首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The genus Edwardsiella is one of the major causes of fish diseases globally. Herein, we examined 37 isolates from ten different fish species from India, South Korea and Taiwan to gain insight into their phenotypic and genotypic properties, of which 30 were characterized as E. tarda with phenotypic homology estimated at 85.71% based on API‐20E biochemical tests. Genotyping using 16S rRNA put all isolates together with E. anguillarum, E. hoshinae, E. tarda, E. piscicida and E. ictaluri reference strains in a monophyletic group. In contrast, the gyrB phylogenetic tree clearly separated E. ictaluri, E. tarda and E. hoshinae reference strains from our isolates and put our isolates into two groups with group I being homologous with the E. anguillarum reference strain while group II was homologous with the E. piscicida reference strain. Hence, our findings point to E. piscicida and E. anguillarum as species infecting different fish species in Asia. Homology of the ompW protein suggested that strains with broad protective coverage could be identified as vaccine candidates. This study underscores the importance of combining genotyping with phenotyping for valid species classification. In addition, it accentuates the importance of phylogenetic comparison of bacterial antigens for identification of potential vaccine candidates.  相似文献   

2.
Abstract. The plasmid content of 18 isolates of Edwardsiella ictaluri found in channel catfish was analysed by agarose gel electrophoresis. Each isolate contained an identical set of plasmids. This set consisted of two prominent plasmids of 5.2 and 4.4 kilobase pairs, and three smaller and less apparent plasmids. One plasmid (the 5.2 kilobase plasmid) was radiolabelled and used to probe a blot of DNA from all isolates. All plasmids were hybridized but no chromosomal DNA was labelled. These plasmids must share some homologous regions. DNAs from other bacteria, including the related Edwardsiella tarda, were also probed and no hybridization was seen. It is suggested that a plasmid probe may be a sensitive, specific probe for detection of E. ictaluri in channel catfish  相似文献   

3.
The intraspecific variability of E. ictaluri isolates from different origins was investigated. Isolates were recovered from farm‐raised catfish (Ictalurus punctatus) in Mississippi, USA, tilapia (Oreochromis niloticus) cultured in the Western Hemisphere and zebrafish (Danio rerio) propagated in Florida, USA. These isolates were phenotypically homologous and antimicrobial profiles were largely similar. Genetically, isolates possessed differences that could be exploited by repetitive‐sequence‐mediated PCR and gyrB sequence, which identified three distinct E. ictaluri genotypes: one associated with catfish, one from tilapia and a third from zebrafish. Plasmid profiles were also group specific and correlated with rep‐PCR and gyrB sequences. The catfish isolates possessed profiles typical of those described for E. ictaluri isolates; however, plasmids from the zebrafish and tilapia isolates differed in both composition and arrangement. Furthermore, some zebrafish and tilapia isolates were PCR negative for several E. ictaluri virulence factors. Isolates were serologically heterogenous, as serum from a channel catfish exposed to a catfish isolate had reduced antibody activity to tilapia and zebrafish isolates. This work identifies three genetically distinct strains of E. ictaluri from different origins using rep‐PCR, 16S, gyrB and plasmid sequencing, in addition to antimicrobial and serological profiling.  相似文献   

4.
Members of the genus Edwardsiella are important pathogens of cultured and wild fish globally. Recent investigations into the phenotypic and genotypic variation of Edwardsiella tarda have led to the segregation of E. tarda into three distinct taxa: E. tarda, Edwardsiella piscicida, and Edwardsiella anguillarum. In catfish aquaculture in the southeastern USA, E. piscicida has been more commonly associated with disease than E. tarda or E. anguillarum, and recent research has demonstrated E. piscicida to be more pathogenic in channel catfish than E. tarda or E. anguillarum. Anecdotal reports from industry suggest an increased prevalence of E. piscicida associated with the culture of channel (♀) × blue (♂) hybrid catfish. This work investigated the comparative susceptibility of channel catfish, blue catfish, and their hybrid cross to molecularly confirmed isolates of E. tarda, E. piscicida, and E. anguillarum. There was significantly higher mortality in hybrid catfish compared to channel catfish following intracoelomic injection of E. piscicida. To our knowledge, E. piscicida is the first bacterial pathogen to demonstrate increased pathogenicity in hybrid catfish compared to channel catfish.  相似文献   

5.
The causative agent was isolated from diseased turbots (Scophthalmus maximus) stricken by a high‐mortality outbreak of bacterial septicaemia occurring in a mariculture farm in Yantai, a northern coastal city of China. Seven pure isolates, namely EH‐15, EH‐103, EH‐107, EH‐202, EH‐203, EH‐305 and EH‐306, belonged to Edwardsiella tarda. The phenotypic features of the cultures were analysed extensively. Three of the isolates showed high 16S rDNA sequence similarities with E. tarda sequence (GenBank accession no. EF467289). However, unlike the E. tarda ATCC 15947, all the isolates, except EH‐15, contained a novel large plasmid sized about 23.7 kb. Furthermore, pathogenicity of the isolates was addressed by experimental challenges with fish models. The isolates exhibited strong virulence to swordtail fish with LD50 ranging between 3.8 × 103 and 3.8 × 105 CFU g?1, and EH‐202 displaying the lowest LD50 value among them. Antibiotic susceptibilities of E. tarda isolates were assayed. Compared with E. tarda ATCC 15947, the isolates displayed strong resistance to chloramphenicol, and the probable dominant chloramphenicol resistance determinant was cat III. Depicting the main biological properties of turbot‐borne E. tarda strains in China, the study provided useful information for further unveiling their pathogenic mechanisms.  相似文献   

6.
A molecular epidemiology study was conducted on 90 Edwardsiella ictaluri isolates recovered from diseased farmed freshwater catfish, Pangasianodon hypophthalmus, cultured in the Mekong Delta, Vietnam. Thirteen isolates of E. ictaluri derived from diseased channel catfish, Ictalurus punctatus, cultured in the USA were included for comparison. All the E. ictaluri isolates tested were found to be biochemically indistinguishable. A repetitive (rep)‐PCR using the single (GTG)5 primer was shown to possess limited discriminatory power, yielding two similar DNA profiles categorized as (GTG)5‐PCR group 1 or 2 among the Vietnam isolates and (GTG)5‐PCR group 1 within the USA isolates. Macrorestriction analysis identified 14 and 22 unique pulsotypes by XbaI and SpeI, respectively, among a subset of 59 E. ictaluri isolates. Numerical analysis of the combined macrorestriction profiles revealed three main groups: a distinct cluster formed exclusively of the USA isolates, and a major and minor cluster with outliers contained the Vietnam isolates. Antibiotic susceptibility and plasmid profiling supported the existence of the three groups. The results indicate that macrorestriction analysis may be regarded as a suitable typing method among the E. ictaluri species of limited intraspecific diversity. Furthermore, the findings suggest that E. ictaluri originating from Vietnam may constitute a distinct genetic group.  相似文献   

7.
The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of caprylic acid (CA), monocaprylin (MC, monoglyceride ester of CA) and sodium caprylate (SC) on Edwardsiella ictaluri, E. tarda, Streptococcus iniae and Yersinia ruckeri in Mueller Hinton broth (MHB) were investigated. In addition, the bactericidal kinetics of CA and MC on the aforementioned pathogens in MHB, and that of SC in water, were determined. The MIC of CA and SC on E. ictaluri, E. tarda, S. iniae and Y. ruckeri were 7.5 and 50 mM, 7.5 and 50 mM, 10 and 25 mM, and 7.5 and 25 mM respectively. For MC, the MIC was in between 2.5 and 5 mM for all the pathogens. The MBC of CA, MC and SC on E. ictaluri, E. tarda, S. iniae and Y. ruckeri were 10, 5 and 100 mM; 10, 5 and 100 mM; 15, 5 and 75 mM; and 10, 5 and 75 mM respectively. The three lipid molecules exerted a substantial antimicrobial effect on the fish pathogens studied. The results indicate that CA and its derivatives could potentially be used for treating and controlling bacterial fish diseases, but extensive validation studies in fish are needed before recommending their usage.  相似文献   

8.
Enteric septicaemia of catfish (ESC) caused by Edwardsiella ictaluri is becoming an increasing problem in aquaculture and has been reported worldwide in a variety of fish species. This study reports ESC in hybrid catfish, Clarias macrocephalus (Günther) × Clarias gariepinus (Burchell), cultured in southern Thailand. The bacteria were identified as E. ictaluri by conventional and rapid identification systems, as well as by genetic and phylogenetic characterization. Analysis of 16S rRNA indicated 100% homology to the 16S rRNA sequence of several E. ictaluri strains in GenBank. Plasmid profiles demonstrated 4.0‐ and 5.6‐kb plasmids, compared with the 4.8‐ and 5.6‐kb plasmids in the US isolates, and representative genes of three of the four known pathogenicity islands of US isolates were present. Serologically, lipopolysaccharide (LPS) purified from the Thai isolates was not recognized by a monoclonal antibody against the LPS of US isolates. Fish experimentally infected with E. ictaluri showed 23–100% mortality within 14 days with a 168‐h LD50 of 6.92 × 107 CFU mL?1 by immersion and a 96‐h LD50 of 1.58 × 106 CFU fish?1 by intraperitoneal injection. Examination of tissue sections obtained from both naturally and experimentally infected fish indicated that infection of hybrid catfish with E. ictaluri produced lesions in several organs including liver, kidney, spleen, heart and brain. Histopathology findings included cellular necrosis, focal haemorrhage, infiltration of lymphocytes and multifocal granulomatous inflammation in the infected organs.  相似文献   

9.
In response to a mortality event, seven Pangasius catfish (Pangasianodon hypophthalmus) were submitted to the University of the West Indies, School of Veterinary Medicine, Trinidad and Tobago, for diagnostic evaluation. These fish were part of a consignment that arrived from Kolkata two weeks earlier. Fish presented with perianal haemorrhage and blister‐like swellings on the skin which ruptured to leave ulcers. Edwardsiella ictaluri was consistently recovered from the brain and skin. Repetitive sequence‐mediated PCR analysis revealed genetic fingerprints consistent with E. ictaluri isolates from farm‐raised channel catfish in Mississippi, USA. Plasmid analysis of the case isolates identified two unique plasmids that differ slightly in conformation and content from the pEI1 and pEI2 plasmids described for E. ictaluri from other fish hosts. The case isolates were also PCR negative for several E. ictaluri virulence factors. The biological implications of these genetic differences are unclear and warrant further study. This is the first report and documentation of E. ictaluri infection in Trinidad and Tobago, suggesting the pathogen may have been introduced concurrently with the importation of fish. This report emphasizes the importance of adequate health screenings of imported lots to minimize the threat of introducing E. ictaluri to non‐endemic areas.  相似文献   

10.
In April 2011, there was an outbreak of an infectious disease in southern catfish, Silurus soldatovi meridionalis, (Chen) (15–20 g) in Sichuan Province, China. Two isolates, LW101 and LW102, were isolated from kidney and liver of the sick fish on brain‐heart infusion (BHI) agar and were considered to be the cause of this disease based on experimental challenges. The morphological and physiological characteristics as well as the biochemical tests of the two isolates were the same and similar to Edwardsiella ictaluri. Furthermore, the sequencing of the 16S rRNA gene and the gryB gene revealed that the isolates were highly homogeneous with E. ictaluri. On the basis of the phenotypic characteristics and phylogenetic analysis of these genes, both isolates were identified as E. ictaluri. Susceptibility of the isolates to 22 antibiotics was tested using the disc diffusion method. Both isolates showed a similar antibiotic susceptibility, which was characterized by resistance to acetylspiramycin, ampicillin, clarithromycin, penicillin, oxytetracycline, and sinomin (SMZ/TMP); the strains were susceptible to amikacin, chloramphenicol, florfenicol, roxithromycin, ciprofloxacin, norfloxacin, doxycycline, and tenemycin. To our knowledge, this is the first report of E. ictaluri infection in southern catfish.  相似文献   

11.
Yellow catfish Pelteobagrus fulvidraco (Richardson) is a commercially important fish generally distributed in Southeast Asian countries. The well‐known aetiological agent of enteric septicaemia of catfish, Edwardsiella ictaluri, was isolated from diseased yellow catfish P. fulvidraco (Richardson) reared at two commercial fisheries in China. The economic losses due to the high mortalities (about 50%) caused by this bacterium have been increasing annually. The affected fish presented two different, typical symptoms: pale gills, slight exophthalmia and a ‘hole in the head’, and haemorrhage on the opercula, in the skin under the jaw, creating a ‘hole under the jaw’. These diseases were found frequently in cultured yellow catfish throughout China. The isolates from both outbreaks were all Gram negative, facultatively anaerobic and short rod. Morphological and biochemical tests and phylogenetic analysis based on the 16S rDNA sequences all strongly indicated that these yellow catfish isolates were highly identical to the known E. ictaluri. In addition, the isolates possessed the typical plasmid profile of E. ictaluri. Experimental infection assays were conducted and pathogenicity (by an intraperitoneal injection) was demonstrated in yellow catfish and channel catfish Ictalurus punctatus. The results showed that yellow catfish isolates were quite conservative phenotypically and genetically, and were able to cause two different, typical symptoms in this fish under unknown conditions and mechanism.  相似文献   

12.
Edwardsiella tarda is a causative agent of edwardsiellosis in freshwater and marine fish. Extracellular enzymic, haemolytic, hydrophobic and serum resistance activities, haemagglutination, autoagglutination and siderophores of high‐ and low‐ virulent E. tarda strains were examined. The results revealed different haemagglutination, autoagglutination, haemolytic, hydrophobic and serum resistance activities in different strains. Analysis of extracellular proteins (ECPs) and outer membrane proteins (OMPs) demonstrated several major, low molecular weight, virulent‐strain‐specific proteins, which could be virulence‐related. Based on the database search with MALDI‐TOF MS data, the closest homologies of the three protein bands Ed1, Ed2 and Ed3 were phosphotransferase enzyme family protein, nitrite reductase [NAD(P)H], large subunit and ATP‐dependent Lon protease, respectively. A comparison of pathogenicity of purified lipopolysaccharide (LPS) and lipid A from virulent and avirulent strains demonstrated that LPS was one of the virulence factors of the E. tarda isolates, and lipid A was a biologically active determinant of LPS.  相似文献   

13.
Edwardsiella ictaluri infects several fish species and protection of the all the susceptible fish hosts from the pathogen using a monovalent vaccine is impossible because the species is composed of host-based genotypes that are genetic, serological and antigenic heterogenous. Here, immunoinformatic approach was employed to design a cross-immunogenic chimeric EiCh protein containing multi-epitopes. The chimeric EiCh protein is composed of 11 B-cell epitopes and 7 major histocompatibility complex class II epitopes identified from E. ictaluri immunogenic proteins previously reported. The 49.32 kDa recombinant EiCh protein was expressed in vitro in Escherichia coli BL-21 (DE3) after which inclusion bodies were successfully solubilized and refolded. Ab initio protein modelling revealed secondary and tertiary structures. Secondary structure was confirmed by circular dichroism spectroscopy. Antigenicity of the chimeric EiCh protein was exhibited by strong reactivity with serum from striped catfish and Nile tilapia experimentally infected with E. ictaluri. Furthermore, immunogenicity of the chimeric EiCh protein was investigated in vivo in Nile tilapia juveniles and it was found that the protein could strongly induce production of specific antibodies conferring agglutination activity and partially protected Nile tilapia juveniles with a relative survival percentage (RPS) of 42%. This study explored immunoinformatics as reverse vaccinology approach in vaccine design for aquaculture to manage E. ictaluri infections.  相似文献   

14.
Lytic peptides have been shown in vitro to be toxic to a wide range of fish bacterial pathogens, including Edwardsiella ictaluri, the causative agent for enteric septicemia. Fingerling channel catfish, Ictalurus punctatus, were challenged with an injection of Edwardsiella ictaluri, and lytic peptide was administered with a single intraperitoneal injection 24 hours later. In a second group, lyptic peptide was also administered by osmotic pump 7 days before the bacterial challenge. A range of peptide concentrations (20-400µg/g fish) was used. Mortalities were recorded for 7 days after injection of bacteria, and E. icraluri was isolated and quantified by standard plate counts from livers. Various tissues were examined for abnormalities due to bacteria and peptide treatment. Fish injected with lytic peptide at 400 µg/g had up to a 95% reduction in bacteria and a 65% reduction in mortality compared to complete mortality in bacteria-injected controls. Fish implanted with osmotic pumps had 99.3% reduction in bacterial counts and had 6% mortality. Tissue samples from infected fish showed changes typical of reaction to immunologic stimuli and infection, while control fish injected with saline or peptide had normal gills, spleens, and kidneys. This study shows the potential for enhancing channel catfish disease resistance to E. ictaluri and other diseases by transferring the gene coding for the lytic peptide into channel catfish.  相似文献   

15.
The two main diseases in the pangasius catfish industry are bacillary necrosis of Pangasianodon (BNP) and motile aeromonas septicaemia (MAS), where the aetiological agents have been identified as Edwardsiella ictaluri and Aeromonas hydrophila, respectively. In this study, apparently healthy Pangasianodon hypophthalmus were exposed to E. ictaluri, A. hydrophila or both bacterial species by intraperitoneal injection or immersion. There were 20 fish per treatment group, and the bacterial isolates used for the study were recovered from natural infections of BNP or MAS in farmed Vietnamese P. hypophthalmus. The results of the experimental infections mimicked the natural disease outbreaks reported from these pathogens in P. hypophthalmus. Furthermore, it was clearly demonstrated that E. ictaluri was only recovered from the fish exposed to the bacterium and not recovered from the animals receiving A. hydrophila.  相似文献   

16.
Edwardsiella tarda has long been known as a pathogen that causes severe economic losses in aquaculture industry. Insights gained on E. tarda pathogenesis may prove useful in the development of new methods for the treatment of infections as well as preventive measures against future outbreaks. In this report, we have established the correlation between the presence of virulence genes, related with three aspects typically involved in bacterial pathogenesis (chondroitinase activity, quorum sensing and siderophore‐mediated ferric uptake systems), in the genome of E. tarda strains isolated from turbot in Europe and their phenotypic traits. A total of 8 genes were tested by PCR for their presence in 73 E. tarda isolates. High homogeneity was observed in the presence/absence pattern of all the strains. Positive results in the amplification of virulence‐related genes were correlated with the detection of chondroitinase activity in agar plates, in vivo AHL production during fish infection and determination of type of siderophore produced by E. tarda. To the best of our knowledge, this is the first study carried out with European strains on potential virulence factors. Furthermore, we demonstrated for the first time that E. tarda produces the siderophore vibrioferrin.  相似文献   

17.
Edwardsiella tarda is a pathogen that causes edwardsiellosis in aquatic animals. The emergence of multiple antibiotic‐resistant strains makes antibiotic treatment difficult. This study aimed to investigate the antibiotic susceptibility patterns and the genotypic characterization of E. tarda isolated from cage‐cultured red tilapia in Thailand. A total of 30 isolates were identified as E. tarda using biochemical and molecular analysis. The disc diffusion method for testing antibiotic susceptibility showed all the isolates were resistant to colistin sulphate and oxolinic acid. High levels of resistance to amoxicillin, ampicillin, ceftazidime, oxytetracycline and sulphamethoxazole/trimethoprim were observed as well. The multiple antibiotic resistance index ranged from 0.25 to 0.92, indicating that these isolates had been exposed to high risk sources of contamination where antibiotics were commonly used. All the isolates carried the blaTEM gene based on polymerase chain reaction (PCR). The tetA and sul3 genes were detected in 90% (27/30) and 26.7% (8/30) of the isolates respectively. Nine different genetic groups of isolates were obtained using enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC‐PCR). A correlation between genetic types and multiple antibiotic‐resistant patterns was found. These results highlight the potential risks of multiple antibiotic‐resistant isolates for humans and the environment.  相似文献   

18.
The effect of sublethal hypoxia exposure on stress and immune responses and susceptibility to Edwardsiella ictaluri infection in juvenile channel catfish, Ictalurus punctatus, was investigated. Fish were monitored for temporal changes in glucose and cortisol concentrations before, during, and after 2 h exposure to sublethal hypoxia (<2 mg/L dissolved oxygen [DO]) and when maintained under normoxic conditions (6.0 ± 0.3 mg/L DO). Both blood glucose and plasma cortisol increased significantly in response to hypoxic conditions. Fish exposed to hypoxic or normoxic conditions were challenged with a high dose (1.3 × 107 colony‐forming units [CFU]/mL) or a low dose (1.3 × 105 CFU/mL) of E. ictaluri or sterile culture broth by 30‐min immersion bath. Approximately 1% of fish in both the normoxic and the hypoxic groups died when challenged with the low dose of E. ictaluri. However, when challenged with the high dose of E. ictaluri, catfish exposed to hypoxic conditions had significantly higher cumulative mortality (36 ± 12.1%) than those maintained under normoxic conditions (12 ± 1.1%). Total hemolytic complement and bactericidal activities and antibody response were lower in hypoxia‐exposed channel catfish, indicating that increased susceptibility of channel catfish to E. ictaluri may be the result of the immunosuppressive effects of the stress response to hypoxia.  相似文献   

19.
This report describes a case of systemic bacterial infection caused by Edwardsiella tarda in a Western African lungfish (Protopterus annectens) exposed to poor environmental and husbandry conditions. The fish presented with a large, external ulcerative lesion and died 2 weeks after developing anorexia. Histological evaluation revealed multifocal areas of necrosis and heterophilic and histiocytic inflammation throughout multiple tissues. Gram stain identified small numbers of intra‐ and extracellular monomorphic Gram‐negative 1 to 2 μm rod‐shaped bacilli. Cytology of lung granuloma, kidney and testes imprints identified heterophilic inflammation with phagocytosis of small monomorphic bacilli and some heterophils exhibiting cytoplasmic projections indicative of heterophil extracellular traps (HETs). Initial phenotypic analysis of isolates from coelomic fluid cultures identified E. tarda. Subsequent molecular analysis of spleen, liver and intestine DNA using an Etarda‐specific endpoint PCR assay targeting the bacterial fimbrial subunit yielded a 115 bp band. Sequencing and BLASTN search revealed the sequence was identical (76/76) to Etarda strain FL95‐01 (GenBank acc. CP011359 ) and displayed 93% sequence identity (66/71) to Edwardsiella hoshinae strain ATCC 35051 (GenBank acc. CP011359 ). This is the first report of systemic edwardsiellosis in a lungfish with concurrent cytologically identified structures suggestive of HETs.  相似文献   

20.
Since 2012, low‐to‐moderate mortality associated with an Erysipelothrix sp. bacterium has been reported in ornamental fish. Histological findings have included facial cellulitis, necrotizing dermatitis and myositis, and disseminated coelomitis with abundant intralesional Gram‐positive bacterial colonies. Sixteen Erysipelothrix sp. isolates identified phenotypically as E. rhusiopathiae were recovered from diseased cyprinid and characid fish. Similar clinical and histological changes were also observed in zebrafish, Danio rerio, challenged by intracoelomic injection. The Erysipelothrix sp. isolates from ornamental fish were compared phenotypically and genetically to E. rhusiopathiae and E. tonsillarum isolates recovered from aquatic and terrestrial animals from multiple facilities. Results demonstrated that isolates from diseased fish were largely clonal and divergent from E. rhusiopathiae and E. tonsillarum isolates from normal fish skin, marine mammals and terrestrial animals. All ornamental fish isolates were PCR positive for spaC, with marked genetic divergence (<92% similarity at gyrB, <60% similarity by rep‐PCR) between the ornamental fish isolates and other Erysipelothrix spp. isolates. This study supports previous work citing the genetic variability of Erysipelothrix spp. spa types and suggests isolates from diseased ornamental fish may represent a genetically distinct species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号