首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, amide and amine groups bound to poly(ethylene terephthalate) fibers are used to remove the colored toxic Congo red dye from aqueous solution. The effects of process variables like pH, contact time, graft yield, and initial dye concentration on the adsorption were investigated. The maximum adsorption of Congo red to amide and amine groups was observed at pH 3 and 5 respectively. Equilibrium was attained at approximately 60 min for the amine group. The adsorption capacity of amine group on the poly(ethylene terephthalate) fiber was 46.5 mg g−1 at 25 °C, which was higher than that of the amide group on the poly(ethylene terephthalate) fiber. Desorption was done using 0.1 M NH3, and recovery was measured at 58.2 %. The used adsorbent was regenerated and recycled six times. The results showed that the amine-functionalized fiber could be considered as potential adsorbents for removal of Congo red from aqueous solution.  相似文献   

2.
Amine-functionalized supports were prepared by chemical modification of cotton fibers using amino compounds namely diethylenetriamine (DET) and 1,4-diaminobutane (DB) in order to be loaded with copper ions. Evidence of attaching amine groups onto cellulosic fibers was confirmed through nitrogen and SEM analysis. Adsorption behavior of Acid Blue 25 from aqueous solutions onto [Cu(II)/DET-cotton] and [Cu(II)/DB-cotton] has been evaluated via batch and column mode systems. During the batch experiments, the effects of temperature and type of adsorbent on dye removal were investigated. Results revealed the formation of ternary complexes of the type [AB25/Cu(II)/adsorbent] with a [5/2:3:1] stoichiometry for DET-cotton and a [1:1:1] stoichiometry for DB-cotton at 20 °C. In the isotherm studies, Langmuir, Freundlich, and Jossens equations were applied and it was found that the experimental data conformed to Jossens model. Thermodynamic parameters such as change in free energy (ΔG 0), enthalpy (ΔH 0), and entropy (ΔS 0) have also been calculated in this paper, and it was found that the adsorption process was exothermic and spontaneous. The column experiments were conducted to study the effect of bed height on adsorption performance of both adsorbents. Results exhibited that the column capacity of [Cu(II)/DET-cotton] complex was found to be higher than that of [Cu(II)/DB-cotton] as was obtained in batch process. BDST model was applied to experimental data in order to predict the breakthrough curves and determine the characteristics parameters of the column useful for process design. Results revealed that the used model was appropriate to fit the experimental data. Desorption studies to recover the adsorbed dye from both adsorbents were performed with NaOH and NH4Cl solutions.  相似文献   

3.
A novel cellulose-based porous adsorbent with high adsorption capacity for methylene blue (MB) was prepared by free radical polymerization methods. The obtained polymer grafting rate and dye removal efficiency are as high as 338.64 % and 97.74 %, respectively, when the dosage of monomer is 4.5 g, the polymerization condition is 3 h at 70 °C. The cellulose-based adsorbent showed high mechanical properties and good flexibility. The Langmuir isotherm model revealed that the maximum theoretical adsorption capacity of this material for methylene blue was 1734.816 mg g-1 at pH 9.0 at 313 K, which is higher than the values observed for other adsorbents. Scanning electron microscopy (SEM) showed that the cellulose-based adsorbent exhibits a typical well-defined porous and interconnected three-dimensional framework structure, which is benefits to dye adsorption. The adsorption kinetics (pseudo first-order, pseudo-second-order, and intraparticle diffusion models) was also studied, and the pseudo-second-order model fitted MB adsorption better than the pseudo-first-order and intraparticle diffusion models at different initial dye concentrations (500-3000 mg l -1). The novel polyacrylic acid-grafted quaternized cellulose (PAA-g-QC) adsorbent is thus potentially useful for the treatment of dye-contaminated wastewater.  相似文献   

4.
Body fluid medical wastes are infectious clinical wastes (blood, saliva, urine) due to their high pathogenic content. Incineration is the most commonly used method in waste management that possess high water content along with molecularly dissolved species such as proteins. The process is costly; so that the removal of solid content dissolved in aqueous part by preliminary filtration can reduce the volume of the waste material. In this study, fibrous mats were prepared by electrospinning of PS wastes from DMF and THF solutions. Then they are employed in the removal of protein-based solid contents of body fluid medical wastes before their disposal. Two sources of PS waste (CD cover and Styrofoam) were employed along with virgin PS for comparison. The adsorption capacity of as-prepared electrospun fibers was examined for three model proteins: Bovine Serum Albumin (BSA), Myoglobin (MYO), and Trypsin (TRY). The fibers obtained from PS CD wastes have remarkably larger protein sorption capacities (particularly BSA) than the fibers obtained from virgin PS. XPS reveals the presence of CaCO3 domains in CD covers added into PS during their production steps probably to increase mechanical properties. There may be an electrostatic interaction between Ca2+ and the negatively charged groups of the protein. In this way, PS wastes could be converted to a beneficial secondary product by electrospinning and also resulting materials promises for the disposal of body fluid medical wastes. This may be one of the frontiers study on the removal of medical wastes by adsorbents produced via electrospinning of waste polymers.  相似文献   

5.
吸附茶多酚树脂的筛选   总被引:24,自引:0,他引:24  
徐向群  陈瑞锋 《茶叶科学》1995,15(2):137-140
通过对4种离子交换树脂和16种吸附树脂对茶多酚的交换或吸附及解吸性能的研究表明,92─2和92─3吸附树脂对茶多酚有较强的吸附能力和较好解吸性能,优于AmberliteXAD─7和日本HP─21。经这两种树脂静态吸附后,其提取物的茶多酚含量均可达60%左右(对照仅为26.6%,用日本《茶分析法》修改法测定结果)。表明这两种树脂适于从茶叶中制取高纯度茶多酚制品的工艺要求。  相似文献   

6.
Chemically modified starch nanocrystals were used as adsorbents for the removal of aromatic organic compounds from water. The nanocrystals were chemically modified by grafting with stearate moieties which enhanced the adsorption capacity of the nanometric substrate. Their adsorption capacity ranged between 150 and 900 μmol g−1 of modified nanoparticles and the adsorption isotherms could be described accurately by the Langmuir model. The adsorption kinetics followed a two-step process with first pure adsorption of the aromatic compounds onto the surface of the nanoparticles followed by a diffusion of the compounds into the layer of surface chains grafted onto the nanoparticles. Furthermore, the feasibility of using these nanoparticles in continuous flow mode processes was confirmed using a fixed bed column setup. The fixed bed column could also be regenerated by washing with ethanol and was found not to exhibit any loss in adsorption capacity over multiples adsorption-desorption cycles.  相似文献   

7.
In this paper, poly(amido primary-secondary amine) (PAPSA) as a high capacity polymeric adsorbent was synthesized. Dye removal ability of PAPSA from single and binary systems was investigated. The functional groups of PAPSA were studied using Fourier transform infrared (FTIR). Acid Blue 92 (AB92), Direct Red 23 (DR23), and Direct Red 81 (DR81) were used as model compounds. The kinetic and isotherm of dye adsorption were studied. The effect of operational parameter such as adsorbent dosage, dye concentration, and pH on dye removal was evaluated. It was found that adsorption of dyes onto PAPSA showed Langmuir isotherm. The maximum dye adsorption capacity (Q 0) of PAPSA was 10000 mg/g, 12500 mg/g, and 10000 mg/g for AB92, DR23, and DR81, respectively. Adsorption kinetic of dyes followed pseudo-second order kinetics. Dye desorption tests showed that the dye release of 85 % for AB92, 91 % for DR23 and 89 % for DR81 were achieved in aqueous solution at pH 12. The results showed that the PAPSA as a polymeric adsorbent with high dye removal ability might be a suitable alternative to remove dyes from colored wastewater.  相似文献   

8.
In this research, poly(vinyl alcohol) (PVA)/chitosan electrospun nanofibrous membrane (ENM) was prepared by electrospinning method in order to investigate its dye removal ability from colored wastewater. The morphology and average fiber diameter of the membranes were investigated by scanning electron microscopy (SEM), image analysis and atomic force microscopy (AFM). The chemical characterization was studied by Fourier transform infrared spectroscopy (FTIR). The permeability of the membranes was evaluated by measuring pure water flux (PWF). In order to investigate the performance of the prepared membranes they were used in the batch adsorption and membrane separation for dye removal from colored wastewater. The effect of pH, number of membranes and dye concentration on the dye removal ability of the ENM was investigated. Response surface methodology (RSM) was used to achieve multi-objective optimization and equations of adsorption capacity and breakthrough time regarding operating conditions. The results demonstrated the potential of using PVA/chitosan nanofiber membrane as a microfiltration (MF) membrane for dye removal. Moreover, the recoverability property of prepared membranes was noticeable.  相似文献   

9.
Maghemite glass fibre nanocomposite with excellent magnetic and adsorption properties was successfully developed from nontoxic and eco-friendly reagents by thermal decomposition approach. The developed nanocomposite was utilized in adsorption of methylene blue which follows Freundlich adsorption isotherm. The excellent value of adsorption capacity (51.31 mg g-1) as compared to other adsorbents recommends its potential role for adsorption phenomenon in multiple applications. The developed nanocomposite can be recycled and reused easily. Surface and other functional characteristics of developed nanocomposite were determined through scanning electron microscopy, X-ray diffraction, raman spectroscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometer. The obtained results revealed that maghemite glass nanocomposite is a potential tool that can be utilized in waste water treatments.  相似文献   

10.
A colorable pigment was prepared by dye adsorption onto titanium dioxide and subsequent silane coating. The effects of pH value, dye concentration, and adsorption times on dye adsorption were discussed. Large adsorption capacity of an anionic dye was obtained at pH value of 2 and the adsorption process was well described by the Langmuir isotherm model. Good dyeability and color fastness of pigment dyed fabric were achieved in the normal life cycle under sunlight. The decoloration of pigment was realized through photocatalytic degradation of dye molecules by titanium dioxide under ultraviolet irradiation when reusing the pigment dyed textiles after disposal. The new absorption peaks in the FTIR spectrum at 2924.95 cm-1, 1714.91 cm-1, 1461.17 cm-1, and 1289 cm-1 verified silane modification. Silane modification improved fixation of dyes onto the pigment and immobilization of pigments onto substrates. The close attachment of silane coating layer to titanium dioxide was conducive to photodegradation of dye molecules in the pigment.  相似文献   

11.
Silk yarn was dyed with morin (2′,3,4′,5,7-pentahydroxyflavone) by using alum as mordant. In order to optimize the process, three methods of dyeing involving: pre-mordanting, simultaneous mordanting, and post-mordanting were assessed and compared with a mordant-free process. The adsorption of alum-morin dye onto silk fibers indicated that the adsorption capacities were significantly affected by pH, the initial dye concentration, and temperature. The initial dye adsorption rates of alum-morin dye on silk before equilibrium was reached increased with higher dyeing temperatures. The pseudo second-order kinetic model was indicated for alum-morin dyeing (simultaneous mordanting) of silk at pH 4.0 with an activation energy (E a ) of 45.26 kJ/mol. The value of the enthalpy of activation (ΔH #) for alum-morin dyeing on silk at pH 4.0 was −31.29 kJ/mol. Also, the free energy (ΔG o) and entropy changes (ΔS o) for alum-morin dyeing on silk were −17.73 kJ/mol and −45.7 J/molK, respectively, consistent with a spontaneous and exothermic adsorption process.  相似文献   

12.
Polyacrylonitrile nanofibers were produced using the electrospinning method and dyed with a basic dye alongside regular polyacrylonitrile fibers. In order to investigate the effect of high surface area to volume ratio of nanofibers on their adsorption behavior in comparison with regular fibers, the dyeing conditions for both types of fibers were kept just the same. Physiochemical parameters of dyeing such as adsorption isotherm, standard affinity, enthalpy change, rate of dyeing constant, diffusion coefficient, and activation energy of diffusion were investigated for both types of fibers. The results showed that the adsorption process can be well described with the Langmuir adsorption isotherm for both types of fibers whereas the standard affinity of dye to nanofibers was higher than regular fibers and the higher negative values of enthalpy changes were obtained for regular fibers. The nanofibers rate of dyeing was faster than regular fibers with higher amounts of diffusion coefficients and lower amounts of activation energy of diffusion. This study also revealed that in spite of the approximately same amount of dye exhaustion for both types of fibers, the color strength of regular fibers was noticeably higher than nanofibers.  相似文献   

13.
Polyindole nanofibers were prepared via electrospinning method using acetonitrile as solvent. The obtained electrospun polyindole nanofibers were characterized with SEM, TEM, FTIR and BET surface areas measurements. Adsorption experiments were carried out in batch sorption mode to investigate the effect of pH, contact time and diameter of polyindole nanofibers. The Cu(II) adsorption was highly pH dependent and the optimum pH was found to be 6. The maximum adsorption capacities for electrospun polyindole nanofibers and polyindole powders were 121.95 and 18.93 mg/g attained in 15 and 60 min, respectively. With the diameter of polyindole nanofibers increasing, the adsorption capacity slightly decreased. The adsorption isotherm data fitted well to the Langmuir isothermal model which indicates that the monolayer adsorption occurred. The kinetics data analysis showed that the adsorption process could be described by pseudo-second order kinetic model, suggesting a chemisorption process as the rate limiting step. Thermodynamic parameters ΔHº, ΔSº and ΔGº for the Cu(II) adsorption by polyindole nanofibers were calculated. The results showed that the Cu(II) adsorption was feasible, spontaneous and endothermic. Desorption results revealed that the adsorption capacity can remain up to 75 % after 10 times usage. The electrospun polyindole nanofibers would have promising application for removal of Cu(II) from wastewater treatment.  相似文献   

14.
In this study starch-montmorillonite/polyaniline (St-MMT/PANI) nanocomposite was synthesized by chemical oxidative polymerization of aniline in the presence of starch-montmorillonite nanocomposite dispersion. The prepared ternary nanocomposite was characterized using FT-IR, XRD, SEM, TGA and TEM techniques. XRD patterns combined with TEM results confirmed the intercalation of MMT in the starch matrix. SEM micrographs revealed the growth of polyaniline over the surface of the St-MMT nanocomposite. The St-MMT/PANI nanocomposite was used for the adsorption of a reactive dye. Batch removal experiment results showed complete removal of dye in a very short contact time. Further investigations indicated that the removal mechanism was based on both the adsorption and electrostatic attraction between nanocomposite and dye molecules. The experimental data were well fitted to the Langmuir isotherm and pseudo-second-order kinetic model. The adsorption capacity of reactive dye on St-MMT/PANI nanocomposite was 91.74 mg g?1. All these results demonstrated the effectiveness of the hybrid system as an efficient adsorbent for removal of reactive dyes from textile effluents.  相似文献   

15.
Silk fibroin (SF)/Cellulose Acetate (CA) blend nanofibrous membranes were prepared by electrospinning and their heavy metal absorbabilities were examined in an aqueous solution after ethanol treatment. The electrospun nanofibrous membranes were comprised of randomly oriented ultrafine fibers of 100–600 nm diameters. As a result of field emission electron microscope (FEEM), the anti-felting properties of the blend nanofibrous membranes were markedly improved after treatment with 100 % ethanol when SF was blended with CA. Metal ion adsorption test was performed with Cu2+ as a model heavy metal ion in a stock solution. The SF/CA blend nanofiber membranes showed higher affinity for Cu2+ in an aqueous solution than pure SF and pure CA nanofiber membranes. Especially, the blend nanofibrous membranes with 20 % content of CA had an exceptional performance for the adsorption of Cu2+, and the maximum milligrams per gram of Cu2+ adsorbed reached 22.8 mg/g. This indicated that SF and CA had synergetic effect. Furthermore, the parameters affecting the metal ions adsorption, such as running time and initial concentration of Cu2+, had been investigated. The results showed that the adsorption of the Cu2+ sharply increased during the first 60 min, the amount of metal ions adsorbed increased rapidly as the initial concentration increased and then slope of the increase decreased as the concentration further increased. This study provides the relatively comprehensive data for the SF/CA blend nanofibrous membranes application to the removal of heavy metal ion in wastewater.  相似文献   

16.
A major goal of biomimetics is the development of chemical compositions and structures that simulate the extracellular matrix. In this study, gelatin-based electrospun composite fibrous membranes were prepared by electrospinning to generate bone scaffold materials. The gelatin-based multicomponent composite fibers were fabricated using co-electrospinning, and the composite fibers of chitosan (CS), gelatin (Gel), hydroxyapatite (HA), and graphene oxide (GO) were successfully fabricated for multi-function characteristics of biomimetic scaffolds. The effect of component concentration on composite fiber morphology, antibacterial properties, and protein adsorption were investigated. Composite fibers exhibited effective antibacterial activity against Staphylococcus aureus and Escherichia coli. The study observed that the composite fibers have higher adsorption capacities of bovine serum albumin (BSA) at pH 5.32–6.00 than at pH 3.90–4.50 or 7.35. The protein adsorption on the surface of the composite fiber increased as the initial BSA concentration increased. The surface of the composite reached adsorption equilibrium at 20 min. These results have specific applications for the development of bone scaffold materials, and broad implications in the field of tissue engineering.  相似文献   

17.
The dual-mode adsorption model was used to investigate the adsorption behavior of cochineal natural dye on wool fibers. Kinetic, thermodynamic, and equilibrium characteristics were investigated in terms of the adsorption isotherm, affinity, enthalpy and entropy changes, dyeing rate, diffusion coefficient, and activation energy of dye diffusion. The results revealed the prominent role of dyeing pH in determination of dyeing mechanism and dye adsorption isotherm type. At pH 4, dual Langmuir-Nernst model with the highest correlation coefficient was found as the most appropriate isotherm model to describe the adsorption behavior of cochineal onto wool fibers while at pH 6, the adsorption isotherm was the Nernst type. Cochineal adsorption onto wool was exothermic which resulted in progressive fall in affinity and equilibrium dye up-take values with increasing temperature. Moreover, dyeing rate steadily increased with temperature. At pH 4, affinity, dyeing rate, and diffusion coefficient demonstrated higher values compared to pH 6 whereas enthalpy and entropy changes, and activation energy showed lower values. Additionally, negative value for activation energy was obtained at pH 6. The results are deliberated based on the different possible interactions between cochineal dye and wool fiber.  相似文献   

18.
In this work, cellulose-based macroporous cryogels were fabricated by grafting with acrylic acid and acrylamide, which provided the carboxyl and amino functional groups, respectively. The effects of crosslinker, extra water, acrylic acid/ (acrylic acid+acrylamide) feeding ratio on the structure and swelling performance of the resultant cryogels were experimentally investigated. Cellulose-based cryogels with different pore size were prepared by adjusting the reaction parameters. The pore size and functional group contents influenced the swelling behavior of the cryogels. The fabricated cryogels were also investigated as an adsorbent for the removal of toxic methyl blue (MB) from aqueous solution. The interconnected macroporous structure as well as large number of functional groups of the cryogels led to the high adsorption capacity of MB. The maximum adsorption capacity was around 990.1 mg per 1 g dye gel within 60 min. The investigation of the adsorption kinetics revealed that the adsorption process of MB from aqueous solution was well described by pseudosecond order kinetic model. Large-scale preparation of cryogel adsorbents with tunable porous structure and surface functional groups are possible. Therefore, the macroporous cellulose-based cryogels can be used as an adsorbent for the removal of chemical toxic products from aqueous solution.  相似文献   

19.
A novel eco-friendly porous adsorbent of cellulose (CE)/chitosan (CS) aerogel was prepared through sol-gel process and freeze-drying to remove Congo Red (CR). A series of aerogels were prepared by adjusting the mass ratios of CE and CS. Composite aerogels were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). SEM images showed that it was possible to change the structure of the aerogel by adjusting the amount of chitosan. The effects of dosage of chitosan, initial pH, temperature, adsorbent dosage, contact time, and initial dye concentration on adsorption capacities for CR were studied in detail. Batch adsorption studies showed that aerogel exhibited maximum removal efficiency to CR at a composite ratio of 1:3 and dosage of 2.5 g/l. CE/CS aerogel had excellent adsorption capacities for CR at a pH range of 3-11, which indicated stability of the aerogel in both acidic and alkaline conditions. CR adsorption on the composite aerogel fitted pseudo-second-order kinetics and Langmuir isotherm. The Langmuir isotherm model revealed that the maximum theoretical adsorption capacity of this material for CR was 381.7 mg/g at pH 7.0 at 303 K for 24 h. The adsorption mechanism included electrostatic and chemical interactions. The results indicated that the adsorption capacity of CE/CS aerogels was higher than the other chitosan composites adsorbents.  相似文献   

20.
In this study, electrospun wool keratose (WK)/silk fibroin (SF) blend nanofiber was prepared and evaluated as a heavy metal ion adsorbent which can be used in water purification field. The WK, which was a soluble fraction of oxidized wool keratin fiber, was blended with SF in formic acid. The electrospinnability was greatly improved with an increase of SF content. The structure and properties of WK/SF blend nanofibers were investigated by SEM, FTIR, DMTA and tensile test. Among various WK/SF blend ratios, 50/50 blend nanofiber showed an excellent mechanical property. It might be due to some physical interaction between SF and WK molecules although FTIR result did not show any evidence of molecular miscibility. As a result of metal ion adsorption test, WK/SF blend nanofiber mats exhibited high Cu2+ adsorption capacity compared with ordinary wool sliver at pH 8.5. It might be due to large specific surface area of nanofiber mat as well as numerous functional groups of WK. Consequently, the WK/SF blend nanofiber mats can be a promising candidate as metal ion adsorption filter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号