首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Azolla spp. and Sesbania spp. can be used as green manure crops for wetland rice. A long-term experiment was started in 1985 to determine the effects of organic and urea fertilizers on wetland rice yields and soil fertility. Results of 10 rice croppings are reported. Azolla sp. was grown for 1 month and then incorporated before transplanting the rice and 3–4 weeks after transplanting the rice. Sesbania rostrata was grown for 7–9 weeks and incorporated only before transplanting the rice. Sesbania sp. grew more poorly before dry season rice than before wet season rice. Aeschynomene afraspera, which was used in one dry season rice trial, produced a larger biomass than the Sesbania sp. The quantity of N produced by the Azolla sp. ranged from 70 to 110 kg N ha-1. The Sesbania sp. produced 55–90 kg N ha-1 in 46–62 days. Rice grain yield increases in response to the green manure were 1.8–3.9 t ha-1, similar to or higher than that obtained in response to the application of 60 kg N ha-1 as urea. Grain production per unit weight of absorbed N was lower in the green manure treatments than in the urea treatment. Without N fertilizer, N uptake by rice decreased as the number of rice crops increased. For similar N recoveries, Sesbania sp. required a lower N concentration than the Azolla sp. did. Continuous application of the green manure increased the organic N content in soil on a dry weight basis, but not on a area basis, because the application of green manure decreased soil bulk density. Residual effects in the grain yield and N uptake of rice after nine rice crops were found with a continuous application of green manure but not urea.  相似文献   

2.
Summary We tested the response of the wetland rice cultivar Prakash to inoculation with ten vescular-arbucular mycorrhizal (VAM) fungi (three selected from the first screening and seven isolated from local paddy fields) in a pot experiment under flooded conditions in order to select the most efficient mycorrhizal fungi to inoculate the rice nursery. A sandy clay loam soil was used as the substrate, fertilized with the recommended N and K levels (100 kg N ha–1 as ammonium sulphate and 50 kg K ha–1 as muriate of potash) and half the recommended level of P (25 kg ha–1 as super phosphate). The inoculation was made into dry nursery beds and the beds were flooded when the seedlings were about 25 cm high, in 15 days. Twenty-eight-day old seedlings were transferred to pots filled with well puddled soil flooded with 5 cm of standing water. Based on the increase in grain yield and total biomass, Glomus intraradices and Acaulospora sp. were considered efficient and suitable for inoculation into rice nurseries.  相似文献   

3.
Summary The influence of three inoculum rates on the performance of three chickpea (Cicer arietinum L.) Rhizobium strains was examined in the field on a Mollisol soil. Increasing amounts of inoculum improved the performance of the strains. A normal dose (104 cells per seed) applied at different intervals gave non-significant increases in nodulation, nitrogenase activity (acetylene reduction assay), nitrogen uptake and grain yield. A ten-fold increase in inoculum increased nodule number, shoot dry weight, nitrogenase activity (ARA) and grain yield, but increases over the control were significant only for nodule dry weight and nitrogen uptake by shoot and grain. The highest level of inoculum (100 × normal) significantly increased nodule dry weight, grain yield, total nitrogenase activity (ARA) and nitrogen uptake by shoot and grain. Strain TAL 620 was more effective than the other two. Combined nitrogen (60 kg N ha–1) suppressed nodulation and nitrogenase activity (ARA).Research paper No. 4345 from the Experiment Station, G. B. P. U. A. & T., Pantnagar, Nainital, U. P.  相似文献   

4.
Summary Field experiments were conducted during 1985 and 1986 to examine the effect of Azotobacter chroococcum on the grain yield of maize. Application of 40 kg N ha–1 plus A. chroococcum caused a significant increase in maize yield. Azotobacter inoculation was more efficient at lower doses (40 kg N ha–1) than at high doses (80 kg N ha–1) of urea.  相似文献   

5.
Summary Chickpea cultivars (Cicer arietinum L.) and their symbiosis with specific strains of Rhizobium spp. were examined under salt stress. The growth of rhizobia declined with NaCl concentrations increasing from 0.01 to 2% (w : v). Two Rhizobium spp. strains (F-75 and KG 31) tolerated 1.5% NaCl. Of the 10 chickpea cultivars examined, only three (Pusa 312, Pusa 212, and Pusa 240) germinated at 1.5% NaCl. The chickpea — Rhizobium spp. symbiosis was examined in the field, with soil varying in salinity from electrical conductivity (EC) 4.5 to EC 5.2 dSm-1, to identify combinations giving satisfactory yields. Significant interactions between strains and cultivars caused differential yields of nodules, dry matter, and grain. Four chickpea — Rhizobium spp. combinations, Pusa 240 and F-75 (660 kg ha-1), Pusa 240 and IC 76 (440 kg ha-1), Pusa 240 and KG 31 (390 kg ha-1), and Pusa 312 and KG 31 (380 kg ha-1), produced significantly higher grain yields in saline soil.  相似文献   

6.
Summary Two annual species of Sesbania, S. aculeata and Sesbania sp. PL Se-17, were field evaluated as green manure for wetland rice in an alkaline soil. The two species were raised as a catch crop during summer in a wheat-rice rotation, and added as 24.7 and 20.8 t ha–1 of green matter, 116 and 98 kg N ha–1, respectively, after 45 days of growth. For the optimum green manuring effect on rice grain yield and N uptake, S. aculeata required 5 days of decomposition (after turning in and before rice transplantation), whereas no decomposition period was necessary for Sesbania sp. PL Se-17. The effect on grain yield and N uptake of rice was equivalent to an application of 122 and 78 kg ha–1 of chemical N, for the two species, respectively. There was no residual effect of the green manuring on the soil N status after rice harvest.  相似文献   

7.
Summary Inoculated seeds of maize (Zea mays) with 11 Azotobacter strains, sown in the fields receiving no fertilizer and fertilizers (N and P at the rate of 125 and 40 kg ha–1 respectively) increased the grain yield by 19.63% and 15.89% respectively over the corresponding control. The effect was greater in unfertilized than in fertilized soil. The increase in yield due to fertilizers was 21.2% without inoculation and 37.09% with inoculation. The correlations between total yield, and N, P and K uptake were highly significant and comparable among themselves. This indicated that increase in yield due to inoculation was not due to N2 fixation but that some other mechanisms like production of growth hormones by this bacterium may be responsible.  相似文献   

8.
Organic-N fertilizers in the form of flood-tolerant, leguminous, stem-nodulating Sesbania rostrata and Aeschynomene afraspera may be useful alternatives to resource-poor rice farmers if applied as green manure. Therefore, the accumulation of N by these green manure species and their effect on the performance and yield of wetland rice (IR 64) was examined at four different sites in Luzon, Philippines. Soils deficient in N, P, and K were selected and compared with the fertile Maahas clay of the International Rice Research Institute (IRRI) at Los Baños. The green manure plants were grown under flooded conditions for 49 days in the wet season of 1987, chopped, and then ploughed in before transplanting rice seedlings. In a second experiment, the effect of S. rostrata green manure was studied under rainfed conditions. All green manure treatments were compared to an urea treatment (60 kg N ha–1) and an untreated control. Both legumes developed well, even on the marginally productive soils. S. rostrata accumulated up to 190 kg N ha–1 and A. afraspera even accumulated 196 kg N ha–1 in the shoots. In all treatments, green manure increased grain yield significantly (P=0.05) over the untreated control, by 1.3–1.7 Mg ha–1. The yields were comparable to those obtained with 60 kg N ha–1 of urea fertilizer. S. rostrata caused the highest grain yield, of 6.5 Mg ha–1 on the Maahas clay soil of IRRI. The apparent release of exchangeable NH 4 + -N in the soils after green manuring and the rice grain yield response showed that both green manure species may provide sufficient available N throughout the development of IR 64 in the wet season. In the rainfed marginal soil site, green manure with S. rostrata produced even higher rice grain yields than urea. Green manure therefore seems particularly attractive for poor farmers on marginally productive soils, at least as a temporary strategy to improve yield and yield sustainability.  相似文献   

9.
Summary A greenhouse experiment was conducted with wetland rice (Oryza sativa cv. IR-50) in a clay-loam soil (Fluventic Eutrochrept) to study the effect of cyanobacterial inoculation a mixed culture of Aulosira fertilissima, Nostoc muscorum, Nostoc spp., and Anabaena spp., applied at the rate of 0.15 g (dry weight pot-1 or 43 kg ha-1) on acetylene reduction activity in soil and the root system (excised root), and the grain and straw yield. The effects of applying P (40 kg ha-1), N (60 kg ha-1), and P+N to the soil were also evaluated. Cyanbacterial inoculation significantly increased (more than 200% on average) photo-dependent acetylene reduction activity in soils, particularly where the indigenous activity was considerably low, i.e. under unfertilized and N-fertilized conditions. The effect of inoculation was prominent at the maximum tillering and grain formation stages of the crop. This inoculation benefit was, however, marginal in P-applied soils (P and P+N), where the indigenous activity was stimulated more than threefold. The inoculation led to a remarkable increase in root-associative acetylene reduction activity after the maximum tillering stage of the crop, particularly with applied N but for other treatments this inoculation effect was not significant. Cyanobacterial inoculation also increased the grain and straw yield of the crop when N was not applied. The grain and straw yield was significantly correlated with the acetylene reduction activity in flooded soils and in the root system during the tillering and maximum tillering stages of rice growth, respectively.  相似文献   

10.
Biomass productivity and nutrient cycling in a Bambusa bambos plantation aged 4, 5, and 6 years were studied. The dry matter production of above-ground biomass increased progressively with age. Nutrient quantities in bamboo stands were in a range of 1–2 t ha-1 for N and K, 0.5–1 t ha-1 for Ca and Mg, and 0.1–0.2 t ha-1 for P. Nutrient concentrations increased with the age of the plantation. About 10% year-1 the nutrients present in the biomass of the bamboo stand are recycled to the soil by litter fall.  相似文献   

11.
Summary A field study carried out in a sandy, relatively acid Senegalese soil with a low soluble P content (7 ppm) and low vesicular-arbuscular mycorrhizal (VAM) populations showed that soybean responded toGlomus mosseae inoculation when the soluble P level in the soil had been raised by the addition of 22 kg P ha–1. In P-fertilized plots, N2 fixation of soybean, assessed by the A value method, was 109 kg N2 fixed hat when plants were inoculated withRhizobium alone and it reached 139 kg N2 fixed ha–1 when plants were dually inoculated withRhizobium andGlomus mosseae using an alginate bead inoculum. In addition to this N2 fixation increase (+28%),Glomus mosseae inoculation significantly improved grain yield (+13%) and total N content of grains (+16%). This success was attributed mainly to the low infection potential of the native VAM populations in the experimental site. In treatments without solubleP or with rock phosphate, no effect of VAM inoculation was observed.  相似文献   

12.
Nitrogen fixing potential in terms of acetylene reducing activity (ARA) and biomass accumulation (in terms of chlorophyll) were investigated using surface and below-surface soil cores, collected from rice fields 45 and 90 days after transplanting (DAT). Treatments included different levels of urea (30, 60, 90 and 120 kg N ha–1) in combination with inoculation using blue green algae (BGA) and Azolla biofertilizers. Application of biofertilizers brought about a significant enhancement in chlorophyll accumulation and nitrogenase activity, when measured 45 DAT. Positive effects in below-surface soil cores, on both these parameters as a result of application of biofertilizers further emphasized their contribution to the N economy of rice fields. Plots treated with 30 and 60 kg N ha–1 along with biofertilizers exhibited the highest percentage increase in terms of algal biomass and ARA, both in surface and below-surface soil cores at 45 DAT. A definite need to examine critically the nature and metabolic activities of below-surface microflora is highlighted through our investigation.  相似文献   

13.
Summary In three field trials conducted during the summer season of 1986, 1987 and 1989 in an alkaline soil, 17 accessions of annual Sesbania spp. were evaluated for nodulation, N2 fixation (acetylene reduction assay), dry weight of roots and shoots, woody biomass production, and nutrient uptake. At 50 days after sowing all the accessions were effectively nodulated (average 36.4 root nodules plant-1) with a high nodule score (3.4). There was a lot of variation in nodule volume and mass and in acetylene reduction activity but not in N content (5.2%). N uptake in shoots, roots and nodules averaged 639, 31, and 13 mg plant-1, respectively, and much of the fixed N remained in shoots. Accessions of S. cannabina complex performed better than others. S. rostrata had poor root nodulation but exhibited excellent stem nodulation (300 nodules plant-1) even though not inoculated with Azorhizobium sp. Average concentrations of N, P, K, S, Ca, and Mg in the shoots were high, at 3.2, 0.28, 1.5, 0.28, 1.5, and 0.4% respectively, and Na was low (0.15%), reflecting the usefulness of Sesbania spp. as an integrated biofertilizer source. Green matter production was 26.0 Mg ha-1 (5.9 Mg dry matter) and N uptake was 158 kg ha-1, 54 days after sowing. Average woody biomass of six accessions at maturity, 200 days after sowing, was high (19.9 Mg ha-1), showing its potential for shortterm firewood production. Total nutrient uptake for production of woody biomass (200 days of growth) was no more demanding than growing the plant to the green-manuring stage of 50–60 days' growth.  相似文献   

14.
We investigated the effects of N fertiliser and pesticide applications on the population dynamics of benthic molluscs in a tropical wetland rice field. Populations were monitored for two consecutive dry seasons in selected treatments during a study on the effects of agricultural practices on the floodwater ecology of tropical rice fields. The most abundant species recorded in the ricefields were the snailsMelanoides tuberculata andMelanoides granifera. Population densities and biomass values in planted plots ranged between 0 and 1530 individuals m-2 and 0 and 1060 kg ha-1, respectively. Snails were more abundant in unplanted than planted plots (1991: 170–2040 versus 0–1040 individuals m-2, respectively). Populations in planted plots declined as the crop season progressed. Snail populations were significantly reduced by the broadcast application of mineral N fertiliser at 110 kg N ha-1. There was little evidence that snails were affected by carbofuran or butachlor applications.  相似文献   

15.
Summary At least 105–106 viable cells of the rhizopseudomonad strain 7NSK2* had to be applied per seed of maize cultivar Beaupré and barley cultivar Iban in order to obtain a beneficial effect on plant growth under greenhouse conditions. In pot experiments where an increase in plant growth, varying between 15% and 25%, was observed, the introduced strain 7NSK2* constituted at least 20% of the bacterial root colonizers. This colonization provoked a shift in the fungal rhizospheric community. Due to the inoculation with 7NSK2, Penicillium spp. became the dominant isolates, while Trichoderma spp. were the dominant isolates in pot experiments with low and inefficient inoculum levels of 7NSK2*.  相似文献   

16.
Summary The major agronomic concern with NH3 loss from urea-containing fertilizers is the effect of these losses on crop yields and N fertilizer efficiency. In this 2-year study, NH3 volatilization from surface-applied N fertilizers was measured in the field, and the effects of the NH3 losses detected on corn (Zea mays L.) and orchardgrass (Dactylis glomerata L.) yield and N uptake were determined. For corn, NH4NO3 (AN), a urea-AN solution (UAN), or urea, were surface-broadcast at rates of 0, 56 and 112 kg N ha–1 on a Plano silt loam (Typic Argiudoll) and on a Fayette silt loam (Typic Hapludalf). Urea and AN (0 and 67 kg N ha–1) were surface-applied to grass pasture on the Fayette silt loam. Significant NH3 losses from urea-containing N sources were detected in one of four corn experiments (12%–16% of applied N) and in both experiments with grass pasture (9%–19% of applied N). When these losses occurred, corn grain yields with UAN and urea were 1.0 and 1.5 Mg ha–1, respectively, lower than yields with AN, and orchardgrass dry matter yields with urea were 0.27 to 0.74 Mg ha–1 lower than with AN. Significant differences in crop N uptake between N sources were detected, but apparent NH3 loss based on N uptake differences was not equal to field measurements of NH3 loss. Rainfall following N application markedly influenced NH3 volatilization. In corn experiments, NH3 loss was low and yields with all N sources were similar when at least 2.5 mm of rainfall occurred within 4 days after N application. Rainfall within 3 days after N application did not prevent significant yield reductions due to NH3 loss from urea in grass pasture experiments.  相似文献   

17.
Studies were conducted on paddy soils to ascertain N2 fixation, growth, and N supplying ability of some green-manure crops and grain legumes. In a 60-day pot trial, sunhemp (Crotalaria juncia) produced a significantly higher dry matter content and N yield than Sesbania sesban, S. rostrata, cowpeas (Vigna unguiculata), and blackgram (V. mungo), deriving 91% of its N content from the atmosphere. Dry matter production and N yield by the legumes were significantly correlated with the quantity of N2 fixed. In a lowland field study involving sunhemp, blackgram, cowpeas, and mungbean, the former produced the highest stover yield and the stover N content, accumulating 160–250 kg N ha-1 in 60 days, and showed great promise as a biofertilizer for rice. The grain legumes showed good adaptability to rice-based cropping systems and produced a seed yield of 1125–2080 kg ha-1, depending on the location, species, and cultivar. Significant inter- and intraspecific differences in the stover N content were evident among the grain legumes, with blackgram having the highest N (104–155 kg N ha-1). In a trial on sequential cropping, the groundnut (Arachis hypogaea) showed a significantly higher N2 fixation and residual N effect on the succeeding rice crop than cowpeas, blackgram, mungbeans (V. radiata), and pigeonpeas (Cajanus cajan). The growth and N yield of the rice crop were positively correlated with the quantity of N2 fixed by the preceding legume crop.  相似文献   

18.
Two field experiments were carried out in Northern Argentina, during the 1989–1990 and 1990–1991 growing seasons, on Argentinian and Brazilian maize genotypes. The inoculant consisted of a mixture of four Azospirillum brasilense strain isolated from surface-sterilized maize roots in Argentina and three A. lipoferum strains isolated from surface-sterilized maize or sorghum roots in Brazil. Establishment of the inoculated strains was confirmed by the antibiotic resistance of the strains in the highest dilution vials. In all treatments, numbers of Azospirillum spp. were increased and the inoculated strains were found in the highest dilutions. While grain yields of the different genotypes varied between 1700 and 7300 kg ha-1, total N accumulation was much less variable. Significant inoculation effects on total N accumulation and on grain yields were consistently negative with one Argentinian genotype and positive with four Argentinian and two Brazilian genotypes. Significant inoculation effects on leaf nitrate reductase activity at the flowering stage, observed in the range-55% to +176%, indicated the presence of various interactions between the plant NO inf3 sup- metabolism and Azospirillum spp. Three Brazilian and one Argentinian maize genotype showed significant decreases in leaf nitrate reductase due to inoculation while four Argentinian genotypes showed significant increases in leaf nitrate reductase activity. The results of the present study, were consistent over the two field experiments and strongly indicate that more detailed plant genotype-Azospirillum spp. strain interaction studies, taking the entire N metabolism in the plant into account, are needed to allow better inoculation results of cereal crops.  相似文献   

19.
Total, extractable, and microbial C, N, and P, soil respiration, and the water stability of soil aggregates in the F-H layer and top 20 cm of soil of a New Zealand yellow-brown earth (Typic Dystrochrept) were compared under long-term indigenous native forest (Nothofagus truncata), exotic forest (Pinus radiata), unfertilized and fertilized grass/clover pastures, and gorse scrub (Ulex europaeus). Microbial biomass C ranged from 1100 kg ha-1 (exotic forest) to 1310kg ha-1 (gorse scrub), and comprised 1–2% of the organic C. Microbial N and P comprised 138–282 and 69–119 kg ha-1 respectively, with the highest values found under pasture. Microbial N and P comprised 1.8–7.0 and 4.9–18% of total N and P in the topsoils, and 1.8–4.4 and 23–32%, respectively, in the F-H material. Organic C and N were higher under gorse scrub than other vegetation. Total and extractable P were highest under fertilized pasture. Annual fluxes through the soil microbial biomass were estimated to be 36–85 kg N ha-1 and 18–36 kg P ha-1, sufficiently large to make a substantial contribution to plant requirements. Differences in macro-aggregate stability were generally small. The current status of this soil several years after the establishment of exotic forestry, pastoral farming, or subsequent reversion to scrubland is that, compared to levels under native forest, there has been no decline in soil and microbial C, N, and P contents or macro-aggregate stability.  相似文献   

20.
The silk industry is important for south China's rural economy. Leaves of mulberry (Morus spp.) are used for silkworm production. Hubei province is one of the main silk‐producing provinces in China. The objectives of this research were to survey the fertilization practices in the mulberry‐producing regions in the province and to determine the best nutrition‐management practice for mulberry plantations. A survey and a series of field experiments with N, P, K, and micronutrients were conducted from 2001 to 2002. In addition, a silkworm‐growth experiment was also conducted by feeding leaves harvested from various fertilization treatments. The results indicate that poor soil fertility and unbalanced fertilization were the main factors limiting mulberry‐leaf yield and quality in Hubei province. Nitrogen fertilization of mulberry has reached a high level (454 kg ha–1 y–1) in Hubei province, but P‐ and K‐fertilization rates have not been matched with N‐fertilization rates as farmers are not aware of the significance of P and K. Balanced fertilization showed positive nutrient interactions with respect to mulberry yield and quality. Potassium application increased yield and quality (protein and sugar concentration) of mulberry leaves. Silkworm growth and cocoon quality were improved when silkworms were fed with the leaves derived from K‐fertilized plants in comparison with those taken from control plots. Application of Mg, S, and B also significantly improved leaf sugar, essential and total amino acid concentrations, but did not increase leaf yield significantly. It is concluded that a fertilizer dose of 375 kg N ha–1, 66 kg P ha–1, and 125 kg K ha–1 is suitable for the cultivation of mulberry in the Hubei province along with Mg, S, and B, wherever necessary, for the improvement of yield and quality of mulberry leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号