首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thrips tabaci is a major problem in the cultivation of cabbage for storage, as this pest causes symptoms that necessitate the removal of affected leaves from the product. Between cabbage varieties large differences in susceptibility occur. This study aimed to identify plant traits associated with these differences, in field experiments with natural infestation in 2005 and 2006. One factor affecting the amount of thrips damage was the timing of the development of the head. In an experiment with different planting dates especially the early maturing, more susceptible varieties were shown to benefit from later planting. In comparisons of multiple varieties in both years, regression studies showed that more advanced plant development in August and early September increased thrips damage at the final harvest. However, no single plant trait explained more than 25% (2005, Brix) or 48% (2006, compactness) of the variation in thrips damage. Optimal regression models, explaining up to 75% of the variation in thrips damage included Brix and leaf surface wax late in the season, as well as an indicator of plant development earlier in the season, and in 2005 also leaf thickness. The possible role of these plant traits in relation to thrips is discussed.  相似文献   

2.
Cowpea is an important legume in sub-Saharan Africa where its protein rich grains are consumed. Insect pests constitute a major constraint to cowpea production. Flower bud thrips (FTh) is the first major pest of cowpea at the reproductive stage and if not controlled with insecticides is capable of reducing grain yield significantly. Information on the inheritance of resistance to FTh is required to facilitate breeding of resistant cultivars. The genetics of resistance was studied in crosses of four cowpea lines. Maternal effect was implicated while frequency distributions of the F2 and backcross generations suggest quantitative inheritance. Additive, dominance and epistatic gene effects made large contributions and since improved inbred lines are the desired product, selection should not be too severe in the early generations to allow for desirable gene recombination. This study suggested that some of the genes involved in the control of resistance to FTh are different in TVu1509 and Sanzi. Broad sense heritability ranged from 56% to 73%. Choice of maternal parent in a cross will be critical to the success of resistance breeding.  相似文献   

3.
Summary About 1000 Brassica oleracea accessions were evaluated in glasshouse tests for response to Plasmodiophora brassicae (clubroot). Resistance was confirmed in some north and west European kales and cabbage. A new source of resistance in cabbage, from Eire, is reported. Most other accessions were highly susceptible but lower levels of susceptibility were observed in open pollinated Brussels sprouts and forms of south European cabbage, cauliflower and broccoli. Modern breeding (as in the production of hybrid cultivars) appears to have resulted in increased susceptibility in several crop types. The implications of these results for the exploitation of germplasm are discussed.  相似文献   

4.
Summary Twenty sunflower inbred lines were studied for their reactions to 7 Sclerotinia sclerotiorum tests on different plant parts. A principal component analysis (P.C.A.) and t-tests on the means of resistant and susceptible groups indicated that reactions of inbred lines to infection of capitula by ascospores are independent from those to ascospore infections of terminal buds. They are even more contrasted with the results of any test measuring mycelial extension. However, for the last, there is a close association between the reactions of roots, leaves and capitula. Of the inbred lines, some showed good levels of resistance to most forms of attack, others were generally susceptible and there were some with good resistance to one particular form of attack. A P.C.A. of 18 morphological and field characters showed no general association between these characters and Sclerotinia sclerotiorum test results, although it was found that lines resistant to mycelial extension on capitula were generally earlier than those that were more susceptible. It is proposed that breeding programmes for general resistance to Sclerotinia sclerotiorum should include a combination of two or three tests.  相似文献   

5.
Summary A preliminary evaluation for resistance to chili thrips, Scirtothrips dorsalis Hood of 41 and 194 pepper (Capsicum annuum L.) germplasms during 1987 and 1988, respectively, indicated chili accessions may be a promising source of resistance. In contrast, all sweet pepper accessions tested were highly susceptible. A number of chili accessions produced a moderate yield, in spite of a high thrips infestation indicating tolerance to S. dorsalis. Rating for thrips damage was more reliable and efficient than estimating thrips numbers in screening pepper accessions for resistance to thrips. Highly significant, positive correlation between ratings at the seedling stage and final rating for thrips damage indicated the feasibility of screening pepper accessions at the seedling stage. Comparing the similarities in rating among accessions resulted in 40 distinct groups. The variance-covariance matrix of the data from these 40 groups was subjected to principal component analysis. This accounted for 56 and 18 per cent of the variation across the two principal axes, respectively. Projection of chili and sweet pepper accessions along these two axes revealed three distinct clusters. About 80 per cent of chili accessions formed the first cluster, 58 per cent of the sweet pepper accessions formed the second cluster and a third cluster exhibited intermediate ratings for thrips damage. The significance of these findings in relation to geographical divergence and resistance to thrips among pepper accessions is discussed.  相似文献   

6.
Resistance to bacterial soft rot caused by Erwinia carotovora subsp. carotovora is a quantitative trait. The narrow-sense heritability was from 42% to 60% in the studied populations. Griffing's diallel analysis and generation mean analysis indicated that additive genetic effects were most significant, and the resistant sources involved in this study appeared to have different genes or alleles. Recurrent phenotypic selection was used for improving the resistance level by combining different resistance genes from the selected genotypes of Chinese cabbage. After 3 cycles of recurrent selection, the level of resistance increased markedly. When the cycle 3 population was compared with the cycle 0 population, the mean disease severity rating was reduced 38% from 6.3 to 3.9, and the percentage of plant survival increased from 65% to 97% based on the mean of two years experiments using mist-chamber seedling inoculation methods. The improvement of resistance was also demonstrated in field assays. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Rolf Stegmark 《Euphytica》1991,53(2):87-95
Summary A partially downy mildew resistant pea line was back-crossed to a susceptible cultivar with more pods per node and lower seed weight. Breeding lines with different degrees of infection in a greenhouse test were selected. These lines and the two parental lines were investigated in field trials and tested in the greenhouse for four generations. Significant genetic variation among lines was found for infection of seedlings in greenhouse tests, and infection of pods, pod set and seed weight in field-trials. Infection of seedlings in the greenhouse was correlated with infection of pods in the field. In greenhouse tests, the non-genetic variance component was large in comparison with the genetic component and a significant genotype trial interaction was found. Significant repeatability was obtained for downy mildew on seedlings and pods, number of pods per node and seed weight. An unfavourable correlation between susceptibility to downy mildew and number of pods per node was found. No single breeding line showed the ideal combination of good resistance, high number of pods per node and small seeds. However, one line showing better resistance than the susceptible parent, with smaller seeds and more pods per node than the resistant parent was found. The susceptible parent also carries some resistance factor that is not present in the resistant parent.  相似文献   

8.
Downy mildew on lettuce is currently controlled using host resistance genes (Dm genes) that confer race-specific resistance in seedlings. Field resistance (FR) that is active in adult plants but not seedlings was identified in the cvs. Grand Rapids and Iceberg. The goal of our study was to evaluate the utility of Grand Rapids as a source of novel Bremia resistance alleles, particularly in comparison with Iceberg. To measure FR, downy mildew symptoms were evaluated following natural infection in field experiments. The responses of Grand Rapids and Iceberg were similar in many respects. Although both cultivars had a small percentage of plants exhibiting disease symptoms, the average disease ratings were as low as for cultivars with effective Dm genes. We observed no evidence for race specificity. FR was effective over 3 years of our study, despite documented variation within pathogen populations. Both cultivars lacked all known seedling resistance genes except Dm13, which was not responsible for the resistance observed in field experiments. Similar segregation of FR was observed in F2 populations for both Grand Rapids and Iceberg. The presence of highly susceptible families within Grand Rapids × Iceberg populations suggested the presence of at least one unique resistance allele in each cultivar. Preliminary genetic analysis of FR from Grand Rapids revealed a high estimate of narrow-sense heritability that suggested simple inheritance, but single gene models did not fit the observed data. Our results suggest that Grand Rapids may represent an underutilized resource for controlling downy mildew in lettuce.  相似文献   

9.
Summary The genetics of partial resistance of lettuce to Myzus persicae was studied using F1 and F2 generations of two crosses between a susceptible and partially resistant accession (Norden x Batacer and Liba x Norden) and three crosses in which both parents were partially resistant (Batavia la Brillante x Batacer, Batacer x Liba and CGN4741 x Batacer). Partial resistance to M. persicae inherited quantitatively, without important dominance effects. Only in the cross Batacer x Liba were significant departures of the F1 and F2 from the midparent found, which were probably caused by epistatic effects. Reciprocal F1s had similar resistance levels, indicating the absence of cytoplasmic or other maternal effects. Estimates of broad-sense heritability ranged from 0.34 to 0.61. The results indicated that lines with an improved resistance level can be obtained from crosses between partially resistant accessions, preferably by line selection or the application of indirect marker aided selection.Abbreviations PR partial resistance, partially resistant - S susceptibility, susceptible  相似文献   

10.
M.W. Farnham  M. Wang  C.E. Thomas 《Euphytica》2002,128(3):405-407
Downy mildew, incited by Peronospora parasitica (Pers.: Fr.) Fr., is a destructive disease of broccoli (Brassica oleraceaL., Italica Group). Resistant cultivars represent a desirable control method to provide a practical, environmentally benign, and long-term means of limiting damage from this disease. Doubled-haploid (DH) lines developed by us exhibit a high level of downy mildew resistance at the cotyledon stage. To determine the mode of inheritance for this resistance, a resistant DH line was crossed to a susceptible DH line to make an F1, from which F2 and backcross (BC) populations were developed. All populations were evaluated for response to artificial inoculation with P. parasitica at the cotyledon stage. All F1 plants (including reciprocals) were as resistant as the resistant parent, indicating no maternal effect for this trait. F2 populations segregated approximately 3resistant to 1 susceptible, BC populations using the resistant parent as the recurrent parent contained all resistant plants, and the BC to the susceptible parent segregated 1 resistant to 1 susceptible. These results indicate that resistance is controlled by a single dominant gene. This gene should be easily incorporated into F1 hybrids and used commercially to prevent downy mildew at the cotyledon stage. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Summary In studies of the inheritance of resistance, pea seedlings of seven lines in which stems and leaves were both resistant to Mycosphaerella pinodes were crossed with a line in which they were both susceptible. With seven of the crosses resistance was dominant to susceptibility. When F2 progenies of five crosses were inoculated on either stems or leaves independently, phenotypes segregated in a ratio of 3 resistant: 1 susceptible indicating that a single dominant gene controlled resistance. F2 progenies of one other cross gave ratios with a better fit to 9 resistant: 7 susceptible indicating that two co-dominant genes controlled resistance. The F2 progeny of another cross segregated in complex ratios indicating multigene resistance.When resistant lines JI 97 and JI 1089 were crossed with a susceptible line and leaves and stems of each F2 plant were inoculated, resistance phenotypes segregated independently demonstrating that leaf and stem resistance were controlled by different genes. In two experiments where the F2 progeny of the cross JI 97×JI 1089 were tested for stem and leaf resistance separately, both characters segregated in a ratio of 15 resistant:1 susceptible indicating that these two resistant lines contain two non-allelic genes for stem resistance (designated Rmp1 and Rmp2) and two for leaf resistance (designated Rmp3 and Rmp4). Evidence that the gene for leaf resistance in JI 1089 is located in linkage group 4 of Pisum sativum is presented.  相似文献   

12.
Summary Hexaploid and octoploid tritordeums and their parents Hordeum chilense and Triticum spp. were screened for resistance to isolates of wheat and barley yellow and brown rusts. All H. chilense lines were highly resistant to both wheat and barley brown rust, few lines were susceptible to wheat yellow rust while susceptibility to barley yellow rust was common. In general the resistance of tritordeum is predominantly contributed by the wheat parent and apparently the genes for resistance in H. chilense are inhibited in their expression by the presence of the wheat genome.Abbreviations WYR wheat yellow rust - WBR wheat brown rust - BYR barley yellow rust - BBR barley brown rust  相似文献   

13.
Powdery mildew disease caused by the fungus Erysiphe polygoni D.C. is an important disease of mungbean. Loss can be more serious if the disease attacks at seedling stage. In this paper, we report genetics of the resistance to powdery mildew disease in mungbean using a recombinant inbred line (RIL) population derived from a cross between the susceptible parent “KPS1” and the resistant parent “VC6468-11-1A”. Five hundred and ninety-two RILs were developed by random descending from 200 F2 plants. The population was evaluated against the fungus in field and greenhouse conditions. The data were analyzed following a nested design for selfpollinating plants to determine genetic heritability of powdery mildew resistance. The severity of the infestation was measured by using disease index (DI) and area under disease progress curve (AUDPC). Both values showed continuous distribution in the RILs. Under field conditions, the narrow-sense heritability of DI and AUDPC were 0.67 and 0.48, respectively. While under greenhouse conditions, the values were 0.68 and 0.62, respectively. The results suggested that the resistance is quantitatively inherited with high heritability and predominantly additive gene action. To develop powdery mildew-resistant mungbean varieties, the plant breeder can select for resistant lines by using standard selection procedures for self-pollinating crops, viz. pedigree selection, bulk selection, early generation testing, and single-seed descent.  相似文献   

14.
Chromosomal location of resistance to two virulent Argentinean isolatesof Septoria tritici was studied in two wheat (Triticum aestivumL.) cultivars (Cappelle-Desprez & Cheyenne), a synthetic hexaploid(Synthetic 6x) and Triticum spelta in seedlings. Substitution lines of these(resistant or moderately resistant) genotypes into (susceptible) ChineseSpring were selected from a previous screening. For Synthetic 6x,resistance was clearly located in chromosome 7D. Chinese Spring with the7D chromosome substituted by Synthetic 6x showed almost completeresistance, similar to the level of Synthetic 6x. For the substitutions withCappelle-Desprez, Cheyenne, and T.spelta there were no lines with abehaviour similar to the resistant parent. However, some substitutions weremore resistant than the susceptible parent suggesting that severalchromosomes could be involved in the resistance of these genotypes toSeptoria leaf blotch.  相似文献   

15.
Early blight (Alternatia solani) is a fungal disease in hot and humid environments, which causes leaf, stem and tuber lesions. Early blight resistance should be incorporated into potato cultivars because the fungicide spraying is an expensive solution for developing countries. The diploid cultivated species Solanum tuberosum group Phureja and group Stenotomum are sources of resistance alleles. The elucidation of the inheritance for early blight resistance must help to decide what could be the best breeding procedure to improve this diploid germplasm and transfer the resistance to the tetraploid level. Three experiments were carried out under controlled and field conditions to determine the heritability of this trait using nested and diallel mating designs with haploid, species and haploid-species hybrids. The narrow-sense heritability estimates were relatively high (0.64–0.78). This means that additivity was the most important type of gene action for determining resistance to early blight at the diploid level. The results suggested that diploid parents showing highest levels of resistance, throughout the cycle of disease development, can be used in 4x×2x crosses to obtain resistant tetraploid progenies to this fungal disease.  相似文献   

16.
To enhance efficiency of breeding programmes for Sclerotinia sclerotiorum resistance in sunflower capitula, two separate resistance tests have been recommended. However, the time necessary to develop genotypes with two types of resistance makes this impractical. A strategy to combine the two tests was consequently proposed to reduce the number of seasons per selection cycle, but genetic studies were necessary to determine if it could be applied in breeding programmes. This was the objective of this work. Data from two genetically different sunflower inbred lines and their F1, F2 and backcross generations were analysed in two years to determine the genetics of resistance to S. sclerotiorum in capitula measured by application on the same plants of a mycelium test combined with an ascospore test. Effects of maternal origin were detected when the reciprocal generations were evaluated for the mycelium test. This suggests the importance of choice of the inbred line used as female in population formation by hybridisation. Progeny subjected to the mycelium test did not show any change in relative reactions to two S. sclerotiorum isolates suggesting that ranking genotypes according to the results of combined S. sclerotiorum tests is repeatable across Sclerotinia isolates and experimental seasons. Moderate narrow sense heritability indicated that selection of the best F2 plants should be effective. Genetic gain from selection is possible because a reduction of lesion areas produced by the mycelium test can be expected. Additive gene effects contribute significantly to reduction in lesion area. Consequences of results in population improvement for S. sclerotiorum resistance in capitula are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Summary The use of soil. naturally infested with Heterodera avenae, to select resistant heterozygotes in backcross progenies of wheat, was tested for reliability. Selfed progenies from plants selected as resistant were cultured monoxenically in test tubes with nematodes hatched from single cysts, while backcross progenies from the same parent plants were grown in pots of naturally infested soil. Cyst counts were made after two months' growth. The results showed that over 50% of the backcross lines, screened in previous generations with naturally infested soil, had been erroneously selected as resistant. The test tube cultures clearly differentiated lines carrying resistance from those which were susceptible and corroborated results from pot tests.  相似文献   

18.
The breeding line UPV 1 developed from the PE-18 accession of Lycopersicon peruvianum collected in Huallanca, Ancash, Peru, shows resistance to TSWV. Mechanical inoculation and thrips transmission were used to study the inheritance of TSWV resistance of this line. UPV 1resistance is controlled by a dominant gene. The penetrance of this resistance gene was complete in mechanical inoculation and incomplete when thrips transmission was used. Linkage tests between the resistance genes of lines UPV 1 and RDD (Sw-5), indicated allelism. A molecular analysis using a SCAR marker tightly linked to Sw-5 also supported this hypothesis. In heterozygotes the level of resistance expressed in UPV 1 is higher than that expressed in RDD (Sw-5), indicating that the resistance from UPV 1 may be of higher value for the development of commercial hybrids. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Ascochyta blight caused by the fungus Ascochyta lentis Vassilievsky and anthracnose caused by Colletotrichum truncatum [(Schwein.) Andrus & W.D. Moore] are the most destructive diseases of lentil in Canada. The diseases reduce both seed yield and seed quality. Previous studies demonstrated that two genes, ral1 and AbR1, confer resistance toA. lentis and a major gene controls the resistance to 95B36 isolate of C. truncatum. Molecular markers linked to each gene have been identified. The current study was conducted to pyramid the two genes for resistance to ascochyta blight and the gene for resistance to anthracnose into lentil breeding lines. A population (F6:7) consisting of 156 recombinant inbred lines (RILs) was developed from across between ‘CDC Robin’ and a breeding line ‘964a-46’. The RILs were screened for reaction to two isolates (A1 and 3D2) ofA. lentis and one isolate (95B36) ofC. truncatum. χ2 analysis of disease reactions demonstrated that the observed segregation ratios of resistant versus susceptible fit the two gene model for resistance to ascochyta blight and a single gene model for resistance to anthracnose. Using markers linked to ral1 (UBC 2271290), to AbR1(RB18680) and to the major gene for resistance to anthracnose (OPO61250),respectively, we confirmed that 11 RILs retained all the three resistance genes. More than 82% of the lines that had either or both RB18680 and UBC2271290markers were resistant to 3D2 isolate and had a mean disease score lower than 2.5. By contrast, 80% of the lines that had none of the RAPD markers were susceptible and had a mean disease score of 5.8. For the case of A1 isolate of A. lentis, more than 74% of the lines that carriedUBC2271290 were resistant, whereas more than 79% of the lines that do not have the marker were susceptible. The analysis of the RILs usingOPO61250 marker demonstrated that 11out of 72 resistant lines carried the marker, whereas 66 out of 84 susceptible lines had the marker present. Therefore, selecting materials with both markers for resistance to ascochyta blight and a marker for resistance to anthracnose can clearly make progress toward resistance in the population. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Glandless cotton can be grown for cottonseed free of toxic gossypol to be used as food and feed for non-ruminant animals. However, one of the most important limiting factors preventing its commercial production is its higher insect damage than conventional glanded cotton. Thrips is the one of the most important insect pests in the early growing season that may cause yield losses. In this study, 28, 29, 26, and 2 glandless cotton lines were compared with glanded control Acala 1517-08 and other glanded lines for resistance to the Western flower thrips, Frankliniella occidentalis (Pergande) in four replicated field tests each containing 32 genotypes. In the same field, 28 glanded commercial cultivars and 78 glanded breeding lines were compared with Acala 1517-08 and Acala 1517-99 in three other tests with 32 genotypes each. The experimental layouts allowed a comprehensive comparative analysis of thrips resistance within and between glandless and glanded cotton. Overall, glandless cotton had similar or lower thrips damages than glanded cotton, indicating that the glandless trait may serve as a genetic factor for suppressing thrips damage. As compared with Acala 1517-08 which represented one of the most thrips resistant genotypes among glanded cotton tested, glandless Acala GLS and many selections from glandless germplasm were more resistant, while some were similar to Acala 1517-08, indicating that genetic factors other than the glandless trait also affect thrips resistance in cotton. The estimates for broad-sense heritability for thrips resistance were moderate, indicating that thrips resistance is selectable. This is corroborated by the identification of many thrips resistant lines from a cross between Acala 1517-08 and Acala GLS. This study has laid a foundation for a more detailed study using most resistant lines with desirable agronomic traits in multiple environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号