首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Body weight loss during transport or shrink (SHK) is a common occurrence in feeder cattle that results from a physiological, complex process. Previous studies have assessed the effects of environmental and dietary stressors on transport-associated BW loss; however, data on associations between shrink and subsequent health and performance parameters in feeder cattle are limited. Operational data from 13 U.S. commercial feedlots (n = 16,590 cattle cohorts) were used to quantify how SHK was associated with bovine respiratory disease (BRD) morbidity and overall mortality risks, HCW and ADG in feeder cattle cohorts arriving to feedlots during 2000 to 2008. Multivariable mixed-effects negative binomial and linear regression models were employed to determine these associations while accounting for other cohort-level demographic variables. The median SHK among the study cohorts was 3.0% with a mean (± SEM) of 2.4 ± 0.02%. The mean (± SEM) cumulative BRD morbidity was 10.0% ± 0.09% (median = 5.8%; range 0 to 100%) and the mean (± SEM) overall cumulative mortality was 1.3% ± 0.01% (median = 0.9%; range: 0 to 25.6%). The mean and median number of days on feed of cohorts experiencing initial BRD cases was 143 and 150 d (range = 23 to 288 d). The effects of SHK were significantly (P < 0.05) associated with BRD morbidity, overall mortality, HCW and ADG, and these effects were significantly (P < 0.05) modified by gender, season and mean arrival BW of the cohort. Combining data on BW loss during transport with cohort demographics could allow a more precise prediction of health and performance of feedlot cattle.  相似文献   

2.
Data on associations between weather conditions and bovine respiratory disease (BRD) morbidity in autumn-placed feedlot cattle are sparse. The goal of our study was to quantify how different weather variables during corresponding lag periods (considering up to 7 d before the day of disease measure) were associated with daily BRD incidence during the first 45 d of the feeding period based on a post hoc analysis of existing feedlot operational data. Our study population included 1,904 cohorts of feeder cattle (representing 288,388 total cattle) that arrived to 9 US commercial feedlots during September to November in 2005 to 2007. There were 24,947 total cases of initial respiratory disease (animals diagnosed by the feedlots with BRD and subsequently treated with an antimicrobial). The mean number of BRD cases during the study period (the first 45 d after arrival) was 0.3 cases per day per cohort (range = 0 to 53.0), and cumulative BRD incidence risks ranged from 0 to 36% within cattle cohorts. Data were analyzed with a multivariable mixed-effects binomial regression model. Results indicate that several weather factors (maximum wind speed, mean wind chill temperature, and temperature change in different lag periods) were significantly (P < 0.05) associated with increased daily BRD incidence, but their effects depended on several cattle demographic factors (month of arrival, BRD risk code, BW class, and cohort size). In addition, month and year of arrival, sex of the cohort, days on feed, mean BW of the cohort at entry, predicted BRD risk designation of the cohort (high or low risk), cohort size, and the interaction between BRD risk code and arrival year were significantly (P < 0.05) associated with daily BRD incidence. Our results demonstrate that weather conditions are significantly associated with BRD risk in populations of feedlot cattle. Defining these conditions for specific cattle populations may enable cattle health managers to predict and potentially manage these effects more effectively; further, estimates of effects may contribute to the development of quantitative predictive models for this important disease syndrome.  相似文献   

3.
OBJECTIVE: To determine the association between respiratory tract infection with bovine coronavirus (BCV), treatment for respiratory tract disease, pulmonary lesions at slaughter, and average daily gain in cattle in feedlots. ANIMALS: 837 calves in feedlots in Ohio and Texas. PROCEDURE: Nasal swab specimens were obtained from cattle at arrival in a feedlot (day 0) and at various times during the initial 28 days after arrival. Specimens were tested for BCV, using an antigen-capture ELISA. Serum samples were obtained at arrival and again 28 days after arrival and tested for antibodies to BCV, using an antibody-detection ELISA. Information was collected regarding treatment for cattle with respiratory tract disease and average daily gain during the feeding period. Pulmonary lesions were evaluated at slaughter. RESULTS: Cattle shedding BCV from the nasal cavity and developing an antibody response against BCV were 1.6 times more likely to require treatment for respiratory tract disease than cattle that did not shed the virus or develop an immune response against BCV. Additionally, cattle that shed BCV from the nasal cavity were 2.2 times more likely to have pulmonary lesions at slaughter than cattle that did not shed the virus. The BCV shedding or seroconversion status did not affect average daily gain. CONCLUSIONS AND CLINICAL RELEVANCE: Bovine coronavirus infects feedlot cattle and is associated with an increased risk for cattle developing respiratory tract disease and pulmonary lesions. Development of appropriate control measures could help reduce the incidence of respiratory tract disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号