首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
An electron spin resonance (ESR)-based method was used for evaluating the levels of radical formation during mashing and in sweet wort. The method included the addition of 5% (v/v) ethanol together with the spin trap alpha-4-pyridyl(1-oxide)- N- tert-butylnitrone (POBN) to wort, followed by monitoring the rate of formation of POBN spin adducts during aerobic heating of the wort. The presence of ethanol makes the spin trapping method more selective and sensitive for the detection of highly reactive radicals such as hydroxyl and alkoxyl radicals. Samples of wort that were collected during the early stages of the mashing process gave higher rates of spin adduct formation than wort samples collected during the later stages. The lower oxidative stability of the early wort samples was confirmed by measuring the rate of oxygen consumption during heating of the wort. The addition of Fe(II) to the wort samples increased the rate of spin adduct formation, whereas the addition of Fe(II) during the mashing had no effect on the oxidative stability of the wort samples. Analysis of the iron content in the sweet wort samples demonstrated that iron added during the mashing had no effect on the iron level in the wort. The moderate temperatures during the early steps of mashing allow the endogenous malt enzymes to be active. The potential antioxidative effects of different redox-active enzymes during mashing were tested by measuring the rate of spin adduct formation in samples of wort. Surprisingly, a high catalase dosage caused a significant, 20% reduction of the initial rate of radical formation, whereas superoxide dismutase had no effect on the oxidation rates. This suggests that hydrogen peroxide and superoxide are not the only intermediates that play a role in the oxidative reactions occurring during aerobic oxidation of sweet wort.  相似文献   

2.
The use of labeled nonenal enabled the demonstration that the appearance of the cardboard flavor in finished beer comes from lipid auto-oxidation during wort boiling and not from lipoxygenasic activity during mashing. Free trans-2-nonenal produced by linoleic acid auto-oxidation in the kettle disappears, owing to retention by wort amino acids and proteins. This binding linkage protects trans-2-nonenal from yeast reduction but is reversible, allowing release of the compound at lower pH during aging. Labeled trans-2-nonenal is detected after aging when deuterated precursors form in the boiling kettle. The amount of alkenal released correlates with the concentration of reversible associations in the pitching wort. This work brings new illumination to the formation of trans-2-nonenal and overturns many previous hypotheses. It also explains why a reduction in the beer pH intensifies the cardboard flavor.  相似文献   

3.
Barley lipid transfer protein (LTP1) is a heat-stable and protease-resistant albumin that concentrates in beer, where it participates in the formation and stability of beer foam. Whereas the barley LTP1 does not display any foaming properties, the corresponding beer protein is surface-active. Such an improvement is related to glycation by Maillard reactions on malting, acylation on mashing, and structural unfolding on brewing. The structural stability of purified barley and glycated malt LTP1 toward heating has been analyzed. Whatever the modification, lipid adduction or glycation, barley LTP1s are highly stable proteins that resisted temperatures up to 100 degrees C. Unfolding of LTP1 occurred only when heating was conducted in the presence of a reducing agent. In the presence of sodium sulfite, the lipid-adducted barley and malt LTP1 displayed higher heat stability than the nonadducted protein. Glycation had no or weak effect on heat-induced unfolding. Finally, it was shown that unfolding occurred on wort boiling before fermentation and that the reducing conditions are provided by malt extract.  相似文献   

4.
Although hardly any polyunsaturated fatty acids (PUFAs) are present in the endproduct, the ingredients used for the production of beer contain a high concentration of PUFAs, such as linolic and linolenic acid. These compounds are readily oxidized, resulting in the formation of lipid-derived products that reduce the taste and quality of beer enormously. During mashing relatively high amounts of PUFAs are exposed to atmospheric oxygen at a relatively high temperature. This makes mashing a critical step in the brewing process with regard to the formation of lipid-derived off-taste products. F1 phytoprostane (PPF1) changes in antioxidant capacity and monohydroxy fatty acids (OH-FAs) were used as markers for the detection of oxidative damage to fatty acids during mashing. The pattern of OH-FA formation indicates that enzymatic oxidation of PUFAs is more important than nonenzymatic oxidation during the mashing process. Nevertheless, substantial nonenzymatic radical formation is evident from the increase of specific OH-FAs and PPF1s. It was found that a low oxygen tension reduces oxidative damage and gives a high antioxidant capacity of the mashing mixture. This indicates that mashing should be done under low oxygen pressure.  相似文献   

5.
Chill-haze formation during beer production is known to involve polyphenols that interact with proline-rich proteins. We hypothesized that incubating beer wort with a proline-specific protease would extensively hydrolyze these proline-rich proteins, yielding a peptide fraction that is unable to form a haze. Predigestion of the proline-rich wheat gliadin with different proteases pointed toward a strong haze-suppressing effect by a proline-specific enzyme. This finding was confirmed in small-scale brewing experiments using a recently identified proline-specific protease with an acidic pH optimum. Subsequent pilot plant trials demonstrated that, upon its addition during the fermentation phase of beer brewing, even low levels of this acidic enzyme effectively prevented chill-haze formation in bottled beer. Results of beer foam stability measurements indicated that the enzyme treatment leaves the beer foam almost unaffected. In combination with the enzyme's cost-effectiveness and regulatory status, these preliminary test results seem to favor further industrial development of this enzymatic beer stabilization method.  相似文献   

6.
Although lipid autoxidation in the boiling kettle is a key determinant of the cardboard flavor of aged beers, recent results show that mashing is another significant source of wort nonenal potential, the well-known indicator of how a beer will release (E)-2-nonenal during storage. Although unstable, deuterated (E)-2-nonenal nitrogen adducts created during mashing can in some cases partially persist in the pitching wort, to release deuterated (E)-2-nonenal during beer aging. In the experiment described here, the relative contributions of mashing and boiling were estimated at 30 and 70%, respectively. The presence of oxygen during mashing and, to a lesser extent, high lipoxygenase activity can intensify the stale cardboard flavor.  相似文献   

7.
The fates of more than 300 pesticide residues were investigated in the course of beer brewing. Ground malt artificially contaminated with pesticides was brewed via steps such as mashing, boiling, and fermentation. Analytical samples were taken from wort, spent grain, and beer produced at certain key points in the brewing process. The samples were extracted and purified with the QuEChERS (Quick Easy Cheap Effective Rugged and Safe) method and were then analyzed by LC-MS/MS using a multiresidue method. In the results, a majority of pesticides showed a reduction in the unhopped wort and were adsorbed onto the spent grain after mashing. In addition, some pesticides diminished during the boiling and fermentation. This suggests that the reduction was caused mainly by adsorption, pyrolysis, and hydrolysis. After the entire process of brewing, the risks of contaminating beer with pesticides were reduced remarkably, and only a few pesticides remained without being removed or resolved.  相似文献   

8.
In beer, the development of a solvent-like stale flavor is associated with the formation of furfuryl ethyl ether. The synthesis rate of this important flavor compound is proportional to the concentration of furfuryl alcohol in beer. This study shows that furfuryl alcohol in beer is mainly formed by Maillard reactions initiated during wort boiling and malt production. A mechanism for its formation from alpha-(1,4)-oligoglucans and amino acids in wort and beer is proposed. During wort boiling, a quadratic relationship was found between the wort extract concentration, on the one hand, and the increase of furfuryl alcohol and furfural, on the other. The reduction of furfural by yeast during fermentation further increases the furfuryl alcohol content. In pale beers, the furfuryl alcohol concentration is essentially determined by the thermal load on wort during brewing operations. In dark beers, a considerable fraction of furfuryl alcohol may, however, come from the dark malts used. These results lead to important practical conclusions concerning the control over furfuryl ethyl ether in beer.  相似文献   

9.
Volatile phenols have long been recognized as important flavor contributors to the aroma of various alcoholic beverages. The two main flavor-active volatile phenols in beer are 4-vinylguaiacol and 4-vinylphenol. They are the decarboxylation products of the precursors ferulic acid and p-coumaric acid, respectively, which are released during the brewing process, mainly from malt. In this study, the variability in the release of free and ester-bound hydroxycinnamic acids from nine malted barley ( Hordeum vulgare L.) varieties during wort production was investigated. A large variability between different barley malts and their corresponding worts was observed. Differences were also found between free ferulic acid levels from identical malt varieties originating from different malt houses. During mashing, free hydroxycinnamic acids in wort are both water-extracted and enzymatically released by cinnamoyl esterase activity. Esterase activities clearly differ between different barley malt varieties. Multiple linear regression analysis showed that the release of ferulic acid during mashing did not depend only on the barley malt esterase activity but also on the amount of ester-bound ferulic acid initially present in the wort and on its endoxylanase activity. The study demonstrates the importance of selecting a suitable malt variety as the first means of controlling the final volatile phenol levels in beer.  相似文献   

10.
The release of ferulic acid and the subsequent thermal or enzymatic decarboxylation to 4-vinylguaiacol are inherent to the beer production process. Phenolic, medicinal, or clove-like flavors originating from 4-vinylguaiacol frequently occur in beer made with wheat or wheat malt. To evaluate the release of ferulic acid and the transformation to 4-vinylguaiacol, beer was brewed with different proportions of barley malt, wheat, and wheat malt. Ferulic acid as well as 4-vinylguaiacol levels were determined by HPLC at several stages of the beer production process. During brewing, ferulic acid was released at the initial mashing phase, whereas moderate levels of 4-vinylguaiacol were formed by wort boiling. Higher levels of the phenolic flavor compound were produced during fermentations with brewery yeast strains of the Pof(+) phenotype. In beer made with barley malt, ferulic acid was mainly released during the brewing process. Conversely, 60-90% of ferulic acid in wheat or wheat malt beer was hydrolyzed during fermentation, causing higher 4-vinylguaiacol levels in these beers. As cereal enzymes are most likely inactivated during wort boiling, the additional release of ferulic acid during fermentation suggests the activity of feruloyl esterases produced by brewer's yeast.  相似文献   

11.
The influence of malting and brewing processes on the chemical and structural modifications occurring on LTP1 was investigated by mass spectrometry and circular dichroism. Proteins were first purified from malt, and samples were collected at various steps of beer processing performed on two barley cultivars. The levels of LTP1 found in malt were not significantly different from the amounts in barley seed. However, in malt, both LTP1b, a post-translational form of LTP1, and a third isoform named LTP1c were isolated. Moreover, both of these proteins were found to be heterogeneously glycated but still exhibited an alpha-helix structure. Both glycated LTP1 and LTP1b were recovered during mashing. It was also shown that glycated LTP1 was unfolded during heat treatment of wort boiling, which is in agreement with the denatured form previously isolated from beer.  相似文献   

12.
Over a 4 month brewing process, the fate of three fungicides, myclobutanil, propiconazole, and nuarimol, was studied in the spent grain, brewer wort, and final beer product. Only the residual level of myclobutanil after the mashing step was higher than its maximum residue limit (MRL) on barley. A substantial fraction was removed with the spent grain in all cases (26-42%). The half-life times obtained for the fungicides during storage of the spent grains ranged from 82 to 187 days. No significant influence of the boiling stage on the decrease of the fungicide residues was demonstrated. During fermentation, the content reduction varied from 20 to 47%. After the lagering and filtration steps, no significant decrease (<10%) was observed in any of the residues. Finally, during storage of the beer (3 months), the amounts of fungicides fell by 25-50% of their respective concentrations in the finished beer.  相似文献   

13.
Beer consumers demand satisfactory and consistent foam stability; thus, it is a high priority for brewers. Beer foam is stabilized by the interaction between certain beer proteins, including lipid transfer protein 1 (LTP1), and isomerized hop alpha-acids, but destabilized by lipids. In this study it was shown that the wort boiling temperature during the brewing process was critical in determining the final beer LTP1 content and conformation. LTP1 levels during brewing were measured by an LTP1 ELISA, using antinative barley LTP1 polyclonal antibodies. It was observed that the higher wort boiling temperatures ( approximately 102 degrees C), resulting from low altitude at sea level, reduced the final beer LTP1 level to 2-3 microg/mL, whereas the lower wort boiling temperatures ( approximately 96 degrees C), resulting from higher altitudes (1800 m), produced LTP1 levels between 17 and 35 microg/mL. Low levels of LTP1 in combination with elevated levels of free fatty acids (FFA) resulted in poor foam stability, whereas beer produced with low levels of LTP1 and FFA had satisfactory foam stability. Previous studies indicated the need for LTP1 denaturing to improve its foam stabilizing properties. However, the results presented here show that LTP1 denaturation reduces its ability to act as a binding protein for foam-damaging FFA. These investigations suggest that wort boiling temperature is an important factor in determining the level and conformation of LTP1, thereby favoring satisfactory beer foam stability.  相似文献   

14.
Potential antioxidants in beer assessed by ESR spin trapping   总被引:5,自引:0,他引:5  
A number of potential antioxidants have been evaluated for their effect on formation of radicals in beer using the electron spin resonance (ESR) lag phase method. Sulfite was found to be the only compound that was able to delay the formation of radicals, whereas phenolic compounds such as phenolic acids, catechin, epicatechin, and proanthocyanidin dimers had no effect on the formation of radicals. Ascorbate, cystein, and cysteamin were on the other hand found to be prooxidants. It is suggested that antioxidants must be able to either scavenge peroxides or trap metal ions in order to be effective in beer. The effectiveness of sulfite is suggested to be a consequence of its two-electron nonradical producing reaction with peroxides.  相似文献   

15.
The effect of lipids on the formation of the Strecker aldehyde phenylacetaldehyde during wort boiling was studied to determine the role that small changes in the lipid content of the wort have in the production of significant flavor compounds in beer. Wort was treated with 0-2.77 mmol per liter of glucose, linoleic acid, or 2,4-decadienal and heated at 60-98 degrees C for 1 h. After this time, the amount of the Strecker aldehyde phenylacetaldehyde increased in the samples treated with linoleic acid or decadienal but not in the samples treated with glucose. Thus, the amount of phenylacetaldehyde produced in the presence of linoleic acid was 1.1-2.5 times the amount of the Strecker aldehyde produced in the control wort, and this amount increased to 3.6-4.6 times when decadienal was employed. The higher reactivity of decadienal than linoleic acid for this reaction decreased with temperature and was related to the oxidation of linoleic acid that occurred to a higher extent at higher temperatures. The above results suggest that lipids can contribute to the formation of Strecker aldehydes during wort boiling and that changes in the lipid content of the wort will produce significant changes in the formation of Strecker aldehydes in addition to other well-known consequences in beer quality and yeast metabolism. On the other hand, because of the high glucose content in wort, small changes in its content are not expected to affect the amount of Strecker aldehydes produced.  相似文献   

16.
About 30% of the polyphenols in wort and beer derive from hop, but little is yet known about their nutritional impact. The recent discovery of trans-resveratrol and piceid isomers in hop opens new doors to understanding beer health benefits. In the present work, resveratrol was quantified by HPLC-APCI-MS/MS in pellets from 9 different cultivars. Concentrations ranging from 4 to 9 mg/kg trans-piceid, from 2 to 6 mg/kg cis-piceid, and up to 1 mg/kg trans-resveratrol were detected. As previously shown for total polyphenols and flavonoids, the lower the alpha-acid content, the higher the total stilbene content.  相似文献   

17.
Recently, it was reported that furfuryl ethyl ether is an important flavor compound indicative of beer storage and aging conditions. A study of the reaction mechanism indicates that furfuryl ethyl ether is most likely formed by protonation of furfuryl alcohol or furfuryl acetate followed by S(N)2-substitution of the leaving group by the nucleophilic ethanol. For the reaction in beer, a pseudo-first-order reaction kinetics was derived. A close correlation was found between the values predicted by the kinetic model and the actual furfuryl ethyl ether concentration evolution during storage of beer. Furthermore, 10 commercial beers of different types, aged during 4 years in natural conditions, were analyzed, and it was found that the furfuryl ethyl ether flavor threshold was largely exceeded in each type of beer. In these natural aging conditions, lower pH, darker color, and higher alcohol content were factors that enhanced furfuryl ethyl ether formation. On the other hand, sulfite clearly reduced furfuryl ethyl ether formation. All results show that the furfuryl ethyl ether concentration is an excellent time-temperature integrator for beer storage.  相似文献   

18.
A new method for the evaluation of beer aging, based on a voltammetric analysis of beer distillates, is described. By measuring the current of both acetaldehyde and sulfite voltammetric peaks it is possible to distinguish between fresh, naturally aged, and artificially aged beers. The results obtained for the ratio of acetaldehyde and SO(2) currents correlate well with those given by an expert sensory panel. The kinetics of the combining reaction of sulfite with acetaldehyde was followed for different acetaldehyde/SO(2) molar ratios by using a programmed voltammetric procedure. The formation of an acetaldehyde-sulfite adduct is rapid, and the reaction equilibrium is reached after 30 min, which is in accordance with the results previously obtained by other methods. This voltammetric-based approach seems to be a new attractive tool for detecting chemical equilibria of the addition of sulfite to carbonyls in beer model systems.  相似文献   

19.
The development of a selected starter culture on malting barley and its effects on malt quality aspects were studied. Application of Rhizopus sporangiospores in a malting process resulted in increased beta-glucanase and xylanase contents of the malting barley and improved starchy endosperm cell-wall degradation. Activation of the sporangiospores and optimization of the inoculation procedure led to a further increase in enzyme levels and to larger and more consistent impacts on cell-wall modification. Whereas the main effect of the starter culture on beta-glucan degradation was observed during malting, a further decrease in beta-glucan during mashing suggests that the microbial enzymes that survived the kilning step were active during mashing. Other quality aspects that were influenced by the starter culture activity were protein modification, wort color, and wort pH. The level of microbial enzymes produced was related to the amount of barley kernels infected with the starter culture.  相似文献   

20.
Influence of malt roasting on the oxidative stability of sweet wort was evaluated based on radical intensity, volatile profile, content of transition metals (Fe and Cu) and thiols. Malt roasting had a large influence on the oxidative stability of sweet wort. Light sweet worts were more stable with low radical intensity, low Fe content, and ability to retain volatile compounds when heated. At mild roasting, the Fe content in the wort increased but remained close to constant with further roasting. Dark sweet worts were less stable with high radical intensities, high Fe content, and a decreased ability to retain volatiles. Results suggested that the Maillard reaction compounds formed during the roasting of malt are prooxidants in sweet wort. A thiol-removing capacity was observed in sweet wort, and it was gradually inhibited by malt roasting. It is possibly caused by thiol oxidizing enzymes present in the fresh malt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号