首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
精准农业技术对生态环境的影响评价研究进展   总被引:4,自引:0,他引:4  
精准农业是保证作物产量和农业环境质量双赢的重要途径。综述了水肥精准管理和病虫草害精准管理的生态环境效益,精准农业通过节省资源投入、减少资源损失、提高利用效率,降低农业生产对土壤和水体环境的污染。但目前的评价内容主要集中在资源投入、残留损失、利用效率以及水土质量方面;其次,由于田间变量信息的获取途径不一致、模型预测和田间应用效果的差异、土壤质地以及作物种类的不同等原因,导致精准农业的环境效益评价结果不确定性较大。未来研究应建立精准农业技术田间定位试验,进行长期的生态环境效益评价研究,为精准农业技术的推广和应用提供数据支持。  相似文献   

2.
Recent studies have demonstrated the potential importance of using soil texture to modify fertilizer N recommendations. The objective of this study was to determine (i) if surface clay content can be used as an auxiliary variable for estimating spatial variability of soil NO3–N, and (ii) if this information is useful for variable rate N fertilization of non-irrigated corn [Zea mays (L.)] in south central Texas, USA across years. A 64 ha corn field with variable soil type and N fertility level was used for this study during 2004–2007. Plant and surface and sub-surface soil samples were collected at different grid points and analyzed for yield, soil N parameters and texture. A uniform rate (UR) of 120 kg N ha−1 in 2004 and variable rates (VAR) of 0, 60, 120, and 180 kg N ha−1 in 2005 through 2007 were applied to different sites in the field. Distinct yield variation was observed over this time period. Yield and soil surface clay content and soil N parameters were strongly spatially structured. Corn grain yield was positively related to residual NO3–N with depth and either negatively or positively related to clay content depending on precipitation. Residual NO3–N to 0.60 and 0.90 m depths was more related to corn yield than from shallower depths. The relationship of clay content with soil NO3–N was weak and not temporally stable. Yield response to N rate also varied temporally. Supply of available N with depth, soil texture and growing season precipitation determined proper N management for this field.  相似文献   

3.
Machado  S.  Bynum  E. D.  Archer  T. L.  Lascano  R. J.  Wilson  L. T  Bordovsky  J.  Segarra  E.  Bronson  K.  Nesmith  D. M.  Xu  W. 《Precision Agriculture》2000,2(4):359-376
Inadequate information on factors affecting crop yield variability has contributed to the slow adoption of site-specific farming (SSF). This study was conducted to determine the effects of biotic and abiotic factors on the spatial and temporal variability of irrigated corn grain yields and to derive information useful for SSF. The effects of water (80% evapotranspiration (ET) and 50% ET), hybrid (drought-tolerant and -susceptible), elevation, soil index (SI)(texture), soil NO3–N, arthropods, and diseases on corn grain yield were investigated at Halfway, TX on geo-referenced locations. Grain yields were influenced by interrelationships among biotic and abiotic factors. Grain yields were consistently high under high water treatment, at higher elevations, and on soils with high SI (high clay and silt). Soil NO3–N increased grain yields when water was adequate. Management zones for variable rate fertilizer and water application should, therefore, be based on information on elevation, SI, and soil NO3–N. The effects of arthropods, diseases, and crop stress (due to drought and N) on corn grain yield were unpredictable. Spider mite (Oligonychus pratensis) and common smut (Ustilago zeae) damage occurred under hot and dry conditions in 1998. Spider mite infestations were high in areas with high soil NO3–N. Moderate air temperatures and high relative humidity in 1999 favored southwestern corn borer (Diatraea grandiosella) and common rust (Puccinia maydis) incidences. Knowledge of conditions that favor arthropods and diseases outbreak and crop stress can improve the efficiency of scouting and in-season management of SSF. Management of SSF can be improved when effects of biotic and abiotic factors on grain yield are integrated and evaluated as a system.  相似文献   

4.
Wilson  Grace L.  Mulla  David J.  Galzki  Jake  Laacouri  Aicam  Vetsch  Jeff  Sands  Gary 《Precision Agriculture》2020,21(2):311-323

Nitrogen (N) from farm fields is a source of pollution to fresh and marine waters. Modifying N fertilizer application rate and timing to consider the spatial and temporal variability in plant N requirements could reduce N losses from farmlands, resulting in improvements to surface water quality. In this study, the field-scale hydrologic and N simulation model DRAINMOD-NII was used to predict nitrate–N losses from fields planted in a corn-soybean rotation at Waseca, Minnesota, USA, over a 15-year period (2003–2017) for two fertilizer application treatments. The N fertilizer treatments simulated included a single uniform fertilizer application in the spring before planting and a variable rate N practice (VRN) where fertilizer was applied as a split pre-plant, side-dress application, based on in-season monitoring of plant N requirements to determine fertilizer rate. Measured discharge (2003–2008) and nitrate–N concentrations in subsurface drainage (2003–2008 and 2016–2017) at the site were used to calibrate discharge and nitrate–N losses in model simulations and validate model performance for uniform vs VRN fertilizer management. Measured nitrate–N concentrations in weekly samples were 13% lower for fields utilizing VRN versus a single spring application in 2016, and 18% lower in 2017. Model predictions of nitrate concentrations based on daily predictions of discharge accurately matched observed data for these years, predicting reductions of 23% and 19% for the years 2016 and 2017, respectively. The results of model simulation for the 15-year period indicated that changing the timing of fertilizer application from a single application to a VRN application could reduce annual N loads lost in drainage by 40%.

  相似文献   

5.
 【目的】由适时获得的高光谱数据代替传统繁琐的实验室土壤养分测定数据来进行变量施肥,实现冬小麦高产优质的目标。【方法】本研究利用冬小麦起身期和拔节期冠层光谱数据,选用反映冬小麦长势信息的优化土壤调节植被指数(OSAVI,optimization of soil-adjusted vegetation index)和变量施肥模型进行变量施肥管理(变量区),以相邻地块常规非变量(均一)施肥区(对照区)为对照,研究了不同氮肥处理冬小麦冠层光谱特征及其施肥效应。【结果】变量施肥之后两种氮肥处理在敏感波段670 nm和760~900 nm处反射率差异明显,而670nm和760~900nm是氮素和冠层的敏感波段,说明进行变量施肥时,利用基于这两个波段组合的光谱指数OSAVI优于其它波段组合的光谱指数;SAVI不同生育时期的变化情况,反映了变量施肥在调控作物长势及群体结构上的优势;与对照区相比变量区提高产量达378.72 kg•ha-1,并降低了各小区产量之间的变异,变量区土壤硝态氮浓度降低,氮肥利用率提高,生态效益较为明显。【结论】该技术通过改善冬小麦群体质量,延缓了植株衰老,促进干物质和氮积累,增加冬小麦产量和氮肥利用率。  相似文献   

6.
Sims  A. L.  Moraghan  J. T.  Smith  L. J. 《Precision Agriculture》2002,3(3):283-295
Experiments were conducted in the Red River Valley (RRV) of Minnesota to determine the responses of hard red spring wheat (Triticum aerstivum L.) to fertilizer N after a sugar beet (Beta vulgaris L.) crop that varied spatially in canopy color and N content. A color aerial photograph was acquired of the sugar beet field just prior to root harvest, and six sites were selected that varied in sugar beet canopy color, three each of green and yellow canopy sites. The three green sugar beet canopies returned 369, 265, and 266 kg N ha–1 to the soil while the three yellow sugar beet canopies returned 124, 71, and 73 kg N ha–1 to the soil. Spring wheat response to fall-applied urea-N fertilizer (0, 45, 90, 135, and 180 kg N ha–1) was determined the following year at each of the above antecedent canopy sites. Soil NO3-N in the top 0.6 m of soil varied among the locations with a range of 35 to 407 kg NO3-N ha–1 at the green canopy sites and 12 to 23 kg NO3-N ha–1 at the yellow canopy sites. Application of fertilizer N according to traditional recommendation methods would have resulted in fertilizer applications at all three yellow canopy sites and two of the three green canopy sites. At the antecedent green sugar beet canopy sites, fertilizer N had little or no effect on spring wheat grain yields, grain N concentration, anthesis dry matter, and anthesis N content. In contrast, fertilizer N increased all four parameters at the antecedent yellow sugar beet canopy sites. The data indicate that fertilizer N management can be improved by using remote sensing to delineate management zones according to antecedent sugar beet canopy color.  相似文献   

7.
This study examined the release characteristics of different N forms in an uncoated slow/controlled-release compound fertilizer (UCRF) and the N uptake and N-use efficiency by rice plants. Water dissolution, soil leaching, and pot experiments were employed. The dynamics of N release from the UCRF could be quantitatively described by three equations: the first-order kinetics equation [N1=N0 (1-e^-kt)], Elovich equation (N1=a + blnt), and parabola equation (N1=a + bt^0.5), with the best fitting by the first-order kinetics equation for different N (r= 0.9569^**-0.9999^**). The release potentials (No values estimated by the first-order kinetics equation) of different N in the UCRF decreased in the order of total N 〉 DON 〉 urea-N 〉 NH4^+-N 〉 NO3^-N in water, and total N 〉 NH4^+-N 〉 DON 〉 urea-N 〉 NO3^--N in soil, respectively, being in accordance with cumulative amounts of N release. The constants of N release rate (k values and b values) for different N forms were in decreasing order of total N 〉 DON 〉 NH4^+-N 〉 NO3^--N in water, whereas the k values were urea- N 〉DON 〉 NH4^+-N 〉 total N 〉 NO3^--N, and the b values were total N 〉 NH4^+-N 〉 DON 〉 NO3^--N 〉 urea-N in soil. Compared with a common compound fertilizer, the N-use efficiency, N-agronomy efficiency, and N-physiological efficiency of the UCRF were increased by 11.4%, 8.32 kg kg^-1, and 5.17 kg kg^-1, respectively. The ratios of different N to total N in the UCRF showed significant correlation with N uptake by rice plants. The findings showed that the first-order kinetics equation [Nt=N0 (l-e^kt)] could be used to describe the release characteristics of different N forms in the fertilizer. The UCRF containing different N forms was more effective in facilitating N uptake by rice compared with the common compound fertilizer containing single urea-N form.  相似文献   

8.
Wheat (Triticum aestivum L.) fields in the semi-arid Northern Great Plains are spatially variable in soil N fertility and crop productivity. Consequently, there is interest in applying variable, rather than uniform rates of fertilizer N across the landscape. Intensive soil sampling as a basis for variable-rate fertilizer management is too costly when compared to the value of wheat in this region. The objective of this research was to determine relationships between yield and protein, and protein and available N as needed to develop a cost-effective variable-rate N fertilizer strategy for spring wheat. A three-year study (1996–1998) was carried out at a site near Havre, Montana, USA (48°30N, 109°22W). Treatments consisted of three water regimes, four cultivars, and five fertilizer N levels per water regime in a randomized complete block design with four replicates. Scatter diagrams of relative yield vs. grain protein were consistent with earlier investigators, and indicated protein concentrations at harvest provided a method for indexing N nutrition adequacy (deficiency vs. sufficiency) in wheat. A critical protein concentration of 13.2% was defined using a graphical Cate-Nelson analysis. This value appeared to be consistent across the three water regimes and four cultivars as 159 (88%) of the 180 water×cultivar×N level episodes were in positive quadrants. No correlation could be found between relative yield and protein for episodes below the critical level (r2=0.1). Hence, grain protein concentrations could not be used to predict the magnitude of yield losses from N deficiency. Grain protein content would be useful for prescribing fertilizer recommendations where N deficiency (<13.2% protein) reduces grain yield under semi-arid conditions. Inverse slopes (dy/dx) of the protein-available N curves reveal that it takes 12–18 kg N/ha to change protein 1% (e.g., 12% vs. 13%) where wheat is under water stress during grain fill. The total N requirement could then be computed by summing the N required for raising protein and the N removed by the crop in the year when the grain was harvested.  相似文献   

9.
Variable-rate application (VRA) addresses in-field variation in soil nitrogen (N) availability and crop response, and as such is a tool for more effective site-specific management. This study assessed the performance of a VRA system for on-the-go delivery of granular fertilizer in 7-m wide and 200-m long strips of a 2.4-ha wheat field. A randomized complete block design consisted of three treatment strips (a preplant uniform application of 100 kg N/ha, a preplant + in-season uniform farmer rate of 212 kg N/ha and a preplant + in-season VRA) within four blocks. The VRA prototype consisted of Crop Circle ACS-430 active canopy sensors, a GeoScout X data logger that processed the geospatial data to convey a real-time N rate signal (1 Hz) to a Gandy Orbit Air 66FSC spreader through a Raven SCS 660 controller. Crop monitoring included analysis of in-season soil and plant samples, water balance and grain yield. VRA delivered an economic optimum N rate using 72% less in-season N or 38% less total N (131 kg N/ha) than that applied by the farmer (212 kg N/ha). The reduction of total N inputs came about without any yield losses and translated to 58% N-use efficiency in comparison to 44% of the farmer practice and 52% of the preplant control. VRA also provided a much higher revenue over fertilizer costs, €68/ha and €118/ha higher than the preplant control and the farmer practice, respectively. The return of VRA per unit of N was equal to that of the large preplant application due to low leaching losses. Overall, the high-resolution VRA was superior in terms of environmental benefits and profitability with the least uncertainty to the farmer.  相似文献   

10.
张学科 《西北农业学报》2016,25(12):1884-1889
为探索宁夏日光温室中不合理灌溉对番茄水分利用、氮素迁移特性的影响,通过田间试验方法,在不同灌溉方式(T1漫灌4.50t·hm~(-2)、T2滴灌3.15t·hm~(-2))及氮肥用量(T1常规量800kg·hm~(-2)、T2推荐量600kg·hm~(-2))处理下测定了土壤水分分布、番茄水分利用率和土壤剖面氮素淋溶特征。结果表明,在番茄的不同生育期,0~80cm土层深度滴灌+推荐施肥土壤含水率大于漫灌+习惯施肥,而80~200cm土层结果与之相反,可见,滴灌后水分主要保蓄在80cm以上土层,而漫灌方式水分渗出耕层土壤的量更多。滴灌+推荐施肥处理瞬时叶片水分利用率、番茄水分利用效率明显高于漫灌+习惯施肥,但两处理产量差异不明显。在当季蔬菜生长期间,不同处理30~50cm土层的硝态氮质量分数均最高,随着灌溉次数的增多,硝态氮逐渐向下迁移,漫灌+习惯施肥在100~200cm土层硝酸盐质量分数高于滴灌+推荐施肥处理,此质量分数明显高于国内其他蔬菜栽培地区。水资源浪费与不合理水肥利用引起的地下水污染问题在宁夏日光温室蔬菜栽培中已相当突出,值得引起相关部门的重视。  相似文献   

11.
【目的】系统研究火龙果的水肥耦合效应,制定适宜的灌水施肥方案,为其高产优质和可持续发展提供技术依据。【方法】以紫红龙(Hylocereus polyrhizus,Zihonglong)为试验材料,以田间持水量、施氮量和施钾量为试验因素,采用3因素5水平二次回归通用旋转组合设计,共设20个处理,进行2018—2019连续2年的定株水肥耦合试验,统计火龙果周年产量和各批次单果重,测定果实可溶性糖、可溶性蛋白等品质指标并进行综合评分,探究水、氮、钾对火龙果产量和品质的调控作用,采用频率分析法对产量和品质数学模型进行优化分析,以获取高产优质下的灌水施肥方案。【结果】不同处理水氮钾的供应对火龙果果实可溶性蛋白、糖酸比等品质指标影响显著(P<0.05,下同),处理10(田间持水量40%、N 300 kg/ha、K2O 375 kg/ha)和处理15(田间持水量60%、N 300 kg/ha、K2O 375 kg/ha)的果实蛋白质含量相对于其他处理有所提升,处理4(田间持水量72%、N 122 kg/ha、K2O 152 kg/ha)相对于其他处理明显降低火龙果果实中可滴定酸含量,提升糖酸比值,改善果实风味,但也降低果实中总酚含量。整体来看,产量和综合品质均随田间持水量、施氮量和施钾量的增加表现为先增后减的变化趋势;因素对产量和综合品质的影响程度均表现为田间持水量>施氮量>施钾量,田间持水量、施氮量和施钾量对于火龙果产量的交互效应存在差异,其中田间持水量与施氮量对产量的交互作用显著。在田间持水量52.43%~70.86%、N 215.17~511.00 kg/ha、K2O 148.99~565.47 kg/ha时,火龙果产量可达22500 kg/ha以上;在田间持水量48.25%~64.68%、N 247.89~404.48 kg/ha、K2O 247.30~581.51 kg/ha时,火龙果综合品质评分达80分以上。【结论】田间持水量、施氮量和施钾量水平显著影响火龙果的产量和主要品质指标,适宜的灌水和充足的氮钾供应可提高火龙果的产量和品质,增加其商品性和经济效益,综合考虑三者对火龙果产量和品质的影响,滴灌条件下,火龙果高产优质的灌水施肥方案为:田间持水量52%~65%,N 247.89~404.48 kg/ha,K2O247.30~565.47 kg/ha。该优化方案可供同等肥力水平火龙果园水肥一体化模式下的管理参考。  相似文献   

12.
In semi-arid regions, soil water and nitrogen (N) are generally limiting factors for corn (Zea mays L.) production; hence, implementation of appropriate N fertilization strategies is needed. The use of precision agriculture practices based on specific site and crop properties may contribute to a better allocation of fertilizer among management zones (MZ). The aim of this study was to develop a model for diagnosis of N availability and recommendation of N fertilizer rates adjusted to MZ for dryland corn crops growing in Haplustolls. The model considered variability between MZ by including site-specific variables [soil available water content at sowing (SAW) and Available Nitrogen (soil available N-NO3 at planting + applied N, Nd)] using spatial statistical analysis. The study was conducted in Córdoba, Argentina in Haplustolls and consisted in four field trials of N fertilizer (range 0–161 kg N ha−1) in each MZ. The MZ were selected based on elevation maps analysis. Grain yields varied between MZ and increased with larger SAW and Nd at sowing. Grain responses to Nd and SAW in any MZ were not different between sites, allowing to fit a regional model whose parameters (Nd, Nd2, SAW, SAW2) contributed significantly (p < 0.001) to yield prediction. Agronomical and economically optimum N rates varied among MZs. However, the spatial variability of optimum N rates among MZs within sites was not enough to recommend variable N fertilizer rates instead of a uniform rate. Variable N fertilizer rates should be recommended only if variability in SAW and soil N among MZ is greater than that found in this work.  相似文献   

13.
A long-term (1982-2001) field experiment was conducted in a calcareous soil under wheat (Triticum aestivum L.)-wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system at Zhangye, Gansu Province, China to determine the effects of long-term fertilization on crop yield, nutrients interactions, content and accumulation of nitrate-N in soil profiles. Twenty- four plots in a split-plot factorial with a combination of eight treatments (from nitrogen (N), phosphorus (P), potassium (K) and farmyard manure (M) applications) and 3 replications were selected. Main treatments were M and without M, and the sub-treatments were no-fertilizer (CK), N, NP and NPK. When P and K fertilizers were part of treatments, their ratio to N was 1N:0.22P:0.42K. All M, P and K fertilizers were applied as the basal dressing. The grain yield was harvested each experimental period and straw yield for the period from 1988 to 1997. After crop harvest in 2000, the soil was sampled from the 0-20, 20-60, 60-100, 100-140 and 140-180 cm depths to determine NO3^--N content. Maize yield of CK in 2000 was only 28.2% of that in 1984, and wheat in 2001 was 25.7% of that observed in 1982. Average impact of fertilizers on grain yield decreased in the order of N 〉 M 〉 P 〉 K. Yield response to N and P fertilizers increased with progress of the experiment. The impact of K fertilizer showed no increase in grain yield during the initial 6 years (1982-1987), moderate increase in the next 5 years (1988-1992), and considerable increase in the last 9 years (1993-2001). The straw yield trend was similar to grain yield. Accumulation and distribution of NO3^--N in soil was significantly affected by annual fertilizations. Mineral fertilizers (NP and NPK) led to NO3^- -N accumulation in most subsoil layers, with major impact in the 20-140 cm depth. The combination of mineral fertilizers and farmyard manure (MNP and MNPK) reduced soil NO3^--N accumulation in comparison to mineral fertilizers, It can be argued that long-term fertilization significantly enhanced grain and straw yield in this rotation scheme. The findings of this research suggest that it is important to balance application of mineral fertilizers and farmyard manure in order to protect soil and underground water from potential NO3^--N pollution while sustaining high productivity in the oasis agro-ecosystem.  相似文献   

14.
采用田间小区试验,研究了施用沼肥和油渣对红枣林土壤硝态氮和红枣产量的影响。结果表明,施用沼肥和油渣对土壤硝态氮含量及红枣产量和品质有显著影响。在红枣生长季节,施用油渣肥和沼肥都能提高土壤剖面的硝态氮含量,显著提高红枣产量和单果质量,增产效果为油渣肥沼肥CK。施用沼肥和油渣肥可提高枣果的维生素C、还原糖和总糖含量,在维生素C和还原糖含量的提高上表现为沼肥油渣肥CK,总糖含量的提高上为油渣肥沼肥CK。  相似文献   

15.
不同氮肥水平下玉米根际土壤特性与产量的关系   总被引:11,自引:0,他引:11  
【目的】明确不同生育时期根际土壤特性与玉米籽粒产量之间的关系,能够为生产上合理施肥、提高氮素利用效率和减轻环境污染提供理论依据。【方法】2012年大田设置5个氮肥梯度固定施肥样地(对照、180 kg·hm-2、240 kg·hm-2、300 kg·hm-2和360 kg·hm-2,分别简写为CK、N180、N240、N300和N360),并于2012、2013和2014年连续3年在玉米拔节、吐丝、成熟3个关键生育时期测定玉米根际和非根际土壤铵态氮、硝态氮、脲酶、过氧化氢酶、pH,同时测定玉米根系和地上部生物量及其氮素累积量,重点分析CK、N240和N360 3个处理根际土壤特性以及植株氮素累积量与玉米籽粒产量之间的关系。【结果】与CK相比,4个施肥处理(N180、N240、N300和N360)3年产量的平均值分别增加了23.85%、36.40%、39.87%和34.78%;其地上部不同阶段氮素累积量均显著高于CK(2012年播种-拔节除外),并随施肥量增加呈先增加后降低趋势。与CK相比,4个施肥处理根际土硝态氮含量分别增加23.38%、57.13%、57.87%和69.74%,非根际土壤硝态氮分别增加59.49%、92.01%、132.08%和179.35%。随施氮量的增加根际土铵态氮含量显著增加;与CK相比,4个施肥处理3年的非根际土壤铵态氮含量分别增加4.27%、3.51%、5.04%和26.26%。根际土壤pH和非根际土壤pH均随着氮肥施用量的增加而降低,其中根际土壤和非根际土壤pH的变化范围分别为4.5-6.7和5.5-7.2。与非根际土pH相比,根际土壤pH平均降低5%。根际土壤脲酶活性随氮肥用量的增加呈先增加后降低趋势。与对照相比,4个施氮处理3年非根际土壤脲酶活性平均值分别增加了4.02%、14.73%、24.55%和19.64%。根际土和非根际土过氧化氢酶活性均随氮肥用量的增加而降低,与CK相比,4个施氮处理3年的非根际土壤过氧化氢酶活性平均值分别降低了3.03%、5.09%、8.24%和12.67%。CK、N240和N360 3个处理不同生育时期玉米根际土壤特性以及植株氮素累积量与籽粒产量之间的相关分析结果表明,拔节期根际土壤硝态氮含量连续3年均与产量呈显著正相关。吐丝期玉米根际和非根际土壤硝态氮、根际土壤铵态氮和非根际土pH均与籽粒产量呈显著正相关;其中2013和2014年根际脲酶活性和根际土壤pH与产量的相关性也达到显著水平。2013和2014年成熟期根际和非根际土硝态氮含量也与玉米产量呈显著相关。主成分分析表明,玉米籽粒产量与拔节期土壤硝态氮含量、根际过氧化氢酶、地上部生物量和氮素累积量相关性较强;与吐丝期根际和非根际土壤硝态氮含量、根际土壤铵态氮含量和土壤pH以及地上部生物量及氮素累积量、根系生物量相关性较强;与成熟期地上部生物量和氮素累积量相关性较强。【结论】根据不同生育时期玉米根际土壤特性与籽粒产量之间的关系,进行合理施肥,能够保证玉米根际养分的有效供应,营造良好的根际土壤环境,提高氮素利用效率、增加玉米籽粒产量。  相似文献   

16.
雷竹经营过程中化肥的大量施用,是产区水体污染的主要原因之一,养分管理技术可有效控制面源污染。为了探明减量施肥和有机肥施用对雷竹不同氮形态流失的影响,2012年在浙江省临安市雷竹产区设置了4种施肥处理:对照(CK);常规施肥(CF);减量无机(DI);减量有机无机(DOI),试验于5月18日、9月7日、11月9日分别施用肥料总量的40%,30%和30%,施肥后均进行浅翻,深度5 cm左右。通过建立径流场和土壤渗漏水收集装置,同时在试验田附近布置量雨筒,观察2012年不同氮形态浓度及流失负荷随降雨量的动态变化。研究结果表明:不同施肥处理径流水硝态氮、水溶性有机氮(WSON)以及颗粒态氮的浓度分别在3.82-6.82 mg/L、0.89-1.85 mg/L和0.89-1.83 mg/L,其占总氮的百分比分别为60.9%-68.2%、16.0%-18.1%和15.1%-21.6%。不同施肥处理渗漏水中硝态氮、铵态氮及WSON的浓度分别在26.2-92.5 mg/L、0.50-6.42 mg/L和6.57-12.6 mg/L,其占总氮的百分比分别为75.8%-82.9%、1.50%-6.36%和11.2%-20.6%。不同施肥处理径流水的氮总流失负荷,减量无机和减量有机无机相对于常规施肥来说减少了46.9%和23.1%;不同施肥处理的渗漏水的氮总流失负荷,减量无机和减量有机无机相对于常规施肥来说减少了19.1%和52.1%,可见减量施肥和减量有机无机减少氮流失的效果显著。  相似文献   

17.
变量播种施肥技术研究   总被引:9,自引:0,他引:9  
由于种子的播种量不精确,化肥的施用存在利用率低、污染环境等问题。为了解决这些问题,必须进行精准变量播种施肥,变量播种施肥技术是精准农业的重要内容之一。文章介绍了精准农业的基本概念,并以精准农业为背景,介绍了变量播种施肥的概念及关键技术,探讨了当前变量播种施肥技术存在的问题及未来的发展前景。  相似文献   

18.
By accounting for spatial variation in soil N levels, variable-rate fertilizer application may improve crop yield and quality, and N use efficiency within fields. The main purpose of this study was to demonstrate how site-specific wheat yield and protein data, and a geographic information system may be used in developing precision N-recommendations for spring wheat. The three steps in the procedure include: (1) estimate the amount of N-removed in wheat in the year in which the crop is harvested, (2) estimate the N-deficit, defined as the amount of additional N needed for raising protein concentration in a future crop to a specified target level, and (3) estimate the total N-recommendation by summing the mapped values of the N-removed and the N-deficit. A map for variable-rate application of fertilizer is derived by specifying cutoff values to divide the range in the total N-recommendation into classes representing N management zones.A field experiment was conducted within an annually cropped wheat field (101 ha) in northern Montana to determine whether the proposed method could improve grain yields and protein levels. The N-removal and N-deficit were estimated from site-specific wheat yield and protein data that were acquired during harvest of 1996. In 1997, which was a dry year, an experiment was conducted in the same field that consisted of a randomized complete block design arranged as pairs of strip plots. Variable- or uniform-rate N treatments were randomly assigned to each pair of strips. Both treatments received nearly the same amount of fertilizer, however, N in the variable treatment was varied to match patterns in grain yield and protein levels that previously existed in 1996. Yields were not significantly different between management systems, but proteins were significantly enhanced by spatially variable N application. In addition, variability in protein levels was reduced within the whole field. Field areas deficient in N fertility could be identified without having to sample for soil profile N.  相似文献   

19.
沼液在稻田的精确施用及其环境效应研究   总被引:7,自引:6,他引:1  
为探究沼液在稻田中的适宜用量,通过田间试验,研究不同氮素水平的沼液(0、90、157.5、225、292.5、562.5 kg·hm~(-2))对水稻产量、氮素利用率、田面水无机氮动态变化、土壤残留无机氮以及稻田氨挥发的影响。结果表明,水稻籽粒产量随沼液氮素施用量的变化符合线性加平台模型,沼液在水稻种植中的最佳氮素施用量为213.9 kg·hm~(-2);施用沼液显著增加了田面水铵态氮浓度,施用沼液3 d后,田面水铵态氮浓度迅速降低,而田面水硝态氮初始浓度无明显变化;稻田氨挥发总量随沼液氮素施用量的增加而显著增加,且主要集中在沼液施用后的一周内,氨挥发所引起的氮素损失占沼液氮素量的14.52%~17.64%;等氮量施用的沼液和化肥相比,水稻产量、氮素利用率、氮素农学生产率和土壤残留无机氮均无显著差异,而单位稻谷产量的氨挥发量显著降低22.6%。由此可见,稻田合理施用沼液具有较好的经济效益和环境效益。  相似文献   

20.
【目的】探讨全水溶性硅肥对烟叶质量和品质的影响,为江西省烟叶生产中全水溶性硅肥的应用提供参考。【方法】分别于旱地和水田中开展田间试验,研究不同全水溶性硅肥施用量(60、120和180、0 kg/ha)对烟叶农艺性状及产质量等指标的影响,并分析其经济效益。【结果】两种土壤类型中施用硅肥处理与对照(0 kg/ha)相比,均能显著提高烟叶的单叶重;硅肥施用量60、120和180 kg/ha处理的平均产量分别比对照处理增长9.1%、9.5%和10.7%;施用全水溶性硅肥对原烟外观质量及烤烟等级影响不明显;120 kg/ha处理的产值最高,为47707.7 元/ha,180 kg/ha处理其次,为47699.6元/ha,均显著高于对照处理。【结论】施用全水溶性硅肥能改善原烟品质,降低烟叶烟碱含量,并提高烤烟的产量和产值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号