首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated changes in the Atlantic Forest landscape over the last 40 years based on changes in boundaries and mosaics, including the hypothetical landscape resulting from the application of Brazilian laws for forest protection. Mosaics were identified as sets of land-use patches with a similar pattern of boundaries. Landscapes of different years, therefore, can be distinguished by differences in mosaics. We developed a technique to identify boundaries between patches from land-use maps using ArcGis® and to build the patch x boundary matrix required for mosaic identification by means of a factorial and cluster analysis. The mosaics were characterized by some key uses as well as by their boundaries with other land uses. The mosaics were scored for forest conservation according to five issues: landscape permeability, cover, availability, quality, and fragmentation of forest. The values were based on land use and boundary patterns. Although Brazilian laws regarding forest protection have promoted conservation and the hypothetical legal landscape has presented the highest forest habitat availability, this expansion perpetuates a boundary pattern that complicates conservation and management, thus increasing the pressure on forest patches and favoring the further fragmentation of protected forest patches. These conclusions cannot be reached by simply recording changes in land uses.  相似文献   

2.
Few studies of land-use/land-cover change provide an integrated assessment of the driving forces and consequences of that change, particularly in Africa. Our objectives were to determine how driving forces at different scales change over time, how these forces affect the dynamics and patterns of land use/land cover, and how land-use/land-cover change affects ecological properties at the landscape scale. To accomplish these objectives, we first developed a way to identify the causes and consequences of change at a landscape scale by integrating tools from ecology and the social sciences and then applied these methods to a case study in Ghibe Valley, southwestern Ethiopia. Maps of land-use/land-cover change were created from aerial photography and Landsat TM imagery for the period, 1957–1993. A method called `ecological time lines' was developed to elicit landscape-scale explanations for changes from long-term residents. Cropland expanded at twice the speed recently (1987–1993) than two decades ago (1957–1973), but also contracted rapidly between 1973–1987. Rapid land-use/land cover change was caused by the combined effects of drought and migration, changes in settlement and land tenure policy, and changes in the severity of the livestock disease, trypanosomosis, which is transmitted by the tsetse fly. The scale of the causes and consequences of land-use/land-cover change varied from local to sub-national (regional) to international and the links between causes and consequences crossed scales. At the landscape scale, each cause affected the location and pattern of land use/land cover differently. The contraction of cropland increased grass biomass and cover, woody plant cover, the frequency and extent of savanna burning, and the abundance of wildlife. With recent control of the tsetse fly, these ecological changes are being reversed. These complex patterns are discussed in the context of scaling issues and current conceptual models of land-use/land-cover change.  相似文献   

3.
In agricultural landscapes, most studies have investigated the influence of the spatial pattern of forest patches on other ecological phenomena and processes, such as animal movement and biodiversity. However, few have focused on explaining the spatial pattern of the forest patches themselves. Understanding how these patterns relate to the processes that generate them is fundamental in developing a sound theory of landscape ecology, and in devising rational management strategies. In this paper, the pattern of the overall forest patches, as well as the pattern of deciduous and coniferous patches in an agricultural landscape of Southern Quebec, Canada, were analyzed and related to landscape physical attributes and land use, using remote sensing, geographic information systems and statistical methods. Results show that the role of landscape physical attributes on forest patch pattern has been modified by land use. In the study area, coniferous or deciduous patches are not associated with a specific surface deposit. In addition, physical attributes explain only a small proportion of the abundance of conifers on past abandoned land compared with land-use factors. Physical attributes only indirectly influence the forest pattern because they strongly influence the land-use practices. Our results reveal a conifer recovery process with the abandonment of agricultural land. On past abandoned land, conifers expand with increasing stand age, mostly by invasion from neighboring coniferous patches. Spatially, coniferous patches are usually located on the margins of the overall forest patches, and they are connected to non-forest land-use types such as crop and pasture, the latter being the most important. By showing the importance of some coniferous forest types that did not exist in the precolonial forest, a new perspective emerges when landscape, especially, land-use dynamics are taken into account.  相似文献   

4.
This study investigates the relationship between soil sealing and landscape conservation in four Mediterranean regions (Athens, Barcelona, Lisbon, Rome) characterized by different patterns of urban expansion. Per-capita sealed land, a landscape conservation index and selected territorial variables were considered into a multivariate exploratory framework aimed at assessing the correlation between land-use efficiency (based on the degree of soil sealing per-capita) and the quality of suburban landscape. A population density gradient with intensity of sealed land decreasing with the distance from the central city was observed in compact urban regions such as Athens and Barcelona. A mixed urban gradient was observed in Rome and Lisbon. In all the considered cities the spatial distribution of per-capita sealed land was not correlated with the urban gradient indicating that land consumption follows place-specific patterns irrespective of landscape quality. These findings suggest that urban containment and landscape conservation are policy targets requiring environmental measures irrespective of the prevailing morphology of the urban region (compact vs dispersed). In this context, green infrastructure planning is a promising tool for landscape conservation and the containment of soil sealing within fragile and dynamic contexts such as the wildland-urban interface.  相似文献   

5.
We focused on patterns of land use in a particular satoyama landscape (Japanese traditional rural landscape, comprised of an integral social and ecological network of a village and its surroundings, such as agricultural lands, open forestlands and forests), and the effects of human activities upon them during Japan’s economic growth of the last few decades. Changes of landscape patterns and their probable causes were traced since the beginning of the 1900s to the present, and clarified. Societal, economic and technological changes, especially those that occurred after 1970, were considered the focal points from which major landscape changes developed. We compared the spatial features, patterns of land use and landscape diversities of each land unit, defined in terms of both their natural and man-made conditions for the year 1970, to those of 1995. We found land-use diversity to be strongly related to changes in the patterns of land use, with a decrease in diversity for all land units after 1970. Diversity of forest-age distribution on the other hand, increased. These changes, with the complex, changing patterns of each land unit, could be explained by differences in accessibility from the village and variations in the topography, as well as land ownership of the land units. We selected those land units found to have responded to these factors between 1970 and 1995, and classified them into four types of pattern changes, determined mainly by accessibility and topography.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

6.
Land use change is characterized by a high diversity of change trajectories depending on the local conditions, regional context and external influences. Policy intervention aims to counteract the negative consequences of these changes and provide incentives for positive developments. Region typologies are a common tool to cluster regions with similar characteristics and possibly similar policy needs. This paper provides a typology of land use change in Europe at a high spatial resolution based on a series of different scenarios of land use change for the period 2000–2030. A series of simulation models ranging from the global to the landscape level are used to translate scenario conditions in terms of demographic, economic and policy change into changes in European land use pattern. A typology developed based on these simulation results identifies the main trajectories of change across Europe: agricultural abandonment, agricultural expansion and urbanization. The results are combined with common typologies of landscape and rurality. The findings indicate that the typologies based on current landscape and ruralities are poor indicators of the land use dynamics simulated for the regions. It is advocated that typologies based on (simulated) future dynamics of land change are more appropriate to identify regions with potentially similar policy needs.  相似文献   

7.
Natural reforestation of European mountain landscapes raises major environmental and societal issues. With local stakeholders in the Pyrenees National Park area (France), we studied agricultural landscape colonisation by ash (Fraxinus excelsior) to enlighten its impacts on biodiversity and other landscape functions of importance for the valley socio-economics. The study comprised an integrated assessment of land-use and land-cover change (LUCC) since the 1950s, and a scenario analysis of alternative future policy. We combined knowledge and methods from landscape ecology, land change and agricultural sciences, and a set of coordinated field studies to capture interactions and feedback in the local landscape/land-use system. Our results elicited the hierarchically-nested relationships between social and ecological processes. Agricultural change played a preeminent role in the spatial and temporal patterns of LUCC. Landscape colonisation by ash at the parcel level of organisation was merely controlled by grassland management, and in fact depended on the farmer’s land management at the whole-farm level. LUCC patterns at the landscape level depended to a great extent on interactions between farm household behaviours and the spatial arrangement of landholdings within the landscape mosaic. Our results stressed the need to represent the local SES function at a fine scale to adequately capture scenarios of change in landscape functions. These findings orientated our modelling choices in the building an agent-based model for LUCC simulation (SMASH–Spatialized Multi-Agent System of landscape colonization by ASH). We discuss our method and results with reference to topical issues in interdisciplinary research into the sustainability of multifunctional landscapes.  相似文献   

8.
Woody invasive plants are an increasing component of the New England flora. Their success and geographic spread are mediated in part by landscape characteristics. We tested whether woody invasive plant richness was higher in landscapes with many forest edges relative to other forest types and explained land use/land cover and forest fragmentation patterns using socioeconomic and physical variables. Our models demonstrated that woody invasive plant richness was higher in landscapes with more edge forest relative to patch, perforated, and especially core forest types. Using spatially-explicit, hierarchical Bayesian, compositional data models we showed that infrastructure and physical factors, including road length and elevation range, and time-lagged socioeconomic factors, primarily population, help to explain development and forest fragmentation patterns. Our social–ecological approach identified landscape patterns driven by human development and linked them to increased woody plant invasions. Identifying these landscape patterns will aid ongoing efforts to use current distribution patterns to better predict where invasive species may occur in unsampled regions under current and future conditions.  相似文献   

9.
In the last few years, landscape researchers have sought to understand temporal and spatial patterns of landscape changes in order to develop comprehensive models of land cover dynamics. To do so, most studies have used similar methods to quantify structural patterns, usually by comparing various landscape structural indices through time. Whereas the necessity for complementary approaches which might provide insights into landscape dynamics at some finer scale relevant to local managers has been expressed, few studies have proposed alternative methodologies. Moreover, the important relationship between the physical constraints of the landscape and land use dynamics has been seldom emphasized. Here we propose a methodological outline which was applied to the study of a rural landscape of Southern Quebec, Canada, to detect spatial and temporal (1958 to 1993) patterns of land cover changes at field, patch and landscape level. We then relate these patterns to the underlying physical structure of landscape elements using GIS and canonical correspondence analyses. We use the different geomorphological deposit types as stable discriminant factors which may constrain land use.Canonical correspondence analyses showed relations of land use and land use changes to the physical attributes of the landscape elements, whereas spatial analyses revealed very dynamic patterns at finer spatial and temporal scales. They highlighted the fact that not only the physical attributes of the landscape elements but also their spatial configuration were important determinants of land use dynamics in this area. Thus more land use changes occurred at the boundary between geomorphological deposit types than in any other locations. This trend is apparent for specific small-size changes (e.g. forest to crop), but not for the large-size ones (e.g. abandoned land to forest). Although land use changes are triggered by socioeconomic forces in this area, these changes are nevertheless constrained by the underlying physical landscape structure. A thorough comprehension of historical changes will enhance our capability to predict future landscape dynamics and devise more effective landscape management strategies.  相似文献   

10.

Context

Landscape-scale studies of ecosystem services (ES) have increased, but few consider land-use history. Historical land use may be especially important in cultural landscapes, producing legacies that influence ecosystem structure, function, and biota that in turn affect ES supply.

Objectives

Our goal was to generate a conceptual framework for understanding when land-use legacies matter for ES supply in well-studied agricultural, urban, and exurban US landscapes.

Methods

We synthesized illustrative examples from published literature in which landscape legacies were demonstrated or are likely to influence ES.

Results

We suggest three related conditions in which land-use legacies are important for understanding current ES supply. (1) Intrinsically slow ecological processes govern ES supply, illustrated for soil-based and hydrologic services impaired by slowly processed pollutants. (2) Time lags between land-use change and ecosystem responses delay effects on ES supply, illustrated for biodiversity-based services that may experience an ES debt. (3) Threshold relationships exist, such that changes in ES are difficult to reverse, and legacy lock-in disconnects contemporary landscapes from ES supply, illustrated by hydrologic services. Mismatches between contemporary landscape patterns and mechanisms underpinning ES supply yield unexpected patterns of ES.

Conclusions

Today’s land-use decisions will generate tomorrow’s legacies, and ES will be affected if processes underpinning ES are affected by land-use legacies. Research priorities include understanding effects of urban abandonment, new contaminants, and interactions of land-use legacies and climate change. Improved understanding of historical effects will improve management of contemporary ES, and aid in decision-making as new challenges to sustaining cultural landscapes arise.
  相似文献   

11.
European larch (Larix decidua Mill.) forests in the Alps are cultural landscapes that have been shaped by humans for centuries through traditional management. Biological and historical data sources were employed, and a multi-scale approach was adopted to capture the influence of factors affecting the structure of these forests. Landscape and stand scale dynamics were analyzed in four watersheds (c. 13,000 ha) of the western and central Italian Alps that have experienced different land-use intensities. Observed landscape changes were generalized using path analyses developed from a common conceptual model. Stand structure and a range of environmental variables were sampled in 203 circular plots, and land use and anthropogenic variables were derived from thematic maps and aerial photographs. We used multivariate statistical analyses (ordination and SEM models) to relate forest structure, anthropogenic influences, land uses, and topography. The most commonly observed land cover transition was an expansion of forests at the expense of open areas. All studied watersheds were dominated by larch forests, but their structure and spatial pattern differed greatly. Anthropogenic variables were less important at Ventina, the least accessible site, but emerged as fundamental to explain stand structure in the other study sites. Complexity of topography and proximity to roads had influenced past human activities mainly in the most accessible sites. Regeneration density was greatest at lower elevations and closer to human settlements. Quantification of the role played by forest harvesting and cattle grazing in past centuries is critical for understanding how global change factors may influence future dynamics of mountain forests in the European Alps and similar cultural landscapes worldwide.  相似文献   

12.
13.

Context

To prevent the area of arable land from crossing the limit of 120 million ha arable land red line, China’s government proposed a linked urban–rural construction land policy. This policy helps to protect the arable land but will impact the rural landscape.

Objective

The objective is to evaluate the effect of the linked urban–rural construction land policy on rural landscape in the future.

Methods

We performed a simulation method to predict the rural landscape pattern changes in Tianjin during 2005–2020 using a cellular automata and multi-agent system model under the scenarios with or without implementing this policy. The landscape metrics were calculated for both scenarios to find the effects caused by this policy.

Results

Following this policy, the Total Area and Large Patch Index of arable land decreased slowly. 65.50% of the occupied arable land can be compensated. For rural settlements, the Mean Patch Area increased to 2.87 times that in 2005. Number of Patches reduced greatly, and 1053 of the total rural settlements distributed along the periphery of Tianjin were reclaimed for arable land during 2005–2020. Aggregation Index increased greatly.

Conclusions

According to the simulation model, the policy is effective on slowing down the loss of total arable land and the process of large arable land fragmentation. The increasing degree of aggregation of rural settlements is beneficial to the optimal allocation of resources and rural centralized management. However, as the rural settlements gather to urban construction land, they are more vulnerable to urban issues.
  相似文献   

14.
This paper provides a dynamic inter- and intra-city analysis of spatial and temporal patterns of urban land-use change. It is the first comparative analysis of a system of rapidly developing cities with landscape pattern metrics. Using ten classified Landsat Thematic Mapper images acquired from 1988 to 1999, we quantify the annual rate of urban land-use change for four cities in southern China. The classified images were used to generate annual maps of urban extent, and landscape metrics were calculated and analyzed spatiotemporally across three buffer zones for each city for each year. The study shows that for comprehensive understanding of the shapes and trajectories of urban expansion, a spatiotemporal landscape metrics analysis across buffer zones is an improvement over using only urban growth rates. This type of analysis can also be used to infer underlying social, economic, and political processes that drive the observed urban forms. The results indicate that urban form can be quite malleable over relatively short periods of time. Despite different economic development and policy histories, the four cities exhibit common patterns in their shape, size, and growth rates, suggesting a convergence toward a standard urban form.  相似文献   

15.
Larsen  Ashley E.  McComb  Sofie 《Landscape Ecology》2021,36(1):159-177
Context

Global environmental change is expected to dramatically affect agricultural crop production through a myriad of pathways. One important and thus far poorly understood impact is the effect of land cover and climate change on agricultural insect pests and insecticides.

Objectives

Here we address the following three questions: (1) how do landscape complexity and weather influence present-day insecticide use, (2) how will changing landscape characteristics and changing climate influence future insecticide use, and how do these effects manifest for different climate and land cover projections? and (3) what are the most important drivers of changing insecticide use?

Methods

We use panel models applied to county-level agriculture, land cover, and weather data in the US to understand how landscape composition and configuration, weather, and farm characteristics impact present-day insecticide use. We then leverage forecasted changes in land cover and climate under different future scenarios to predict insecticide use in 2050.

Results

We find different future scenarios—through modifications in both landscape and climate conditions—increase the amount of area treated by ~ 4–20% relative to 2017, with regionally heterogeneous impacts. Of note, we report large farms are more influential than large crop patches and increased winter minimum temperature is more influential than increased summer maximum temperature. However, our results suggest the most important determinants of future insecticide use are crop composition and farm size, variables for which future forecasts are sparse.

Conclusions

Both landscape and climate change are expected to increase future insecticide use. Yet, crop composition and farm size are highly influential, data-poor variables. Better understanding of future crop composition and farm economics is necessary to effectively predict and mitigate increases in pesticide use.

  相似文献   

16.
The north-central region of Indiana in the Midwestern United States was covered by deciduous forest, but was largely cleared for agriculture during the 1800s. The landscape has experienced tremendous change due to forest restoration, urban expansion, and reservoir construction since the early 1900s. At the same time, ecological health and environmental quality have been dramatically degraded in the region. We used simple landscape indices, such as land proportion, TE, and Shared Edge Length (SEL) between any two classes, to examine changes in the spatial patterning of six land cover types, including agriculture, grassland, closed-canopy forest, open-canopy forest, urban, and water, using aerial photographs dating from 1940 to 1998. The landscape’s domination by agriculture did not change (65% in 1940 and 57% in 1998), but there were net gains in area for closed-canopy forest (79%), urban (256%), and water (125%). Several landscape indices did not change much but SEL between closed-canopy forest and urban increased over seven fold, and SEL between water and urban increased over eight fold from 1940 to 1998. More forestlands and water bodies were exposed to human activities. The clumped pattern of forest, water, and urban in a landscape can be ecologically detrimental and should be considered in future land-use decisions.  相似文献   

17.
Deep time: the emerging role of archaeology in landscape ecology   总被引:1,自引:1,他引:0  
Given the goals of landscape ecology, information from archaeological sites provides a useful source of evidence regarding cultural practices, anthropogenic change, local conditions, and distributions of organisms at a variety of scales across both space and time. Due to the time depth available from the archaeological record, long-term processes can be studied and issues of land use legacies, human influence on landscape heterogeneity, and system histories can be addressed. Archaeological data can produce a diachronic record of past population size, population structure, biogeography, age-at-death, and migration patterns, useful for making ecosystem and wildlife management decisions. Researchers can use archaeological knowledge to differentiate between native and alien taxa, inform restoration plans, identify sustainable harvesting practices, account for modern distributions of taxa, predict future biogeographic changes, and elucidate the interplay of long- and short-term ecological processes.  相似文献   

18.
Researchers have emphasized the value of linking observed patterns of land-cover change to the processes driving changes in land-use to explain the dynamics of a land change system. The association of pattern and process requires an accurate quantification of the spatial characteristics of land-cover change. The objective of this research is to assess the impact of error on the accuracy of landscape pattern analyses performed on maps of change. Simulation was used to develop of a series of error-free and error-perturbed change maps, which varied with respect to the pattern of change occurring between the time-1 and time-2 land-cover maps and the patterns of error associated with the time-1 and time-2 land-cover maps. A variety of change and error patterns were examined. The error-free and error-perturbed change maps were compared by calculating landscape pattern metrics, which revealed the degree to which error altered the pattern of change. The introduction of error notably changed the structure of the persistent and transitioning classes, with metrics indicating a more fragmented and variable landscape under error. Agreement between the error-free and error-perturbed maps improved when a greater amount of change occurred within the time-series, change was concentrated at the boundaries of land-cover classes and when time-2 errors were increasingly correlated to their time-1 counterparts. These results have several implications for change pattern analyses given the fundamental nature of land-cover change.  相似文献   

19.
Plant invasions in the landscape   总被引:3,自引:1,他引:2  
Biological invasions and changes in land-use are two components of global change affecting biodiversity worldwide. There is overriding evidence that invasions can dramatically change the landscape and that particular land-use types facilitate invasions. Still, these issues have not formally percolated into risk analysis of biological invasions, and only recently has the influence of the surrounding landscape on invasive species spread started to be considered. In this paper we review the literature on the influence of the surrounding landscape on the local level of plant invasions (i.e., abundance and richness of alien plants in plant communities). Our review confirms that there are more alien plant species and they are more abundant at fragment edges than in the interior of fragments. The decline on the level of invasion towards the interior of fragments is sharp. To a lesser extent, there is higher invasion in small isolated fragments than in large connected patches. However, despite their relevance, the influence of connectivity and shape of the fragments have been scarcely explored. Besides the fact that a site has more invaders if surrounded by a human-dominated landscape than by a natural one, the past history and the configuration of that landscape are also important. Invasion within land-uses is often associated with the historical legacy of changes in land-use, indicating that current land-uses might represent an invasion credit to future invasions. Accurate accounts of the invasion process and effective conservation programs will depend on such considerations.  相似文献   

20.
Quantifying the spatiotemporal pattern of urbanization is necessary to understand urban morphology and its impacts on biodiversity and ecological processes, and thus can provide essential information for improving landscape and urban planning. Recent studies have suggested that, as cities evolve, certain general patterns emerge along the urban–rural gradient although individual cities always differ in details. To help better understand these generalities and idiosyncrasies in urbanization patterns, we analyzed the spatiotemporal dynamics of the Shanghai metropolitan area from 1989 to 2005, based on landscape metrics and remote sensing data. Specifically, the main objectives of our study were to quantitatively characterize the spatiotemporal patterns of urbanization in Shanghai in recent decades, identify possible spatial signatures of different land use types, and test the diffusion coalescence hypotheses of urban growth. We found that, similar to numerous cities around the world reported in previous studies, urbanization increased the diversity, fragmentation, and configurational complexity of the urban landscape of Shanghai. In the same time, however, the urban–rural patterns of several land use types in Shanghai seem unique—quite different from previously reported patterns. For most land use types, each showed a distinctive spatial pattern along a rural–urban transect, as indicated by landscape metrics. Furthermore, the urban expansion of Shanghai exhibited an outward wave-like pattern. Our results suggest that the urbanization of Shanghai followed a complex diffusion–coalescence pattern along the rural–urban transect and in time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号