理相比,PC和FM处理使有机碳含量分别显著提高13.3%和9.8%;FM处理土壤全氮含量显著提高33.4%。  【结论】  在等氮条件下与单施化肥相比,50%好氧发酵猪粪氮 + 50%化肥氮配施不仅显著提高了夏玉米产量和氮素累积吸收量,还提升了土壤全氮和有机碳含量以及0—40 cm土层土壤无机氮含量。单独施用自然堆肥、好氧发酵猪粪及化肥在产量和氮素积累方面没有显著差异,但可增加土壤全氮和有机碳含量,有利于土壤培肥,而施用好氧发酵猪粪的效果又优于施用自然堆肥。  相似文献   

18.
Continuous cultivation has been known to decrease soil organic matter content. Application of organic matter to cultivated soil is an important practice from the point of view of maintaining an adequate amount of soil organic matter. Soil organic matter content significantly affects soil microbial activity, which is an important index of soil quality. In this study, a field experiment was conducted to examine the long-term effects of different kinds of organic matter in combination with inorganic nitrogen (N) fertilizer on chemical and biological properties of soils. There were seven treatments, namely (1) CK (without fertilization), (2) Chem-N (applying chemical N fertilizer only), (3) Comp (applying compost with the same rate of N as the Chem-N treatment), (4) Comp + l/3 N (applying compost complemented with 33% of the chemical N fertilizer of the Chem-N treatment), (5) Comp + 2/3 N (applying compost complemented with 66% of the chemical N fertilizer of the Chem-N treatment), (6) GM + 1/3 N (applying green manure complemented with 33% of the chemical N fertilizer of the Chem-N treatment) and (7) Peat + 1/3 N (applying peat complemented with 33% of the chemical N fertilizer of the Chem-N treatment). After continuous treatment for 12 years and with cultivation of 24 crops on the same area, soils were sampled for analyses of chemical and biological properties, enzymatic activities and phospholipid fatty acid (PLFA) profiles. The results showed that compared with CK and Chem-N treatments, applications of compost and peat increased soil organic carbon (SOC) content and altered microbial activities and microbial community structure. However, application of green manure for 12 years had no effect on SOC content. Both microbial activities and PLFA profiles were clearly dependent on the characteristics of the applied organic amendments. In summary, a peat application led to the highest increase in SOC content compared to compost and green manure; however, compost-treated soil had a higher microbial population and higher microbial and enzyme activities, while the effects of both green manure and chemical N fertilizer on soil properties were similar.  相似文献   

19.
The effects of organic amendments (10 and 50 g/kg soil of yard waste, yard + municipal waste, GreenEdge, and synthetic humic acid) on soil chemical properties related to aluminum (Al) phytotoxicity and nutrient availability were evaluated. Compost amendment increased Mehlich 3–extractable calcium (Ca), magnesium (Mg), phosphorus (P), and potassium (K) in the soil by 3.5–260 times. No significant effect of composts on total Al in solution was observed. Organic amendments increased solution pH and decreased the activities of phytotoxic Al species to less than the critical levels, as a result of the formation of aluminate and humic acid–Al complexes. Low‐molecular‐weight organic acids were not effective in forming complexes with Al. Application of composts increased the concentrations of most nutrients in soil solution, suggesting a potential for ameliorating subsoil, but care must be taken to avoid nitrogen (N) and P leaching. Amending composts to acidic soils appears a useful strategy for diminishing Al phytotoxicity potential and improving soil fertility.  相似文献   

20.
Organic carbon sustainability in a gravelly calcareous soil is a great challenge under the humid conditions of south Florida. The beneficial effects of compost utilization on soil fertility prompted an investigation on (i) accumulation of total organic carbon and (ii) the soil organic carbon (SOC) in humin, humic acid (HA) and fulvic acid (FA) fractions in a gravelly calcareous soil amended with composts or inorganic fertilizer. In 1996 and 1998, compost from municipal solid waste (MSW) (100% MSW), Bedminster cocompost (75% MSW and 25% biosolids) and biosolids compost (100% biosolids) at 72, 82.7 and 15.5 Mg ha?1, respectively, were each incorporated in soil beds and inorganic fertilizer (6-2.6-10) NPK at 2.8 Mg ha?1. A control (no amendment) treatment was also included. Total organic carbon and various fractions of soil organic carbon were determined in two depths (0-10 and 10-22 cm) for both soil particles (< 2mm) and pebbles (> 2mm). Inorganic and organic soil amendments had decreased soil pH and increased soil electrical conductivity (EC) 19 months from initial application. Total organic carbon contents in soil particle were 4-, 3-, and 2-fold higher in MSW compost, Bedminster cocompost and biosolids compost treatments, respectively, than those in fertilizer treated or non-treated soils. MSW compost increased total organic carbon in pebbles by 4- and 3-fold in the 0-10 and 10-22 cm deep layers, respectively, more than other treatments. The soil organic carbon accumulation decreased with depth in all treatments in soil particles, but did not in pebbles. Amending soils with MSW compost significantly increased the organic carbon in humin, HA and FA fractions more than those treated with inorganic fertilizer or non-amended. MSW compost has a potential to be used as a soil amendment to increase and sustain the organic carbon in calcareous soils of south Florida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号