首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor is an important mediator of several forms of neural and behavioral plasticity. The present studies examined whether NMDA receptors might be involved in the development of opiate tolerance and dependence, two examples of behavioral plasticity. The noncompetitive NMDA receptor antagonist MK-801 attenuated the development of tolerance to the analgesic effect of morphine without affecting acute morphine analgesia. In addition, MK-801 attenuated the development of morphine dependence as assessed by naloxone-precipitated withdrawal. These results suggest that NMDA receptors may be important in the development of opiate tolerance and dependence.  相似文献   

2.
Rat brain N-methyl-D-aspartate receptors expressed in Xenopus oocytes   总被引:9,自引:0,他引:9  
N-methyl-D-aspartate (NMDA) activates a class of excitatory amino acid receptor involved in a variety of plastic and pathological processes in the brain. Quantitative study of the NMDA receptor has been difficult in mammalian neurons, because it usually exists with other excitatory amino acid receptors of overlapping pharmacological specificities. Xenopus oocytes injected with messenger RNA isolated from primary cultures of rat brain have now been used to study NMDA receptors. The distinguishing properties of neuronal NMDA receptors have been reproduced in this amphibian cell, including voltage-dependent block by magnesium, block by the NMDA receptor antagonist D-2-amino-5-phosphonovaleric acid, and potentiation by glycine. This preparation should facilitate the quantitative study of the regulation of NMDA receptor activation and serve as a tool for purification of the encoding messenger RNA.  相似文献   

3.
Mammalian target of rapamycin (mTOR) is implicated in synaptic plasticity and local translation in dendrites. We found that the mTOR inhibitor, rapamycin, increased the Kv1.1 voltage-gated potassium channel protein in hippocampal neurons and promoted Kv1.1 surface expression on dendrites without altering its axonal expression. Moreover, endogenous Kv1.1 mRNA was detected in dendrites. Using Kv1.1 fused to the photoconvertible fluorescence protein Kaede as a reporter for local synthesis, we observed Kv1.1 synthesis in dendrites upon inhibition of mTOR or the N-methyl-d-aspartate (NMDA) glutamate receptor. Thus, synaptic excitation may cause local suppression of dendritic Kv1 channels by reducing their local synthesis.  相似文献   

4.
Ethanol inhibits NMDA-activated ion current in hippocampal neurons   总被引:44,自引:0,他引:44  
The ion current induced by the glutamate receptor agonist N-methyl-D-aspartate (NMDA) in voltage-clamped hippocampal neurons was inhibited by ethanol (EtOH). Inhibition increased in a concentration-dependent manner over the range 5 to 50 mM, a range that also produces intoxication. The amplitude of the NMDA-activated current was reduced 61 percent by 50 mM EtOH; in contrast, this concentration of EtOH reduced the amplitude of current activated by the glutamate receptor agonists kainate and quisqualate by only 18 and 15 percent, respectively. The potency for inhibition of the NMDA-activated current by several alcohols is linearly related to their intoxicating potency, suggesting that alcohol-induced inhibition of responses to NMDA receptor activation may contribute to the neural and cognitive impairments associated with intoxication.  相似文献   

5.
The deleterious effects of ethanol on the developing human brain are poorly understood. Here it is reported that ethanol, acting by a dual mechanism [blockade of N-methyl-D-aspartate (NMDA) glutamate receptors and excessive activation of GABA(A) receptors], triggers widespread apoptotic neurodegeneration in the developing rat forebrain. Vulnerability coincides with the period of synaptogenesis, which in humans extends from the sixth month of gestation to several years after birth. During this period, transient ethanol exposure can delete millions of neurons from the developing brain. This can explain the reduced brain mass and neurobehavioral disturbances associated with human fetal alcohol syndrome.  相似文献   

6.
Expression of c-fos protein in brain: metabolic mapping at the cellular level   总被引:61,自引:0,他引:61  
The proto-oncogene c-fos is expressed in neurons in response to direct stimulation by growth factors and neurotransmitters. In order to determine whether the c-fos protein (Fos) and Fos-related proteins can be induced in response to polysynaptic activation, rat hindlimb motor/sensory cortex was stimulated electrically and Fos expression examined immunohistochemically. Three hours after the onset of stimulation, focal nuclear Fos staining was seen in motor and sensory thalamus, pontine nuclei, globus pallidus, and cerebellum. Moreover, 24-hour water deprivation resulted in Fos expression in paraventricular and supraoptic nuclei. Fos immunohistochemistry therefore provides a cellular method to label polysynaptically activated neurons and thereby map functional pathways.  相似文献   

7.
[目的]研究微波对鸡胚生长发育及雏鸡认知功能的影响。[方法]采用磁控管发射2450MHz的微波来模拟微波辐射源辐射种蛋,直到雏鸡孵出后,分别采用一次性被动回避学习和RT-PCR检测微波对雏鸡的认知功能和NMDA受体NR1亚基与NR2亚基表达量的影响。[结果]微波辐射后暴露组的回避率显著低于对照组,特别在辐射强度最高组的回避率极显著低于对照组。同时暴露组有2组雏鸡体重增加,其中一组的孵化时间有所增加。经RT-PCR分析,NR2亚基表达量在第10天而及15天时都上调,NR1亚基表达量只在第15天时才下调。[结论]微波对个体发育具有一定影响,通过使端脑中NMDA受体结构组成和功能发生改变,使自身的调节能力下降,从而对认知功能有一定损害。  相似文献   

8.
NMDA antagonist neurotoxicity: mechanism and prevention.   总被引:49,自引:0,他引:49  
Antagonists of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor, including phencyclidine (PCP) and ketamine, protect against brain damage in neurological disorders such as stroke. However, these agents have psychotomimetic properties in humans and morphologically damage neurons in the cerebral cortex of rats. It is now shown that the morphological damage can be prevented by certain anticholinergic drugs or by diazepam and barbiturates, which act at the gamma-aminobutyric acid (GABA) receptor-channel complex and are known to suppress the psychotomimetic symptoms caused by ketamine. Thus, it may be possible to prevent the unwanted side effects of NMDA antagonists, thereby enhancing their utility as neuroprotective drugs.  相似文献   

9.
D Muller  M Joly  G Lynch 《Science (New York, N.Y.)》1988,242(4886):1694-1697
The contributions of two subclasses of excitatory amino acid transmitter receptors to the induction and expression of long-term potentiation (LTP) were analyzed in hippocampal slices. The quisqualate/kainate receptor antagonist DNQX (6,7-dinitro-quinoxaline-2,3-dione) blocked 85% of the evoked field potential, leaving a small response that was sensitive to D-AP5 (D-2-amino-5-phosphonopentanoate), an N-methyl-D-aspartate (NMDA) receptor blocker. This residual D-AP5-sensitive response was of comparable size in control and previously potentiated inputs. High-frequency stimulation in the presence of DNQX did not result in the development of robust LTP. Washout of the drug, however, revealed the potentiation effect. Thus NMDA-mediated responses can induce, but are not greatly affected by, LTP; non-NMDA receptors, conversely, mediate responses that are not needed to elicit LTP but that are required for its expression.  相似文献   

10.
Spatially resolved measurements of intracellular free calcium and of the changes produced by excitatory amino acids were made in neurons isolated from adult mammalian brain. Extremely long-lasting (minutes) Ca2+ gradients were induced in the apical dendrites of hippocampal CA1 neurons after brief (1 to 3 seconds), local application of either glutamate or N-methyl-D-aspartate (NMDA). These gradients reflect the continuous flux of Ca2+ into the dendrite. The sustained gradients, but not the immediate transient response to the agonists, were prevented by prior treatment with the protein kinase C inhibitor sphingosine. Expression of the long-lasting Ca2+ gradients generally required a priming or conditioning stimulus with the excitatory agonist. The findings demonstrate a coupling between NMDA receptor activation and long-lasting intracellular Ca2+ elevation that could contribute to certain use-dependent modifications of synaptic responses in hippocampal CA1 neurons.  相似文献   

11.
邢瑞  车轶  崔勇华  徐世清 《安徽农业科学》2011,(17):10464-10467
[目的]研究微波对鸡胚生长发育及雏鸡认知功能的影响。[方法j采用磁控管发射2450MHz的微波来模拟微波辐射源辐射种蛋,直到雏鸡孵出后,分别采用一次性被动回避学习和RT—PCR检测微波对雏鸡认知功能和NMDA受体NRl亚基与NR2亚基表达量的影响。f结果]微波辐射后,暴露组的回避率显著低于对照组,特别在辐射强度最高组的回避率极显著低于对照组。同时暴露组有2组雏鸡体重增加,其中一组的孵化时间有所增加。经RT—PCR分析,NR2亚基表达量在第lO天及15天时都上调,NRl亚基表达量只在第15天时才下调。[结论]微波对个体发育具有一定影响,通过使端脑中NMDA受体结构组成和功能发生改变,使自身的调节能力下降,从而对认知功能有一定损害。  相似文献   

12.
Experiments with vesicles containing N-methyl-D-aspartate (NMDA) receptor 2B (NR2B subunit) show that they are transported along microtubules by KIF17, a neuron-specific molecular motor in neuronal dendrites. Selective transport is accomplished by direct interaction of the KIF17 tail with a PDZ domain of mLin-10 (Mint1/X11), which is a constituent of a large protein complex including mLin-2 (CASK), mLin-7 (MALS/Velis), and the NR2B subunit. This interaction, specific for a neurotransmitter receptor critically important for plasticity in the postsynaptic terminal, may be a regulatory point for synaptic plasticity and neuronal morphogenesis.  相似文献   

13.
Dominant mutations in superoxide dismutase cause amyotrophic lateral sclerosis (ALS), a progressive paralytic disease characterized by loss of motor neurons. With the use of mice carrying a deletable mutant gene, expression within motor neurons was shown to be a primary determinant of disease onset and of an early phase of disease progression. Diminishing the mutant levels in microglia had little effect on the early disease phase but sharply slowed later disease progression. Onset and progression thus represent distinct disease phases defined by mutant action within different cell types to generate non-cell-autonomous killing of motor neurons; these findings validate therapies, including cell replacement, targeted to the non-neuronal cells.  相似文献   

14.
The possibility that neuronal damage due to hypoglycemia is induced by agonists acting on the N-methyl-D-aspartate (NMDA) receptor was investigated in the rat caudate nucleus. Local injections of an NMDA receptor antagonist, 2-amino-7-phosphonoheptanoic acid, were performed before induction of 30 minutes of reversible, insulin-induced, hypoglycemic coma. Neuronal necrosis in these animals after 1 week of recovery was reduced 90 percent compared to that in saline-injected animals. The results suggest that hypoglycemic neuronal damage is induced by NMDA receptor agonists, such as the excitatory amino acids or related compounds.  相似文献   

15.
In neurons, individual dendritic spines isolate N-methyl-d-aspartate (NMDA) receptor-mediated calcium ion (Ca2+) accumulations from the dendrite and other spines. However, the extent to which spines compartmentalize signaling events downstream of Ca2+ influx is not known. We combined two-photon fluorescence lifetime imaging with two-photon glutamate uncaging to image the activity of the small guanosine triphosphatase Ras after NMDA receptor activation at individual spines. Induction of long-term potentiation (LTP) triggered robust Ca2+-dependent Ras activation in single spines that decayed in approximately 5 minutes. Ras activity spread over approximately 10 micrometers of dendrite and invaded neighboring spines by diffusion. The spread of Ras-dependent signaling was necessary for the local regulation of the threshold for LTP induction. Thus, Ca2+-dependent synaptic signals can spread to couple multiple synapses on short stretches of dendrite.  相似文献   

16.
Despite its implications for higher order functions of the brain, little is currently known about the molecular basis of left-right asymmetry of the brain. Here we report that synaptic distribution of N-methyl-D-aspartate (NMDA) receptor GluRepsilon2 (NR2B) subunits in the adult mouse hippocampus is asymmetrical between the left and right and between the apical and basal dendrites of single neurons. These asymmetrical allocations of epsilon2 subunits differentiate the properties of NMDA receptors and synaptic plasticity between the left and right hippocampus. These results provide a molecular basis for the structural and functional asymmetry of the mature brain.  相似文献   

17.
The N-methyl-D-aspartate (NMDA) class of excitatory amino acid receptors regulates the strength and stability of excitatory synapses and appears to play a major role in excitotoxic neuronal death associated with stroke and epilepsy. The conductance increase gated by NMDA is potentiated by the amino acid glycine, which acts at an allosteric site tightly coupled to the NMDA receptor. Indole-2-carboxylic acid (I2CA) specifically and competitively inhibits the potentiation by glycine of NMDA-gated current. In solutions containing low levels of glycine, I2CA completely blocks the response to NMDA, suggesting that NMDA alone is not sufficient for channel activation. I2CA will be useful for defining the interaction of glycine with NMDA receptors and for determining the in vivo role of glycine in excitotoxicity and synapse stabilization.  相似文献   

18.
The histochemical reaction for phosphorylase is completely lost from anterior horn neurons rich in phosphorylase within 72 hours after proximal or distal axonal section. Using this new type of axonal reaction as a marking technique in the anterior horn of the seventh lumbar spinal cord segment of the cat, we demonstrated that (i) alpha motor neurons of slow twitch motor units, like those of fast twitch motor units, are rich in phosphorylase and poor in succinate dehydrogenase, and (ii) interneurons and Renshaw neurons are rich in succinate dehydrogenase and poor in phosphorylase. Gamma motor neurons, because of their small size, are considered to be rich in succinate dehydrogenase and poor in phosphorylase. Thus, anterior horn neurons capable of higher firing frequencies (Renshaw neurons, interneurons, and gamma motor neurons) are richer in mitochondrial oxidative enzyme activity as marked by succinate dehydrogenase. Those firing at lower frequencies (both types of alpha motor neurons) are richer in phosphorylase activity and glycogen content and, thus, apparently better equipped for anaerobic glycolysis.  相似文献   

19.
The striatum, which is the major component of the basal ganglia in the brain, is regulated in part by dopaminergic input from the substantia nigra. Severe movement disorders result from the loss of striatal dopamine in patients with Parkinson's disease. Rats with lesions of the nigrostriatal dopamine pathway caused by 6-hydroxydopamine (6-OHDA) serve as a model for Parkinson's disease and show alterations in gene expression in the two major output systems of the striatum to the globus pallidus and substantia nigra. Striatopallidal neurons show a 6-OHDA-induced elevation in their specific expression of messenger RNAs (mRNAs) encoding the D2 dopamine receptor and enkephalin, which is reversed by subsequent continuous treatment with the D2 agonist quinpirole. Conversely, striatonigral neurons show a 6-OHDA-induced reduction in their specific expression of mRNAs encoding the D1 dopamine receptor and substance P, which is reversed by subsequent daily injections of the D1 agonist SKF-38393. This treatment also increases dynorphin mRNA in striatonigral neurons. Thus, the differential effects of dopamine on striatonigral and striatopallidal neurons are mediated by their specific expression of D1 and D2 dopamine receptor subtypes, respectively.  相似文献   

20.
Receptors for N-methyl-D-aspartate (NMDA) are involved in many plastic and pathological processes in the brain. Glycine has been reported to potentiate NMDA responses in neurons and in Xenopus oocytes injected with rat brain messenger RNA. Glycine is now shown to be absolutely required for activation of NMDA receptors in oocytes. In voltage-clamped oocytes, neither perfusion nor rapid pressure application of NMDA onto messenger RNA-injected oocytes caused a distinct ionic current without added glycine. When glycine was added, however, NMDA evoked large inward currents. The concentration of glycine required to produce a half-maximal response was 670 nanomolar, and the glycine dose-response curve extrapolated to zero in the absence of glycine. Several analogs of glycine could substitute for glycine, among which D-serine and D-alanine were the most effective. The observation that D-amino acids are effective will be important in developing drugs targeted at the glycine site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号