首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of the surface treatments on the performance of the hemp/PP (polypropylene) composite was investigated. The composites were prepared from the fiber modified by the alkalis and the oil under various conditions. The mechanical properties of the composites were measured using the tensile test, and the service time of the composite was assessed under accelerated condition by the stepped isothermal method. The alkaline treatment removed the lignin successfully and resulted in better fibrillation. The oil treatment improved the mechanical properties of the composites and extended the service life time of the composites.  相似文献   

2.
We introduced a novelty and mild method for preparing four different hydrophilic polymers (PVP, PAA, PDMAEMA, and PAM) grafted to DPVC fibrous membrane surface. To increase active sites and improve the grafting efficiency of hydrophilic polymer on PVC membrane, PVC resin was slightly dehydrochlorinated, forming a few conjugated double bonds. A minor reduction in the DPVC average molecular weight in a short dehydrochlorination time exerted minimal influence on the DPVC electrospinning process and fiber morphology. Results of ATR-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and surface wettability of modified membranes proved that hydrophilic polymers were successfully grafted covalently on the surface of the DPVC nanofibrous membrane. The hydrophilicity of the modified DPVC fibrous membrane was evidently improved. This hydrophilic DPVC fibrous membrane may fulfill potential requirements in tissue engineering and wastewater treatment.  相似文献   

3.
In this paper, polyester fabric was modified through synthesis and fabrication of Cu/Cu2O nanoparticles using a facile and cost-effective method at boil by chemical reduction through exhaustion route. Triethanolamine (TEA) was used for aminolysis of polyester fabric and pH adjusting, copper sulfate (CuSO4) as metal salt, sodium hypophosphite (SHP) as reducing agent and polyvinylpyrrolidone (PVP) as stabilizer. A response surface methodology was also employed to optimize the reaction conditions and study the effects of SHP, PVP and TEA concentrations in the processing. The images of field-emission scanning electron microscopy (FESEM), the patterns of energy-dispersive spectroscopy (EDX) and X-ray diffraction (XRD) patterns confirmed successfully synthesis of Cu and Cu2O nanoparticles on the polyester fabric. Further, the thermal behavior of the untreated and treated fabrics was studied by using thermogravimetric analysis (TGA) and differential scanning colorimetry (DSC). The treated fabrics indicated good properties regarding wettability and flame-retardant along with high tensile strength.  相似文献   

4.
Lignosulfonates (LS) were used to modify the surface of a mica substrate using Cu2+ as the binding agent through layer-by-layer (LbL) self-assembly. The average thickness and roughness of the self-assembled multilayer of LS–Cu2+ complexes increased with the number of layers as revealed by atomic force microscopy. The hydrophilicity of the modified surface decreased with the increase in the number of layers. The contact angle was increased from 6.5° to 86° after the mica surface was coated with 18 layers of LS–Cu2+ complexes. This suggests that surface hydrophilicity can be modified in a controllable manner via LbL assembly of lignosulfonates.  相似文献   

5.
In this study a newly laser treatment method for surface modification of nanofibers is introduced. The new method is based on different infrared absorption of materials. Surface modification of Clay-PAN composite nanofibers was performed using selective laser etching approach with CO2 pulsed laser in order to increase surface area of nanofibers. The surface structure of resulted nanofibers is characterized using field emission scanning electron microscope and the results show characteristic modification of the surface topography of laser treated nanofibers. The modified surface structure of nanofibers was studied and analyzed for different laser pulse numbers and laser fluence. The results show that nanofiber surface modification strongly depends on the number of CO2 laser pulses and frequency of modified sites on the surface of nanofibers increasing with increasing the pulse fluence. This new technique is highly selective and can also compete with conventional techniques for nanofibers surface modification.  相似文献   

6.
Polyacrylonitrile (PAN) fiber was grafted with casein after alkaline hydrolysis and chlorination reactions of the original fiber. The structures and morphologies of the casein grafted fiber were characterized by Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscope (SEM). Moisture absorption, specific electric resistance, water retention value, and mechanical properties were also investigated. The results showed that casein was grafted onto the surface of the PAN fiber and the grafted PAN fiber presented better hygroscopicity compared with the untreated fiber. With proper tensile strength, the modified fiber could still meet the requirement for wearing. A mechanism was proposed to explain the deposit of casein on the synthetic acrylic fiber.  相似文献   

7.
There is an increasing demand for air-dry performance of fluorocarbon finished materials. Thus, surface modifications of wool fabrics were evaluated. Untreated, gaseous fluorinated, Chlorine/Hercosett processed 100 % wool fabrics were treated with different fluorochemicals and their liquid repellency after washing, and dry cleaning were evaluated. The results indicated that Chlorine-Hercosett treated samples, wool with a positive charge, after few washing cycles, showed better air dry performance with higher level of repellent properties. In addition, the comparison of the wool surface modifications treatment with different applied fluorochemicals, with different commercial formulations, illustrated that the fluorocarbon chain re-orientation and fastness properties are more affected by the nature of the wool surface while the used fluorocarbons showed more or less similar behaviours. In general, the fluorination increases fabric stiffness with lower fabric formability. The surface interface was effectively probed by X-ray Photoelectron Spectroscopy, XPS, which enabled the characterisation of the loss of surface lipids, the nature of the fibre oxidation and the deposition of fluoropolymers.  相似文献   

8.
对龙井茶中的黄酮化合物提取工艺进行研究。通过单因素系列试验分别研究了甲醇浓度(体积比)、提取时间、提取温度对龙井茶黄酮类化合物浸出量的影响。在单因素试验基础上,利用Design-Expert 7.0软件和Box-Behnken设计原理设计响应面试验,并通过方差分析回归建立数学模型。实验结果表明,龙井茶中黄酮化合物的最佳提取工艺条件:甲醇体积分数61.68%、提取温度61.54℃、提取时间82.79 min,在此条件下,黄酮化合物含量(占干茶)为4.876 mg/g。  相似文献   

9.
In the field of textiles, introducing pH-sensitive dyes onto fibrous materials is a promising approach for the development of flexible sensor. In this study, poly(ethylene terephthalate) (PET) textile surface with halochromic properties was fabricated by plasma-assisted sol-gel coating, followed by immobilization of two different azo pH-indicator dyes; namely Brilliant yellow and Congo red by conventional printing technique of fabrics. 3-aminopropyltriethoxysilane (APTES) was used as a coupling agent for attaching the pH-sensitive dyes through its terminal amines. The surface immobilization of APTES on PET fabric was conducted by the pad-dry-cure method. Moreover, the influence of oxygen plasma pre-treatment and the method of post-treatment either by oxygen plasma or by thermal treatment on the stability of sol-gel based matrix was investigated. The morphology and chemistry of 3-aminopropyltriethoxysilane coated PET surfaces were examined by using surface sensitive methods including electrokinetic and time-dependent contact angle measurements as well as X-ray photoelectron spectroscopy (XPS). In addition, fastness tests of the printed fabrics and color strength were carried out to assess the effectiveness of the fabric surface modification. Results indicate that sol-gel matrix exhibited a more stability by thermal post-treatment at 150 C for 5 min. Also, the results revealed that the printed fabrics with halochromic properties demonstrated sufficient stability against leaching by washing. The current work opens up a novel opportunity to develop flexible sensors based on fibrous materials, which have the potential to be employed in variable industrial applications.  相似文献   

10.
王贤波  崔红春  黄海涛 《茶叶》2011,37(4):221-224
用去离子水浸提茶叶中的EGC,用高效液相色谱仪检测EGC并计算浸出率。在单因素实验基础上,利用Box—Benhnken实验设计进行三因素三水平的响应面分析实验,获得最优浸提条件:料液比1:12、pH6.2、温度78℃、时间18min、浸提2次。  相似文献   

11.
In this study, synthesis of zinc oxide nanoparticles was carried out along with the hydrolysis of polyester fabric using sodium hydroxide to increase the surface activity and enhance the nanoparticles adsorption. The polyester fabrics were treated with zinc acetate and sodium hydroxide at different bath conditions, ultrasound and stirrer, resulting in formation of ZnO nanospheres and ZnO nanorods. The presence of zinc oxide with different shapes on the surface of the polyester fabrics was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Also, the X-ray diffraction patterns established the composition of wurtzite structure of zinc oxide. The self-cleaning property of treated polyester fabrics was evaluated through discoloring dye stain under sunlight irradiation. The antibacterial activities of the samples against two common pathogenic bacteria including Escherichia coli and Staphylococcus aureus were also assessed. The results indicated that the photocatalytic and antibacterial activities of the ultrasound treated polyester fabrics were superior compared to the stirrer treated samples.  相似文献   

12.
This study evaluated the potential application of an atmospheric plasma (AP) treatment as a pre-treatment for digital textile printing (DTP) of polyester (PET) fabrics and cotton, in order to determine its viability as an alternative to the usual chemical treatment. The surface properties of the AP-treated fabrics were examined through scanning electron microscopy (SEM) and contact angle, and the physical properties, such as electrostatic voltage and water absorbance, were tested. The properties of cotton and PET with the AP treatment were found to be dependent on number of repetitions and electric voltage. Although no remarkable surface differences were observed by SEM in the fabrics before and after treatment, the static contact angle of the PET after AP treatment was decreased from 85 ° to 24 ° at wave. In addition, the charge decay time decreased as the voltage and number of treatments increased. The absorption height of PET changed after exposure to 7 mm with increasing measurement time. The K/S with and without the AP pre-treated and DTP finished cotton was better than that with the usual chemical modification. In PET, the 0.5 kW and 1 time AP-treated specimen showed the highest K/S values.  相似文献   

13.
Polyacrylonitrile (PAN) is a widely used polymer in the textile industry. PAN contains cyano groups on the surface due to which it possess low hydrophilicity and limits its application. Thus, there is a need to modify the functional groups on the surface of PAN for its industrial demand to improve moisture uptake, dyeability with ionic dyes, without affecting mechanical properties. A number of strategies such as chemical treatment, plasma treatment, enzymatic treatment etc. have been applied for the surface modification of polymer but enzymatic treatment are advantageous over plasma treatment and chemical treatment. In enzymatic treatment, reaction is limited to polymer surface only, and provides milder condition with less damage to polymer. In present study, it was found that enzyme system of Amycolatopsis sp.IITR215 was effective enzyme system for modification of surface nitrile groups of polyacrylonitrile. PAN powder was treated with the cell free extract of Amycolatopsis sp.IITR215 and it was found that the nitrile metabolizing enzymes of this strain were efficiently able to transform -CN to -COOH groups present on the surfaces of PAN powder. The formation of carboxyl group was quantified by ammonia released and dye binding assay. Further, confirmation of carboxyl group on polymer was done by FTIR and XPS. This study indicates that, specific adsorption of enzyme probably plays an important role in the enzymatic surface modification of polymer.  相似文献   

14.
Gas plasma technologies have been utilized to improve the surface properties of fibers in many applications from textiles to fiber-reinforced composites since the 1960s. This review discusses the feasibility and characteristics of gas plasma technologies applied to aramid fiber. The influence of various plasma treatments on the chemical and mechanical properties of aramid fibers as well as fiber-reinforced composites is described. The moisture regain is emphasized to achieve good bonding between aramid fibers and polymer matrix and to enhance the surface modification of aramid fiber and mechanical properties of the composites. More sophisticated technologies such as plasma-initiated graft polymerization are also discussed to highlight very recent developments.  相似文献   

15.
Lignin, nature’s abundant polymer with a remarkably high carbon content, is an ideal bio-renewable precursor for carbon fiber production. However, the poor mechanical property of lignin-derived fibers has hindered their industrial application as carbon fiber precursor. In this work, process engineering through the application of computational modeling was performed to optimize wet-spinning conditions for the production of lignin precursor fibers with enhanced mechanical properties. Continuous lignin-derived precursor fibers with the maximum possible lignin content were successfully produced in a blend with polyacrylonitrile, as a wet-spinning process facilitator. Response surface methodology was employed to systematically investigate the simultaneous influence of material and process variables on mechanical properties of the precursor fibers. This allowed generating a mathematical model that best predicted the tensile strength of the precursor fibers as a function of the processing variables. The optimal wet-spinning conditions were obtained by maximizing the tensile strength within the domain of the developed mathematical model.  相似文献   

16.
In order to improve the interfacial adhesion property between Poly(p-phenylene benzobisoxazole) (PBO) fiber and epoxy, the surface modification effects of PBO fiber under dielectric barrier discharge treatments in different time were investigated. The samples were tested for surface morphology, functional groups, surface wettability and interfacial shear strengths (IFSS) in epoxy using scanning electron microscope, Fourier transform infrared spectroscopy, water contact angle measurements and Micro-bond pull out tests, respectively. The results indicated that fiber surface morphology after plasma treatment was rougher than untreated one. Some polar groups were introduced on fiber surface in plasma treatment. Moreover, surface wettability and the IFSS between fiber and epoxy had much improvement after plasma treatment, the contact angle decreased with the treatment time increasing and reached the lowest value when the treated time was 60 s, and the IFSS was improved by 117.3 %. On the other hand, no significant difference in single fiber tensile test was observed between treated and untreated fibers when the processing time was shorter than 75 s, but the tensile strength declined by more than 10 % after 75 s treatment as a result of the excessive plasma etching.  相似文献   

17.
    为了优化磷酸化改性花生分离蛋白-多肽膜制备工艺条件,在单因素基础上,通过响应面Box-Benhnken进行实验设计。结果表明,最优工艺参数:蛋白浓度8%、pH值8.2、甘油百分含量(占蛋白)13.4%、黄原胶百分含量(占蛋白)1%、时间60min、温度69℃、超声波功率270W、超声波频率28kHz、多肽溶液的浓度61mg/mL;此工艺条件下,膜厚度、吸水率和透光率理论预测值分别为86μm、41.9%和53.6%,验证实验值分别为88±2μm、43.1±1.2%和52.4±1.5%,两者的差值分别为2.33%、2.86%和2.24%,说明响应面二次模型的拟合良好;磷酸化改性花生分离蛋白-多肽膜的抗拉强度9.62MPa、断裂延伸率101.68%、溶解性47.69%、水蒸气透过率6.95 g•m-2· h-1等功能性质和DPPH自由基清除活性IC50值7.70 mg·mL-1、羟自由基清除活性IC50值5.98 mg·mL-1、超氧阴离子自由基清除活性IC50值4.20 mg·mL-1、铁离子螯合力活性IC50值3.79 mg·mL-1、铜离子螯合力活性IC50值13.61 mg·mL-1、脂质过氧化抑制活性IC50值8.62 mg·mL-1、铁还原力IC50值13.93mg·mL-1、钼还原力IC50值5.49mg·mL-1等抗氧化活性较磷酸化改性花生分离蛋白膜有所改善。本研究结果为磷酸化改性花生分离蛋白在蛋白膜方面的应用提供一种新途径。  相似文献   

18.
In this study, biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) fibers were prepared by a melt-electrospinning and treated with plasma in the presence of either oxygen or ammonia gas to modify the surface of the fibers. The effects of processing parameters on the melt-electrospinning of PLGA were examined in terms of fiber morphology and diameter. Among the processing parameters, the spinning temperature and mass flow rate had a significant effect on the average fiber diameter and its distribution. The water contact angle of melt-electrospun PLGA fibers decreased significantly from 123 ° to 55 ° (oxygen plasma treatment) or to 0 ° (ammonia plasma treatment) by plasma treatment for 180 sec, while their water content increased significantly from 2.4 % to 123 % (oxygen plasma treatment) or to 189 % (ammonia plasma treatment). Ammonia gas-plasma enhanced the surface hydrophilicity of PLGA fibers more effectively compared to oxygen gas-plasma. X-ray photoelectron spectroscopy analysis supported that the number of polar groups, such as hydroxyl and amino groups, on the surface of PLGA fibers increased after plasma treatment. Overall, the microfibrous PLGA scaffolds with appropriate surface hydrophilicity and fiber diameter could be fabricated by melt electrospinning and subsequent plasma treatment, without a significant deterioration of fiber structure and dimensional stability. This approach of controlling the surface properties and structures of fibers could be useful in the design and tailoring of novel scaffolds for tissue engineering.  相似文献   

19.
This review covers both physical and chemical modifications of cellulose fibre surface and their impact on the properties of the ensuing papers. It is not restricted to actual industrial operations, but also deals instead with ongoing research in this area, which appears promising in terms of possible applications to papermaking.  相似文献   

20.
As a novel renewable resource, Sapindus mukorossi seed oil (SMSO) with an iodine value of 84.86 g/100 g, and containing 51.0 ± 0.9% oleic acid (18:1), 6.6 ± 0.6% linoleic acid (18:2), 1.1 ± 0.3% linolenic acid (18:3), and 23.1 ± 0.9% eicosanoic acid (20:1), was epoxidized using hydrogen peroxide as oxygen donor and stearic acid as active oxygen carrier in the presence of immobilized Candida antarctica lipase B. The effect of the amount of stearic acid on the enzymatic epoxidation was investigated. Response surface methodology (RSM) was used to study and optimize the effects of variables (reaction temperature, enzyme load, mole ratio of H2O2/CC-bonds, and reaction time) on the epoxy oxygen group content (EOC) of epoxidized SMSO. Results showed that stearic acid as active oxygen carrier could enhance the enzymatic epoxidation of SMSO. The variables of reaction temperature and enzyme load were the most significant in the process. A two second-order model was satisfactorily fitted the data (R2 = 0.9723) with non-significant lack of fit. The optimum EOC of epoxidized SMSO was 4.6 ± 0.3% under the conditions of 50.0 °C, 7.0 h, 2.00% (relative to the weight of SMSO) enzyme load, and 4:1 mole ratio of H2O2/CC-bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号