首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of the study was to obtain estimates of genetic correlations between direct and maternal calving performance of heifers and cows and beef production traits in Piemontese cattle. Beef production traits were daily gain, live fleshiness, and bone thinness measured on 1,602 young bulls tested at a central station. Live fleshiness (six traits) and bone thinness were subjectively scored by classifiers using a nine-point linear grid. Data on calving performance were calving difficulty scores (five classes from unassisted to embryotomy) routinely recorded in the farms. Calving performance of heifers and cows were considered different traits. A total of 30,763 and 80,474 calving scores in first and later parities, respectively, were used to estimate covariance components with beef traits. Data were analyzed using bivariate linear animal models, including direct genetic effects for calving performance and beef traits and maternal genetic effects only for calving performance. Due to the nature of the data structure, which involved traits measured in different environments and on different animals, covariances were estimated mostly through pedigree information. Genetic correlations of daily gain were positive with direct calving performance (0.43 in heifers and 0.50 in cows) and negative with maternal calving performance (-0.23 and -0.28 for heifers and cows, respectively). Live fleshiness traits were moderately correlated with maternal calving performance in both parities, ranging from 0.06 to 0.33. Correlations between live fleshiness traits and direct calving performance were low to moderate and positive in the first parity, but trivial in later parities. Bone thinness was negatively correlated with direct calving performance (-0.17 and -0.38 in heifers and cows, respectively), but it was positively correlated to maternal calving performance (0.31 and 0.40). Estimated residual correlations were close to zero. Results indicate that, due to the existence of antagonistic relationships between the investigated traits, specific selection strategies need to be studied.  相似文献   

2.
[目的]为了解宫复康对不同胎次肉牛的繁殖障碍疾病的治疗效果。[方法]本试验以青链霉素治疗作为对照组,比较宫复康对不同胎次的肉牛用药后的妊娠,产犊等方面的疗效。[结果]表明,与对照组相比,宫复康对于不同胎次的肉牛的妊娠和产犊疗效显著(P〈0.05),尤其是对于高胎次肉牛的妊娠疗效极其显著(P〈0.01)。[结论]经临床使...  相似文献   

3.
The aim of this study was to estimate direct and maternal genetic parameters for calving difficulty score, stillbirth, and birth weight at first and later parities for Charolais and Hereford cattle in Sweden. Calving traits have long been recorded for pure-bred beef cattle in Sweden, but only birth weight has been used in the selection in order to avoid calving difficulties. Linear animal model analyses included records on birth weight for 60,309 Charolais and 30,789 Hereford calves born from 1980 to 1999, and calving traits for 74,538 Charolais and 37,077 Hereford calves born from 1980 to 2001. The frequencies of difficult calvings and stillbirths were approximately 6% at first and 1 to 2% at later parities for both breeds. Fewer than half the stillborn calves were born from difficult calvings. Heritabilities estimated for birth weight in different univariate and bivariate analyses for Charolais and Hereford calves born at first and later parities ranged from 0.44 to 0.51 for direct effects and 0.06 to 0.15 for maternal effects. Heritabilities on the observable scale for calving difficulty score of Charolais and Hereford, scored in three classes, ranged from 0.11 to 0.16 for direct and 0.07 to 0.12 for maternal effects at first parity, and lower at later parities. All estimated heritabilities for stillbirth were very low (0.002 to 0.016 on the observable scale). Direct-maternal genetic correlations were negative, with few exceptions. Genetic correlations between the traits and between parities within traits were generally moderate to high and positive. Calving difficulty score should be included in the genetic evaluation of beef breeds in Sweden, whereas progeny groups in Swedish beef populations are too small for stillbirth to be considered directly.  相似文献   

4.
产犊间隔(calving internal,CI)又称胎间距,即两次产犊间的时间间隔,能够综合反映奶牛发情、配种、妊娠和产犊等繁殖性能,是衡量奶牛繁殖性能的一个重要指标,同时也是影响奶牛产奶量和产犊数量的重要因素,对奶牛养殖经济效益具有直接影响。最新研究显示,适宜产犊间隔与牛群泌乳能力相关,泌乳能力越高,适宜产犊间隔应越长。但是,即使中国规模化牛场产奶量已经有了大幅提升,中国大多数牧场还在追求更短的产犊间隔。为此,作者对影响荷斯坦奶牛产犊间隔的因素及其研究进展进行概述,并简要阐述了产犊间隔对牛场经济效益的影响,以期为中国荷斯坦奶牛养殖确定适宜产犊间隔提供一定的借鉴和理论依据。  相似文献   

5.
The aim of this study was to investigate the possible superiority of a threshold-linear (TL) approach for calving day (CD) and calving success (CS) analysis in beef cattle over 2 multiple-trait (MT), censored models, considering CD at the first 3 calving opportunities. The CD observations on animals that failed to calve in the latter models were defined as cows being assigned a penalty value of 21 d beyond the last observed CD record within contemporary group (PEN model) or censored CD values that were randomly obtained from a truncated normal distribution (CEN-model). In the TL model, CD records were treated as missing if a cow failed to calve, and parameters were estimated in a TL analysis including CS traits (TLMISS-model). The models included the effects of contemporary group (herd x year of calving x mating management), age at calving, physiological status at mating (lactating or nonlactating cow), animal additive genetic effects, and residual. Field data included 6,763 calving records obtained from first, second, and third parities of 3,442 spring-calving Uruguayan Aberdeen Angus cows. Models were contrasted using a data splitting technique, analyzing correlations between predicted breeding values (PBV) for each pair of subsamples, by rank correlations between PBV obtained with the different models, and by inspecting percentage of sires selected in common using the different approaches at 10 and 25% hypothetical percentages of animals selected. Breeding value correlations of CD between the subsamples for the TLMISS approach were greater (0.67 to 0.68) than correlations for the censored MT models (0.49 to 0.54). Average correlations between PBV of CD in 1 subsample obtained by CEN (PEN, TLMISS) and PBV of CS in the other subsample were -0.53 (-0.55, -0.60) in the first calving opportunity (CO), -0.54 (-0.58, -0.63) in the second CO, and -0.50 (-0.49, -0.58) in the third CO. Rank correlations between PBV for CD in PEN and CEN were high (0.93 to 0.97), but correlations of either method with PBV of CD in TLMISS ranged from 0.50 to 0.71. Common identification of bulls for the top 10% of sires (25% of sires), when selected with PEN/CEN models or the TLMISS model, varied between 50 (44%) and 60 (52%). The use of the TL animal model for genetic evaluation seems attractive for genetic evaluation of fertility traits in beef cattle.  相似文献   

6.
[目的]研究产犊季节、胎次及不同牛场对奶牛泌乳性能的影响情况,以期为提高奶牛的泌乳性能及牛奶质量提供可靠的理论依据。[方法]收集3个千头以上奶牛场共8 872次相关信息,用多因素方差分析法分析产犊季节、胎次和牛场对泌乳天数、305d校正奶量、305d脂肪产量、305d蛋白产量和全泌乳期产奶量5个泌乳性能的影响进行分析。[结果]不同产犊季节、胎次和牛场都极显著影响奶牛的5项泌乳性能(P<0.01)。夏季和秋季产犊奶牛的泌乳性能较为理想。夏季产犊奶牛的泌乳天数和全泌乳期产奶量最高,其他三个泌乳性能都位居第二;秋季产犊奶牛的305d校正奶量、脂肪产量和蛋白产量都显著高于其他三个季节(P<0.05),泌乳天数和全泌乳期产奶量也仅次于夏季。头胎牛的各项泌乳性能都显著高于其他胎次的奶牛(P<0.05),其次为2胎产犊奶牛。随着胎次的增加,泌乳性能的各项指标都有不同程度的降低。除了泌乳天数之外,A牛场的各项泌乳性能都最佳,且显著高于B、C两个奶牛场(P<0.05)。[结论]在饲养条件良好的情况下,本研究中三个牛场的奶牛适宜在夏、秋两个季节产犊,此时泌乳性能较好;此外,头胎产犊奶牛的泌乳性能在各胎次中最高。  相似文献   

7.
8.
Estimates of heritabilities and genetic correlations for calving ease over parities were obtained for the Italian Piedmontese population using animal models. Field data were calving records of 50,721 first- and 44,148 second-parity females and 142,869 records of 38,213 cows of second or later parity. Calving ability was scored in five categories and analyzed using either a univariate or a bivariate linear model, treating performance over parities as different traits. The bivariate model was used to investigate the genetic relationship between first- and second- or between first- and third-parity calving ability. All models included direct and maternal genetic effects, which were assumed to be mutually correlated. (Co)variance components were estimated using restricted maximum likelihood procedures. In the univariate analyses, the heritability for direct effects was .19 +/- .01, .10 +/- .01, and .08 +/- .004 for first, second, and second and later parities, respectively. The heritability for maternal effects was .09 +/- .01, .11 +/- .01, and .05 +/- .01, respectively. All genetic correlations between direct and maternal effects were negative, ranging from -.55 to -.43. Approximated standard errors of genetic correlations between direct and maternal effects ranged from .041 to .062. For multiparous cows, the fraction of total variance due to the permanent environment was greater than the maternal heritability. With bivariate models, direct heritability for first parity was smaller than the corresponding univariate estimate, ranging from .18 to .14. Maternal heritabilities were slightly higher than the corresponding univariate estimates. Genetic correlation between first and second parity was .998 +/- .00 for direct effects and .913 +/- .01 for maternal effects. When the bivariate model analyzed first- and third-parity calving ability, genetic correlation was .907 +/- .02 for direct effects and .979 +/- .01 for maternal effects. Residual correlations were low in all bivariate analyses, ranging from .13 for analysis of first and second parity to .07 for analysis of first and third parity. In conclusion, estimates of genetic correlations for calving ease in different parities obtained in this study were very high, but variance components and heritabilities were clearly heterogeneous over parities.  相似文献   

9.
Genetic parameters and genetic trends for age at first calving (AFC), interval between first and second calving (CI1), and interval between second and third calving (CI2) were estimated in a Colombian beef cattle population composed of Angus, Blanco Orejinegro, and Zebu straightbred and crossbred animals. Data were analyzed using a multiple trait mixed model procedures. Estimates of variance components and genetic parameters were obtained by Restricted Maximum Likelihood. The 3-trait model included the fixed effects of contemporary group (year-season of calving-sex of calf; sex of calf for CI1 and CI2 only), age at calving (CI1 and CI2 only), breed genetic effects (as a function of breed fractions of cows), and individual heterosis (as a function of cow heterozygosity). Random effects for AFC, CI1, and CI2 were cow and residual. Program AIREMLF90 was used to perform computations. Estimates of heritabilities for additive genetic effects were 0.15 ± 0.13 for AFC, 0.11 ± 0.06 for CI1, and 0.18 ± 0.11 for CI2. Low heritabilities suggested that nutrition and reproductive management should be improved to allow fuller expressions of these traits. The correlations between additive genetic effects for AFC and CI1 (0.33 ± 0.41) and for AFC and CI2 (0.40 ± 0.36) were moderate and favorable, suggesting that selection of heifers for AFC would also improve calving interval. Trends were negative for predicted cow yearly means for AFC, CI1, and CI2 from 1989 to 2004. The steepest negative trend was for cow AFC means likely due to the introduction of Angus and Blanco Orejinegro cattle into this population.  相似文献   

10.
Calving records (n = 6,763) obtained from first, second, and third parities of 3,442 spring-calving, Uruguayan Aberdeen Angus cows were used to estimate heritabilities and genetic correlations for the linear trait calving day (CD) and the binary trait calving success (CS), using models that considered CD and CS at 3 calving opportunities as separate traits. Three approaches were defined to handle the CD observations on animals that failed to calve: 1) the cows were assigned a penalty value of 21 d beyond the last observed CD record within contemporary group (PEN); 2) the censored CD values were randomly obtained from a truncated normal distribution (CEN); and 3) the CD records were treated as missing, and the parameters were estimated in a joint threshold-linear analysis including CS traits (TLMISS). The models included the effects of contemporary group (herd x year of calving x mating management), age at calving (3 levels), physiological status at mating (nonlactating or lactating), animal additive genetic effects, and residual. Estimates of heritability for CD traits in the PEN and CEN data sets ranged from 0.20 to 0.31, with greater values in the first calving opportunity. Genetic correlations were positive and medium to high in magnitude, 0.57 to 0.59 in the PEN data set and 0.38 to 0.91 in the CEN data set. In the TLMISS data set, heritabilities ranged from 0.19 to 0.23 for CD and 0.37 to 0.42 for CS. Genetic correlations between CD traits varied between 0.82 and 0.88; between CS traits, genetic correlations varied between 0.56 and 0.80. Negative (genetically favorable), medium to high genetic correlations (-0.54 to -0.91) were estimated between CD and CS traits, suggesting that CD could be used as an indicator trait for CS. Data recording must improve in quality for practical applications in genetic evaluation for fertility traits.  相似文献   

11.
The objective of this study was to estimate genetic correlations between calving difficulty score and carcass traits in Charolais and Hereford cattle, treating first and later parity calvings as different traits. Genetic correlations between birth weight and carcass traits were also estimated. Field data on 59,182 Charolais and 27,051 Hereford calvings, and carcass traits of 5,260 Charolais and 1,232 Hereford bulls, were used in bivariate linear animal model analyses. Estimated heritabilities were moderate to high (0.22 to 0.50) for direct effects on birth weight, carcass weight, and (S)EUROP (European Community scale for carcass classification) grades for carcass fleshiness and fatness. Heritabilities of 0.07 to 0.18 were estimated for maternal effect on birth weight, and for direct and maternal effects on calving difficulty score at first parity. Lower heritabilities (0.01 to 0.05) were estimated for calving difficulty score at later parities. Carcass weight was positively genetically correlated (0.11 to 0.53) with both direct and maternal effects on birth weight and with direct effects on calving difficulty score. Carcass weight was, however, weakly or negatively (-0.70 to 0.07) correlated with maternal calving difficulty score. Higher carcass fatness grade was genetically associated with lower birth weight, and in most cases, also with less difficult calving. Genetic correlations with carcass fleshiness grade were highly variable. Moderately unfavorable correlations between carcass fleshiness grade and maternal calving difficulty score at first parity were estimated for both Charolais (0.42) and Hereford (0.54). This study found certain antagonistic genetic relationships between calving performance and carcass traits for both Charolais and Hereford cattle. Both direct and maternal calving performance, as well as carcass traits, should be included in the breeding goal and selected for in beef breeds.  相似文献   

12.
Most studies on feed efficiency in beef cattle have focused on performance in young animals despite the contribution of the cow herd to overall profitability of beef production systems. The objective of this study was to quantify, using a large data set, the genetic covariances between feed efficiency in growing animals measured in a performance-test station, and beef cow performance including fertility, survival, calving traits, BW, maternal weaning weight, cow price, and cull cow carcass characteristics in commercial herds. Feed efficiency data were available on 2,605 purebred bulls from 1 test station. Records on cow performance were available on up to 94,936 crossbred beef cows. Genetic covariances were estimated using animal and animal-dam linear mixed models. Results showed that selection for feed efficiency, defined as feed conversion ratio (FCR) or residual BW gain (RG), improved maternal weaning weight as evidenced by the respective genetic correlations of -0.61 and 0.57. Despite residual feed intake (RFI) being phenotypically independent of BW, a negative genetic correlation existed between RFI and cow BW (-0.23; although the SE of 0.31 was large). None of the feed efficiency traits were correlated with fertility, calving difficulty, or perinatal mortality. However, genetic correlations estimated between age at first calving and FCR (-0.55 ± 0.14), Kleiber ratio (0.33 ± 0.15), RFI (-0.29 ± 0.14), residual BW gain (0.36 ± 0.15), and relative growth rate (0.37 ± 0.15) all suggest that selection for improved efficiency may delay the age at first calving, and we speculate, using information from other studies, that this may be due to a delay in the onset of puberty. Results from this study, based on the estimated genetic correlations, suggest that selection for improved feed efficiency will have no deleterious effect on cow performance traits with the exception of delaying the age at first calving.  相似文献   

13.
The objective of this study was to estimate genetic parameters and breeding values for the twinning rate of the first three parities (T1, T2 and T3) and 305‐day milk yield in first lactation (MY), using a four‐trait threshold‐linear animal model in Japanese Holsteins. Data contained 1 323 946 cows calving between 1990 and 2007. Twinning was treated as a binary character: ‘single’ or ‘twin or more’. Reported T1, T2 and T3 were 0.70%, 2.87%, and 3.73%, respectively. Individual 305‐day milk yield was computed using a multiple trait prediction for cows with at least eight test‐day records. (Co)variance components were estimated via Gibbs sampling for randomly sampled subsets. Posterior means of heritabilities for T1, T2 and T3 were 0.11, 0.16 and 0.14, respectively. Genetic correlations between parities were 0.92 or greater. Genetic correlations of MY with twinning rate were not ‘significant’ (i.e. their 95% highest probability density intervals contained zeros). Multiple births at different parities were considered as the same genetic trait. The average evaluations of T1 (T2) for sires born before 1991 was 0.48% (2.25%) compared with a mean of 0.76% (3.37%) for sires born after 1992. A recent increase in the reported twinning rate reflects the positive genetic trend for sires in Japanese Holsteins.  相似文献   

14.
The most important maternal factor influencing calving performance is parity. Among calf factors, birth weight seems the most important. There are large differences between breeds and, generally speaking, heavier beef and dual-purpose breeds present more problems than smaller cattle. Variation in calving performance and stillbirth may be attributed to characters of both the calf and the dam. Genetic variation in calving performance and stillbirth at first calving has been demonstrated in several investigations for both the direct (calf) and the maternal character.In a Swedish investigation a heritability of 10% was found for both the direct and the maternal character. For stillbirth values were on average 3%. A strong genetic relationship was found between calving performance and birth weight as direct characters (rGD = 0.98) but for the maternal characters it was considerably weaker (rGM = 0.60). Correlations between stillbirth rate and birth weight were generally weaker, because the relationship was non-linear. Estimations of the genetic correlations between direct and maternal effects gave values between zero and ?0.5 for the characters investigated, indicating an antagonistic relationship between the genetic make-up of the cow and the calf. This implies that, in the long run, selection will not be as effective as the heritabilities suggest.A substantial improvement in calving performance and calf mortality can be achieved, however, through selection within breeds, optimal organization of breeding structures, choice of appropriate beef breeds for cross-breeding on heifers and cows, respectively, and timing calving to occur at favourable ages and in favourable seasons.  相似文献   

15.
The objective of this study was to investigate the effect of parity, age at calving, percentage North American Holstein-Friesian and calving date on subsequent calving interval and survival to facilitate the estimation of transition probabilities for month of calving. The economic value of traits that influence calving date, age distribution and survival can be assessed in models using a transition probability matrix. Such a matrix contains the probabilities that a cow of a particular age or breed calving in a particular month will calve in the same, an earlier or later month next year, or be culled. Following editing 1,046,855 calving records in spring-calving herds between the years 1990 and 2004 were analysed. Shorter calving intervals were associated with cows calving later in the calendar year. Age at first calving of < 24 months resulted in longer calving intervals to second calving across all levels of Holstein percentage with cows calving for the first time at 25–26 months of age having the shortest subsequent calving interval. Age at second calving of 37–38 months and third calving of 49–50 months were optimum for shorter subsequent calving intervals. Calving interval increased with Holstein percentage across the first 5 parities. Survival rate decreased with later month of calving and with older parities. When survival rate was measured as the ability of the cow to re-calve within 500 days, the highest survival rate was found in cows calving at 25–26 months of age whereas there was a noticeable reduction in survival across all parities in the 88–100% Holstein percent category.  相似文献   

16.
Abortion outbreaks caused by infection with Neospora caninum in beef cattle have not been well documented. Neospora caninum infection was confirmed in 4 fetuses that were aborted by cattle in a 350-head beef herd; an additional 58 cattle aborted during the next 2.5 months. Overall, 44.4% (157/354) of the cattle in the herd did not become pregnant or experienced fetal loss during this period. Initially, 81.3% (282/347) of the herd was seropositive for antibodies to N caninum, and seropositive cows were 6.2 times as likely to not be pregnant as were seronegative cows. Other potential causes of abortion were not identified in this herd. Following the outbreak, few cattle in the herd or in a second exposed herd seroconverted, but high antibody titers persisted in most seropositive cattle through the end of the calving season. Evidence of cow-to-fetus transmission of the organism was detected in > 82% of seropositive cows.  相似文献   

17.
A general bio-economic model for beef cattle production was used to define breeding objectives for Charolais cattle to be utilized in a variety of linked production systems. Economic weights were calculated for 16 traits (some with both direct and maternal components) in three production systems (pure-breeding and terminal crossing with beef or dairy cows) and two marketing strategies (sale or fattening of weaned surplus calves). Economic weights for the total breeding objective were calculated as weighted averages, where weights were numbers of cows expected to be mated with Charolais bulls in each production system and marketing strategy. Results suggest that the direct component of calving performance and cow longevity were of primary economic importance in all systems. Conception rate of cows and weaning weight reached about 50% of the standardized economic weight of calving performance in purebred systems with sale of weaned calves, whereas in purebred systems with fattening the economic importance of the direct component of cow conception rate, losses at calving, mature weight of cows, weaning weight, and fattening traits were of equal importance (each approximately about 20% that of calving performance). In terminal crossing systems, weaning weight was important when calves were sold at weaning, and fattening traits were important for systems selling fattened animals. The bio-economic model performed well under the conditions of this demonstration and could easily be customized for other applications.  相似文献   

18.
Reproductive efficiency is major determinant of the dairy herd profitability. Thus, reproductive traits have been widely used as selection objectives in the current dairy cattle breeding programs. We aimed to evaluate strategies to model days open (DO), calving interval (CI) and daughter pregnancy rate (DPR) in Brazilian Holstein cattle. These reproductive traits were analysed by the autoregressive (AR) model and compared with classical repeatability (REP) model using 127,280, 173,092 and 127,280 phenotypic records, respectively. The first three calving orders of cows from 1,469 Holstein herds were used here. The AR model reported lower values for Akaike Information Criteria and Mean Square Errors, as well as larger model probabilities, for all evaluated traits. Similarly, larger additive genetic and lower residual variances were estimated from AR model. Heritability and repeatability estimates were similar for both models. Heritabilities for DO, CI and DPR were 0.04, 0.07 and 0.04; and 0.05, 0.06 and 0.04 for AR and REP models, respectively. Individual EBV reliabilities estimated from AR for DO, CI and DPR were, in average, 0.29, 0.30 and 0.29 units higher than those obtained from REP model. Rank correlation between EBVs obtained from AR and REP models considering the top 10 bulls ranged from 0.72 to 0.76; and increased from 0.98 to 0.99 for the top 100 bulls. The percentage of coincidence between selected bulls from both methods increased over the number of bulls included in the top groups. Overall, the results of model-fitting criteria, genetic parameters estimates and EBV predictions were favourable to the AR model, indicating that it may be applied for genetic evaluation of longitudinal reproductive traits in Brazilian Holstein cattle.  相似文献   

19.
难产(dystocia)是母畜分娩时胎儿娩出缓慢或难以娩出,需要助产帮助胎儿娩出的过程。难产既会导致母牛出现生殖道疾病而影响其后的发情和繁殖,也会危及犊牛和母牛的生命,严重损害养牛经济效益。引起肉牛难产的因素很多,有遗传因素和非遗传因素,包括母牛因素、胎儿因素、公牛因素、营养因素与环境因素等。犊牛出生重、母体骨盆结构和妊娠时长是3个最主要的因素。多种因素的交叉互作,使难产成为极其复杂的生理与病理现象。国际牛业发达国家非常重视母牛繁殖与生产环节,开展了大量卓有成效的研究与分析。在对几十年来有关肉牛繁殖与生产方面的报道较为细致分析基础上,文章重点对普通肉牛繁殖与生产过程中出现的主要难产问题进行综述,供国内同行借鉴。  相似文献   

20.
Objectives were to 1) identify risk factors affecting the longevity of beef females, 2) evaluate the utility of measures collected early in life in predicting longevity, and 3) estimate the heritability of longevity when females were culled primarily for not being pregnant following a 45-d breeding season. Data were from 1,379 Composite Gene Combination (CGC; 1/2 Red Angus, 1/4 Charolais, 1/4 Tarentaise) cows born from 1982 through 1999 at the USDA-ARS, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT, and first calving at approximately 2 yr of age. The length of productive life was modeled using Cox regression to identify factors affecting the longevity of beef females. Age at first calving and calf birth weight did not influence longevity. Cows that experienced dystocia were at greater risk of being culled than those that calved without assistance (P < 0.01). On average, as breeding value for cow weight increased, the risk of being culled decreased (P < 0.01), whereas the risk of being culled increased with increasing maternal breeding values for preweaning gain (P < 0.05). Traits measured before 1 yr of age were not useful in predicting the subsequent longevity of cows. The heritability of functional longevity was estimated to be 0.14. Relatively low heritability and the lack of indicators of longevity expressed early in life suggest that genetic improvement of longevity will be difficult. Matching the genetic potential of cows for size and milk production to the production environment such that rebreeding performance is not compromised by concurrent lactation seems to be a consideration in retaining beef females when open cows are culled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号