首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments involved the comparison of three procedures used to determine compost maturity/phytotoxicity. The three tests evaluated were the CCME germination test (1996), a modified Zucconi et al. (1981) extract and a direct seed procedure. Three different plant species and seven types of ‘composts’ were used. The species were cress (Lepidium sativum), radish (Raphanus sativus), and Chinese cabbage (Brassica chinensis). Germination and growth experiments were performed on three types of mature composts: 1) racetrack manure-food waste; 2) two different samples of municipal solid waste; and 3) racetrack manure-sewage sludge), two types of immature composts (farmyard manure-food waste and farmyard manure-yard waste-food waste], and a control (soil or water). Four replicates for each species, ‘compost’ and test procedure were evaluated. The study concluded that the commonly used compost extract test and the compost-soil germination and growth tests were not sensitive enough to detect differences between mature and immature ‘composts’, that other test(s) must be used to evaluate compost maturity.  相似文献   

2.
The aim of this study was to perform a comparison of microbial activity and biomass in biowaste (BWC), yard waste (YWC), and cattle‐manure composts (CMC) of different age. Two different methods for either biomass (microbial C following fumigation‐extraction and microbial lipid phosphate) or activity measurements (CO2‐production rate and fluorescein diacetate hydrolysis) provided comparable information, as judged from their strong correlation. Microbial biomass and activity declined with time in all composts. Microbial biomass C was strongly correlated with microbial activity but was even stronger correlated with pH. CMC proved to be very distinct from the two other compost types by having the highest biomass and the lowest specific activity (i.e., activity per unit biomass). The microbiological properties analyzed allow us to discriminate among different compost types, helping to assign their potential applications.  相似文献   

3.
The use of compost with high salt concentration was evaluated, under commercial conditions, as a potential growing media constituent for vegetable transplant production. Two composts were prepared from sweet sorghum bagasse, pine bark, and either urea (compost A) or brewery sludge (compost B) as N source. Three vegetable species — broccoli (Brassica oleracea), tomato (Lycopersicum esculentum), and onion (Allium cepa) with different tolerance to salinity were used. Eleven substrates were formulated and tested: a control consisting of a moss peat-based commercial substrate; compost A; compost B; and, eight mixtures containing 33 or 67% by volume of each compost with either raw peat moss or commercial substrate as diluent. All the substrates prepared had suitable physical, physicochemical and chemical properties for use as growing media, except for the electrical conductivity (ranging from 3.20 to 13.21 dS m?1) which was above the reference levels for soilless cultivation. Broccoli was the least affected by substrate salinity whilst tomato was the most. Onion transplants had an intermediate response to saline conditions. Tomato seed germination was markedly reduced when compost A, with a higher salt concentration, was used at a rate higher than 67%. Media prepared with either of the composts, and mixed with either a commercial substrate or peat in a rate up to 67%, did not cause any detrimental effect on the growth and nutritional status of broccoli, tomato and onion transplants, despite the high initial salinity of the substrates. These composts appear to be acceptable substitutes for Sphagnum peat in seed sowing mixtures.  相似文献   

4.
Abstract

Compost tea has been used throughout the world to control diseases and promote the growth of plants. The microbial community is the main factor involved both in the antagonistic effect against relevant phytopathogens and as a stimulator of plant growth. The objective of this research is to determine the bacterial diversity present in four types of compost as well as some of the mechanisms that may be involved in the positive effects of compost tea on crops. Aerated (ACT) and non-aerated (NCT) compost teas were obtained from four different composts: spent mushroom substrate compost (SMC), grape marc compost (GMC), greenhouse horticultural crop residues compost (CRC), and vermicompost (CRV). 16S rDNA-based DGGE profiles were obtained for each compost tea and their respective bacterial communities were analyzed. Of the 100 clones obtained, those typical for being dominant for all profiles were chosen. In total, 20 different clones were sequenced. The results showed that the bacterial communities of most compost teas had high richness, diversity, and evenness values, with relative abundance of species belonging to Bacteroidetes and Proteobacteria. The NCTs obtained from all the composts, especially CRC and CRV, showed high levels of siderophore production, while teas from GMC manifested high and consistent cellulase activity. The ACTs from all the composts, especially SMC, had high protease activity.  相似文献   

5.
Growth and nutrient uptake of three container grown nursery crops were compared using different potting media, including bark mixed with varying amounts, 0, 33, 67, and 100% by volume, of raw paper mill sludge and Phase I (fresh) and Phase II (aged) sludge composts. Species grown were: Tartarian dogwood (Cornus alba L.), Coral Beauty cotoneaster (Cotoneaster dammeri C. K. Schneid.), and Variegata Nana weigela [Weigela florida (Bunge) A.DC.]. Each compost consisted of ca. 40% paper mill sludge. Despite differences in response of species to the amount and source of sludge, plants grew well in media containing Phase I and II composts and produced plants of marketable size at harvest. Media with >33% raw sludge resulted in fewer marketable plants and had a greater volume reduction with increasing amounts of sludge. This was also accompanied by declining shoot and root dry weight. Media containing Phase I compost showed less volume reduction than those with raw sludge, and yielded growth comparable to that obtained with Phase II compost. Media containing Phase II compost showed only marginal volume reduction. Changes in leaf N, P, K, Ca, Mg, Fe, Mn, and Zn were small, or nonsignificant. All nutrients except N were related to growth or amount of raw sludge or compost, although all species did not show the same response with each nutrient. The results showed that up to 33% of raw paper mill sludge or any amount of sludge compost was an effective substitute for bark. Since growth was not affected substantially by the age of the compost, the additional time and cost of producing Phase II compost may be unwarranted.  相似文献   

6.
We studied the effects of applying different composts (urban organic waste, green waste, manure and sewage sludge), mineral fertilizer and compost plus mineral fertilizer on chemical, biological and soil microbiological parameters over a 12‐year period. The organic C and total N levels in soils were increased by all compost and compost + N treatments. Microbial biomass C was significantly (P ≤ 0.05) increased for some compost treatments. In addition, basal respiration and the metabolic quotient (qCO2) were significantly higher in all soils that had received sewage sludge compost. The Shannon diversity index (H), based on community level physiological profiling, showed a higher consumption of carbon sources in soils treated with compost and compost + N compared with the control. The utilization of different guilds of carbon sources varied amongst the treatments (compost, compost + N or mineral fertilizer). Cluster analysis of polymerase chain reaction‐denaturing gradient gel electrophoresis patterns showed two major clusters, the first containing the mineral fertilization and compost treatments, and the second, the composts + N treatments. No differences in bacterial community structure could be determined between the different types of compost. However, the results suggest that long‐term compost treatments do have effects on the soil biota. The results indicate that the effects on the qCO2 may be due to shifts in community composition. In this study, it was not possible to distinguish with certainty between the effects of different composts except for compost derived from sewage sludge.  相似文献   

7.
Two composts produced at different times of the year from garden waste, sewage sludge and wood ash were evaluated for use as ornamental plant substrates. The maturity and lack of phytotoxicity of both composts, as well as the absence of E. coli, were first confirmed by use of laboratory procedures and rapid test kits. A greenhouse experiment was then carried out with two ornamental species, Petunia sp. and Tagetes sp., to evaluate the suitability of the composts as plant substrates. The performance of the composts as well as mixtures of each with 25, 50 and 75% acid peat moss was compared with that of a commercial universal substrate. Addition of the peat to the composts improved some of the physical and chemical properties. However, the results of the pot experiments indicated that under the experimental conditions used, the compost produced from green waste was suitable for use as a plant substrate, without the need for addition of other components; this appears to be an effective way of utilizing the type of urban waste considered in the study.  相似文献   

8.
Abstract

Composts may be incorporated into container mixes for several purposes, including to supply nutrients, add organic matter, or suppress plant diseases. The objective of this research was to assess the nutritional benefits of two composts derived in common from composted chicken manure and used in formulation of container media for growth of tomato (Lycopersicon esculentum Mill.). The composts differed in extractable and total plant nutrients so that one of the composts was considered a nutrient‐rich material and the other a nutrient‐poor material. Media were formulated from soil or peat with the composts added in a progressive array of concentrations from a medium with no compost addition to a medium that was all compost. Half of the media were treated with a water‐soluble, complete fertilizer and half were left unfertilized. Optimum growth occurred in media in which compost did not exceed 25% of the volume. The beneficial effects of the composts on plant growth were associated with increased supply of nutrients for the plants. The suppressive effects were attributed to restricted accumulation of nutrients with the nutrient‐poor compost and to excessive potassium supply and accumulation with the nutrient‐rich compost. Fertilization was beneficial in increasing plant growth with the nutrient‐rich compost and was essential for plant growth with the nutrient‐poor compost. The research demonstrated that composts can be used in formulation of media for container growth of plants.  相似文献   

9.
Sixteen composts consisting of 14 commercial samples, one immature yard waste compost and one raw material of mostly grass clippings were evaluated for their stability. In a three-day incubation test, the commercial composts yielded from 9 to 99 mg CO2/kg/ hr, with a mean CO2 production rate of 61 mg CO2/kg/hr. By contrast, the immature compost produced 684 mg CO2/kg/hr and the raw material, 1,433. The low CO2 production rates of the commercial composts along with dark brown color and lack of unpleasant odors in moist conditions indicated that these composts were indeed stable. We devised a quick chemical test to predict compost stability. Several compost properties were measured: (i) total (C, N and C:N), (ii) water-soluble (C, N and C:N), (iii) NaOH-soluble C, humic and fulvic acids, and optical absorbances at 465 nm (E4) and 665 nm (E6) of the NaOH-soluble fractions. Water-soluble fraction, particularly water-soluble C and the C:N ratio, best separated stable from unfinished composts. However, water-soluble organic N in some stable composts was less than 0.01 g/kg, making measurement difficult. Thus, alternatively a ratio of water-soluble C:total organic N ≤0.70, based on Mean (0.32) + 2*SD (0.19), is suggested as a predictor of compost stability. Also, compost stability can be predicted by NaOH-soluble C:water-soluble C ≥6.0, but not by (humic acid:fulvic acid) or (E4:E6) of any NaOH-soluble fractions.  相似文献   

10.
Biowaste can be converted into compost by composting or by a combination of anaerobic digestion and composting. Currently, waste management systems are primarily focused on the increase of the turnover rate of waste streams whereas optimisation of product quality receives less attention. This results in low quality composts that can only be sold on bulk markets at low prices. A new market for quality compost could be potting mixes for horticultural container-grown crops to partially replace non-renewable peat and increase the disease suppressiveness of potting mixes. We report here on the effect of wetsieving biowaste prior to composting on compost quality and on disease suppressiveness against the plant pathogen Pythium ultimum of peat mixes amended with this compost. The increased organic matter and decreased salt content of the compost allow for significantly higher substitution rates of peat by compost. In this study up to 60% v/v compost peat replacement did not affect cucumber growth. However, disease suppressiveness of the potting mixes strongly increased from 31 to 94% when the compost amendment rate was increased from 20 to 60%. It was shown that general disease suppression for P. ultimum can only be effective when the basal respiration rate is sufficiently high to support microbial activity. In addition, organic matter of the compost should reach a sufficient stability level to turn from disease conducive to disease suppressive. Increasing the compost addition from 20 to 60% did not significantly affect plant yield, yield variation were due to differences in nutrient levels. It can be concluded that compost from wetsieved biowaste has high potential to replace peat in growing media for the professional market.  相似文献   

11.
The decomposition of organic matter of source-separated biowaste during composting was followed during 18 months. Compost samples were fractionated into three parts: (i) hot water soluble extract (HWE) (ii) bitumen fraction and (iii) humic substances (humic acids (HA) and fulvic acids (FA)). Original compost samples and the HA and FA fractions were hydrolyzed with sulfuric acid for hexoses and pentoses. Quantitative spectrophotometric and qualitative GC/MS analyses of monosaccharides as trimethylsilyl ethers of the corresponding alditols were carried out.

During composting, the amount of HA in the organic matter of the compost increased, the amounts of HWE and bitumen decreased and the amount of the FA fraction changed only a little. Carbohydrates were found to be important constituents of biowaste composts and their HA and FA fractions. Elemental analysis (C, N and H) of compost and HA samples showed an increase in the C:H ratio and in unsaturation of compounds during composting. The decrease in the C:N ratio was marginal.

The amounts of hexoses and pentoses in original compost samples and the HA and FA fractions decreased during composting. The sugar alcohols erythritol, xylitol, L-arabitol, ribitol, L-rhamnitol, L-fucitol, D-mannitol, D-glucitol and galactitol were identified in both the HA and FA fractions. 2-Deoxy-D-erythro-pentitol was identified in one HA fraction and inositol in two FA fractions. An analysis of gas chromatographic data for relative abundances showed that, in every sample except one and in every stage of composting D-glucitol was the main sugar alcohol. In general, the relative amount of D-glucitol decreased during composting, while the relative amounts of all other sugar alcohols increased.

As chemical indicators of compost maturity, carbohydrates would appear to be a important group of compounds. Most informative as a general indicator would be the ratio of the amount of HA to the amount of organic matter in the total compost samples.

According to our studies, the carbohydrates in composts are covalently bound to the structures of FA and HA. Carbohydrate determination clearly deserves more attention in the structural elucidation of FA and HA.  相似文献   

12.
Cereal based cropping systems have been established for food security in many countries where farmers use plenty of chemical fertilizers, but adoption of leguminous crop in the system is not popular. Excessive use of fertilizers is responsible for health and environmental hazards. Adoption of legume in cereal based cropping systems and improvement of organic fertilizer are needed to reduce chemical fertilizer use. Pot experiments in the greenhouse were carried out with green manure (GM) and compost of green pea (Pisum sativum L.) plant residue (PP) with dried chicken manure (CM) and/or rapeseed (Brassica napus L.) oil residue (RR) at Gifu University, Japan during 2004-2007. The goal of the experiments was to assess: the effectiveness of GM and compost on growth and yield of wheat and ii) the efficiency of GM and compost to supply nutrients. After pod harvest, PP was mixed with CM or RR or half of CM plus half of RR, or nothing was mixed with PP for making GM and compost for wheat. Results of two pea-wheat cycles revealed that composts of PP with CM and CM plus RR were enriched by higher microbial activity; maintained the activity at a higher rate in the soil and supplied sufficient nutrients to wheat. As a result, wheat harvested higher amount of N P K with efficient recovery rate, which improved yield components and yield. Apparent nutrient recovery efficiencies of the composts could save fertilizer use and environment. Although higher value was found from compost than GM of similar organic materials, but among the GM treatments, PP with CM plus RR also gave higher yield. Moreover, instead of having enough nutrients, RR can not supply nutrients satisfactorily due to delay release but CM itself is efficient and stimulates RR to release nutrients. Therefore, pea compost with CM or CM plus RR is recommended for wheat.  相似文献   

13.
The rising cost of peat and pine bark has boosted the demand for alternative organic materials for container growing media. Here, composts of invasive acacia (Acacia longifolia and Acacia melanoxylon) residues were evaluated as alternative organic materials for horticultural substrates. Compost bulk density was less than 0.4 g cm?3 and total pore space was more than 85 percent of the total volume, as established for an ideal substrate. The matured acacia compost air capacity, easily available water, buffering capacity, and total water-holding capacity were also within acceptable recommended values. With increased composting time the physical characteristics of the composts were improved, but the same was not true for chemical characteristics such as pH and electrical conductivity. The replacement of pine bark compost by acacia compost in a commercial substrate did not negatively affect either lettuce emergence or lettuce growth, suggesting that acacia compost can be successfully used as an alternative component for horticultural substrates.  相似文献   

14.
The present research was conducted to explore the impact of alternative organic amendments on physicochemical properties of soil and their critical value for kiwi seedlings growth. The experiment was laid out in completely randomized design with 3 replications and 20 seedlings per replication. The highest pH (8.0) was recorded in T3 (compost + silt) and the highest electrical conductivity (EC) of 5.91 dS/m, organic matter (24.11%), organic carbon (13.99%), organic nitrogen (1.51%) were recorded in T8 (compost + peat moss (PM) + leaf manure) and the highest soil porosity (SP) (45.95%) and lowest bulk density (0.67) were recorded in T4 (PM + garden soil (GS)). EC higher than 1.99 and SP (45.95%) were found critical and adversely affected seedling survival. The highest plant height (103 and 93 cm), number of leaves (23 and 20), number of first-order lateral roots (NFLRM) (9 and 8.5), whole seedling fresh mass (75 and 72 g), fresh root mass (FRM) (35 and 35 g), shoot fresh mass (46 and 40 g), root collar diameter (RCD) (13 and 12 mm), and shoot diameter (10 and 9 mm) were recorded in T5 (compost + GS) and T7 (compost + PM + GS). Strong and positive correlations were observed among NFLRP, RFM, and RCD (R2 = 0.89 and 0.96) and all the above-ground seedling traits (R2 = 0.86–0.98). It is concluded that compost is a good soil amendment for producing good quality graftable kiwi seedlings and evaluation of seedling root system architecture could be used to predict the potential and success of seedlings in the field.  相似文献   

15.
Reports of disease suppression by compost are inconsistent likely because there are no established standards for feedstock material, maturity age for application, and application rate. The overall goal of the study was to evaluate a suite of biological indicators for their ability to predict disease suppression. Indicators included both commercial available methods for compost stability (Solvita?, respiration) and metrics of soil ecology not yet adopted by the compost industry (e.g., ecoenzymes, nematode community index). Damping-off by Rhizoctonia solani on radish was chosen as a model system given its global importance, competitiveness affected by carbon quality, and lack of disease management options for organic production. Biological indicators were evaluated for their ability to consistently differentiate among curing process, maturity, and feedstock material as a function of disease severity of a seedling bioassay and a compost extract assay to test competition with R. solani growth. Compost processed as vermicompost and anaerobic digestate were more suppressive against R. solani than windrow or aerated static pile. Mature composts were more suppressive than immature components. Feedstocks containing dairy manure and/or hardwood bark tended to have suppressive qualities. In contrast, poultry manure-based components were conducive to disease. Microbial ecoenzymes active on chitin and cellulose and nematode community indices were better predictors of disease suppressiveness than microbial respiration. These indicators are quicker than plant bioassays and could be adopted as tools to certify commercial products.  相似文献   

16.
The accumulation of heavy metals (HMs) in soils is the most often cited potential risk of compost application. As the ecological effects of metals are related to mobile fractions rather than to total concentrations in the soil, we measured the total (aqua regia–extractable) HM concentrations, the readily available water‐soluble and the potentially bioavailable LiCl‐extractable fraction of soil HMs in a field experiment after 10 y with total applications of 95, 175, and 255 t ha–1 biowaste compost (fresh matter). Total soil concentrations of Cd, Cr, Cu, Ni, and Pb in the compost treatments were not significantly higher than in the unfertilized control. Total Zn concentrations increased in the treatment with the highest application rate, as expected from the calculation of the Zn load in the composts. In the mobile fractions, as measured in soil saturation extract and LiCl extract, Cd and Pb were not detectable. Concentrations of Cr, Ni, and Zn were in the range published for unpolluted soils in other studies and did not show any differences according to treatment. Easily exchangeable Cu (in LiCl extract) was increased with compost fertilization, most probably due to complexation with low‐molecular organic complexants. Except for Cd and Zn, the results of the mobile HM fractions in the soil were in good agreement with plant HM concentrations. In conclusion, fertilization with high‐quality biowaste compost at such rates and after 10 y of application gives no cause for concern with regard to both total HM concentrations and available HM fractions.  相似文献   

17.
Improved predictive relationships between compost maturity and nitrogen (N) availability are needed. A total of 13 compost samples were collected from a single windrow over a 91 d period. Compost stability and maturity were assessed using both standard chemical analyses (total C and N, mineral N, total volatile solids) and other methods (CO2 evolution, commercial maturity kits, and neutral detergent fiber, and lignin). Compost N and carbon (C) were evaluated during a 130 d aerobic incubation in a sandy loam soil after each compost was applied at 200 mg total kg?1 soil. The effect of compost maturity on plant growth was evaluated by growing two ryegrass (Lolium perenne L.) crops and one barley (Hordeum vulgare L.) crop in succession in compost-amended soil under greenhouse conditions. Potential phytotoxicity from compost was assessed by growing tomato (Lypersicum esculentum L.) seedlings in compost-amended soil. Regression and correlation analyses were used to evaluate the relationship between compost maturity parameters, the rate and extent of net N and C mineralization, plant yield and N uptake, and phytotoxicity. Commonly used maturity parameters like total C, total N, and C:N ratio were poorly correlated with the rate and extent of mineralization, and with plant growth parameters. The N mineralization rate during the first 48 d of aerobic incubation was strongly correlated (r= ?0.82 to ?0.86) to compost fiber and lignin concentration, and to the Maturity Index (r=0.85). Trends in C mineralization were similar. There were few differences in C mineralization between composts after 48 d of aerobic incubation in soil. Ryegrass harvested 35 and 70 d after compost application was not strongly affected by compost maturity, and relatively immature composts were phytotoxic to tomato seedlings. Methods of characterizing compost maturity and stability that more realistically reflect the composting process are better predictors of N release and potential plant inhibition after incorporation into soil.  相似文献   

18.
We studied nine composts derived from wastes and by-products of the olive oil, wine, and Agaricus mushroom agro-industries. They were mixed with peat at 1:3 w w −1 ratios and comparatively evaluated in pot experiments to assess suppressiveness against soil-borne and foliar pathogens of tomato. All compost amendments demonstrated high levels of suppressiveness against Phytophthora nicotianae Breda de Haan in tomato, when they were applied directly after curing (T0) indicating the occurrence of a “general suppression phenomenon” (81–100% decrease in plant disease incidence). They were, however, relatively less effective when applied 9 months after curing (T1, 55–100% disease decrease). Suppressiveness against Fusarium oxysporum f.sp. radicis-lycopersici Jarvis & Shoemaker was relatively lower and varied widely among composts (8–95% and 22–87% decrease in plant disease incidence for T0 and T1, respectively). Three of the composts conferred induced systemic resistance against the foliar pathogen Septoria lycopersici Speg. Biotic properties were determined, including respiration, fluorescein diacetate hydrolysis, and β-glucosidase activity of composts. The comparative evaluation of the nine composts revealed no shared critical biotic or abiotic characteristics indicative of their suppressive effects on the soil-borne and foliar pathogens. The complex origin of compost suppressiveness is discussed and the implementation of individual evaluation of each compost product for a specific use is advocated.  相似文献   

19.
Long-term effects of compost application are expected, but rarely measured. A 7-yr growth trial was conducted to determine nitrogen availability following a one-time compost application. Six food waste composts were produced in a pilot-scale project using two composting methods (aerated static pile and aerated, turned windrow), and three bulking agents (yard trimmings, yard trimmings + mixed paper waste, and wood waste + sawdust). For the growth trial, composts were incorporated into the top 8 to 10 cm of a sandy loam soil at application rates of approximately 155 Mg ha?1 (about 7 yd3 1000 ft2). Tall fescue (Festuca arundinacea Schreb. ‘A.U. Triumph’) was seeded after compost incorporation, and was harvested 40 times over a 7-yr period. Grass yield and grass N uptake for the compost treatments was greater than that produced without compost at the same fertilizer N rate. The one-time compost application increased grass N uptake by a total of 294 to 527 kg ha?1 during the 7-yr. field experiment. The greatest grass yield response to compost application occurred during the second and third years after compost application, when annual grass N uptake was increased by 93 to 114 kg ha?1 yr?1. Grass yield response to the one-time compost application continued at about the same level for Years 4 through 7, increasing grass N uptake by 42 to 62 kg ha?1 yr?1. Soil mineralizable N tests done at 3 and 6 yr. after application also demonstrated higher N availability with compost. The increase in grass N uptake accounted for 15 to 20% of compost N applied after 7-yr. for food waste composts produced with any of the bulking agents. After 7-yr, increased soil organic matter (total soil C and N) in the compost-amended soil accounted for approximately 18% of compost-C and 33% of compost-N applied. This study confirmed the long-term value of compost amendment for supplying slow-release N for crop growth.  相似文献   

20.
Several composts were tested for their capacity to moderate the effect of Verticillium dahliae Kleb. (VCG B4, VD) on eggplant (Solanum melongena) under greenhouse conditions. Eggplants plantlets were inoculated by immersing their roots in conidial suspension and then planted in pots filled with mixtures of compost or peat moss, mixed with perlite. Six composts and peat moss mixtures were tested, of which tomato waste compost suppressed V. dahliae, and turkey litter compost partially suppressed it. Reduced levels of symptoms and lower fungal colonization were detected in the xylem of eggplants planted in tomato waste compost, and these plants accumulated more dry matter and had higher chlorophyll content compared to other media. However, survival of conidia in tomato waste compost showed only a moderate decrease compared with a sharp decrease in other media, suggesting that conidial eradication cannot be proposed as the suppressiveness mechanism. γ irradiation of tomato waste compost and peat at 2.5 Mrad reduced microorganism density by four orders of magnitude, but irradiation of tomato waste compost did not reduce its suppressiveness of V. dahliae. Composts properties affected progress rate of VD in the xylem tissue of eggplant seedling. These properties could indicate both biotic and abiotic factors affecting the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号