首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 326 毫秒
1.
基于动网格技术的端面造型机械密封性能   总被引:1,自引:0,他引:1  
利用Fluent软件中的动网格技术,将其应用于机械密封间隙内流场数值模拟中,以有效解决模拟过程中液膜厚度无法预知的问题,获得更加贴近实际的内流场特性,并在此基础上对普通机械密封、微孔端面机械密封、孔槽耦合端面机械密封进行内流场模拟研究,得到3种方案下压力分布、剪切应力分布和泄漏量,对模拟结果进行比较分析.结果表明:动网格技术在机械密封内流场模拟中的应用是可行的,能得到更好的效果;微孔和螺旋泵送槽都能够产生动压效应,其中由于微孔的动压效应产生的高压区出现在渐缩截面处,槽的动压效应产生的高压区主要出现在槽末端台阶处;与普通机械密封相比,微孔端面机械密封能够产生动压效应,减轻密封件的摩擦磨损,但防泄漏性能不佳;孔槽耦合端面机械密封运行时不仅剪切应力小,而且能有效抵抗压差流、降低泄漏量,具备优异的密封润滑性能,是获得零泄漏非接触高性能的可行途径.  相似文献   

2.
为了准确获得上游泵送机械密封的液膜厚度,采用Pro/E软件建立螺旋槽上游泵送机械密封的三维参数化模型,应用Fluent软件的动网格技术,同时考虑空化的影响,对机械密封微间隙内流场进行了数值模拟.将得到的液膜厚度与有关文献的测试结果进行对比分析.在同时考虑空化模型和动网格技术的基础上,计算分析了工况参数对液膜刚度和泄漏量的影响.结果表明,应用动网格计算的液膜厚度与测试结果所获得的结果基本一致,最大相对误差为19.6%,最小相对误差为0,平均相对误差为8%,从而验证了动网格技术在机械密封内流场模拟中的可行性;机械密封内流场计算应当考虑空化问题,才能得到比较真实的内流场特性;液膜厚度、泄漏量和液膜刚度随着转速、介质压力的增大而增大,端面螺旋槽在产生泵送效应的同时也产生动压效应.  相似文献   

3.
为了分析液体动压型机械密封环变形对间隙液膜特性的影响,基于Workbench平台建立动环-液膜-静环的双向流固热耦合计算模型,对变形后的内流场进行模拟计算,对双向流固热耦合前后内流场的压力、温度以及螺旋槽内速度进行对比分析,并比较了流固热耦合后开启力、摩擦扭矩以及泄漏量的变化.研究结果表明:经过双向流固热耦合计算后,液膜在动环端面附近受压缩,在静环端面附近沿周向呈明显波浪状周期性波动,外径处液膜平均厚度减小、内径处液膜平均厚度增大,液膜厚度最大变化约16.0%;双向流固热耦合前后压力场、温度场分布规律类似,但液膜最高压力明显变大,在文中计算工况下变大约67.0%,液膜最高温度略有变大,螺旋槽根部附近液体流速降低;考虑了流固热耦合变形后,液膜开启力变大,摩擦扭矩略微变大,泄漏量明显变大,且转速越高各密封性能参数的变化越大.  相似文献   

4.
为了找出更有效的优化方法,在考虑空化模型的基础上,以螺旋槽的几何参数(槽深h、螺旋角α、槽径宽径比β以及槽区宽度比γ)为设计变量,以泄漏量为优化目标,采用均匀试验设计法设计了50组机械密封端面槽型几何参数值,并利用CFD方法计算目标函数值,从而建立端面槽型几何参数和泄漏量的回归模型.运用Matlab软件绘制等值云图,利用响应面法分析端面槽型几何参数槽深、螺旋角、槽径宽径比以及槽区宽度比之间的交互作用对泄漏量的影响,并对机械密封微间隙内流场进行数值模拟验证,从而得到端面参数的最佳组合.研究表明:采用响应面法对上游泵送机械密封进行优化可行;螺旋槽的槽深h、螺旋角α、槽径宽径比β、槽区宽度比γ分别在6~12 μm,16°~20°,0.35~0.55和0.45~0.6取值时,能够获得更好的密封性能.  相似文献   

5.
针对乳液输送设备双端面机械密封主密封在实际运转中频现失效问题,采用端面螺旋槽造型技术对主密封进行端面改型,在考虑黏温关系的情况下,借助动网格UDF技术建立密封间隙液膜热流体计算模型,研究冲洗压力对液膜厚度、开启力、温度和冲洗液泄漏量等性能参数的影响规律,进行改型前后密封液膜热特性与冲洗液参数关系及端面摩擦功耗的对比分析.研究表明:冲洗压力增大,密封间隙膜厚减小,膜压增大,膜温升高,冲洗液泄漏量增大;主密封端面改型后,密封端面周向平均温度明显降低,随冲洗压力增大而增大的幅度明显减小,以及受温度、流量的影响程度也明显降低,且密封稳定性增加;同工况下,冲洗压力可降低0.1~0.5 MPa,达到延长密封寿命和显著降低冲洗系统能耗的目的.  相似文献   

6.
基于CFD的螺旋槽干气密封端面流场流态分析   总被引:2,自引:0,他引:2  
应用Gambit软件建立三维螺旋槽干气密封模型,并对其进行了网格划分.在特定工况下,运用Fluent软件对螺旋槽干气密封内部微间隙三维气体流场的两种流态,即层流和湍流分别进行了数值模拟,得到了两种流态的压力分布、速度分布以及泄漏量.运用模拟得到的层流和湍流的速度,根据流动因子进行了理论计算,结果表明:螺旋槽干气密封端面气体是以层流流动的.将模拟得到的层流和湍流的泄漏量与其相同工况下试验所测得的泄漏量进行对比分析,结果表明:螺旋槽干气密封端面气体亦是以层流流动的,模拟层流泄漏量为6.92×10^-6m^3/s,试验值为6.94×10^-6m^3/s,十分接近.综合以上两种结果表明:在一定工况下,螺旋槽干气密封端面气体是以层流流动的.  相似文献   

7.
为了了解高压下混合实际气体行为和理想气体的区别,采用Redlich-Kwong方程表达混合气体的实际行为,对Muijderman螺旋槽窄槽理论气膜压力控制方程进行修正,并加以求解.针对螺旋槽干气密封,以天然气为例,分析混合气体效应对螺旋槽干气密封的端面压力、泄漏率、气膜刚度和开启力等特性的影响,并在不同压力下与其对应的理想气体和甲烷气体进行对比.结果表明:天然气混合实际气体效应,易受压缩,使干气密封的泄漏率、槽根压力、端面开启力、气膜刚度增大,其中对泄漏率的影响尤为明显;尽管天然气中的绝大部分气体是甲烷气体,但是天然气密封性能与甲烷实际气体性能差距较大,不能仅通过甲烷实际气体来分析天然气的密封性能.  相似文献   

8.
为分析上游泵送机械密封微间隙内流场的动静干扰作用和压力脉动特性,以螺旋槽非接触式机械密封为例,运用滑移网格技术,对内部流场进行了多工况非定常数值模拟.分别计算了稳态和瞬态的模型内部压力速度分布,以及不同转速下的压力脉动时域变化和频谱特性,并与试验结果进行对比分析.研究结果表明:所用模拟方法可对内流场非定常特性进行较好描述,由于动静干涉的影响,各转速下机械密封流场内压力脉动呈明显的周期性变化规律;压力脉动是非定常流动现象的重要特征,主要受槽频和轴频的影响.  相似文献   

9.
为了解决双向流体动压机械密封稳定运行需要提供洁净的阻塞流体这一问题,提出一种双向自泵送流体动静压型机械密封,运用Fluent软件对泵出式和泵入式双向自泵送机械密封进行了数值研究,得到了双向自泵送机械密封的开启力、泄漏量和刚度,分析了流场压力分布、速度分布特性与密封性能之间的关系.结果表明:泵入式双向自泵送机械密封具有较大的开启力,泵出式具有较小的泄漏量,两者工作时都不需要阻塞流体辅助供应系统;泵出式型槽内流体流动方向约为-90°,由槽根部指向槽外径处,泵入式型槽内流体流动方向约为70°,在密封坝与槽根部相连的区域中流体流动的方向约为-80°,均指向引流孔,形成了良好的抗颗粒干扰性;泵入时端面流体膜刚度大于泵出时的端面流体膜刚度.研究成果为双向机械密封的设计、制造与运行提供了理论支撑.  相似文献   

10.
为了探索动压型机械密封微间隙气液固流动特性及密封性能,建立了间隙润滑膜气液固多相流模型,对间隙流动进行数值模拟,分析槽型参数和工况参数对流动特性及密封性能的影响.研究表明:槽宽比、螺旋角和转速的增大以及槽深的减小均会使润滑膜空化区域增大;随着槽宽比、槽径比和槽深的增大,润滑膜开启力先增大后减小,最佳槽型参数值分别是槽宽比0.3~0.6、槽径比0.7~0.8、槽深6~10μm(转速高、槽深取大值),较小的螺旋角能获得较大开启力;在所研究参数内密封主要为负泄漏,转速、槽径比的增大和螺旋角的减小均会使泄漏量绝对值增大,而槽深、槽宽比的增大使泄漏量绝对值先增大后减小;总体上固体颗粒主要聚集在槽堰区及坝区内侧,槽径比减小和螺旋角增大会使固体颗粒向槽堰区聚集,易造成螺旋槽堵塞失效.  相似文献   

11.
为了研究锯齿形螺旋槽干气密封的性能特性.利用Fluent软件对其气膜流场进行数值模拟,并以开漏比(开启力与泄漏率之比)作为1个性能指标,分析其锯齿形表征角β1β2对锯齿形螺旋槽干气密封性能的影响,发现锯齿形螺旋槽干气密封的开漏比主要受角度β1的影响.选择1组锯齿形表征角β1=8°,β2=30°的锯齿形螺旋槽干气密封为基础模型,将其与普通螺旋槽干气密封分别进行数值模拟,并对以上2种槽型相对应的气膜压力分布、开启力、泄漏率、开漏比和刚度等干气密封性能参数进行比较分析,结果表明:锯齿形螺旋槽干气密封具有更小的泄漏率,但开启力也较小,其开漏比大于普通螺旋槽干气密封,在膜厚较大时,具有更大的气膜刚度.  相似文献   

12.
为深入研究密封介质为非牛顿流体的螺旋槽上游泵送机械密封性能,以幂律流体为研究对象,基于Muijderman推导牛顿流体润滑轴承的端面压力分布表达式,把幂律流体二维定常流动雷诺方程和流量方程分别替换牛顿流体的表达形式,获得了密封端面流场的压力分布表达式,进而得到密封开启力、泄漏率等性能参数.将解析所得结果与采用Fluent模拟结果进行比较,两者数据吻合.再基于近似解析法,分别分析了稠度系数m和流性指数n对密封性能的影响,结果表明,密封开启力随流性指数n和稠度系数m的增大而增大.对于泄漏率而言,当密封胀塑性流体时,流性指数n和稠度系数m几乎没有影响.当密封假塑性流体时,处于较小膜厚时受稠度系数m和流性指数n的影响甚微,但处于较大膜厚时随流性指数n和稠度系数m增大而变大.  相似文献   

13.
以纯气体输送时的油气混输泵上游泵送螺旋槽机械密封为研究对象,基于气体润滑理论并采用有限差分法,在考虑密封环发生相对倾斜的情况下,研究操作参数、结构参数及密封环相对倾斜角对密封稳态性能的影响规律和作用机制.数值分析结果表明,相对于平行密封间隙,密封环发生相对倾斜时,会使膜厚减小区域的膜压峰值和膜压高压区范围明显增大,使膜厚增大区域的膜压峰值和膜压高压区范围明显减小;无论研究的参数如何变化,开启力、泄漏率及气膜刚度始终呈现出随着密封环相对倾角增大而增大的变化规律;通过增大转速、设计较小的平衡膜厚或优化型槽结构不仅可有效增强密封的上游泵送能力,以实现被密封介质的零泄漏,还可有效改善密封的开启性和稳定性.  相似文献   

14.
在干气密封的研究和设计过程中,一般将密封气体按理想气体处理.但在高压情况下,某些气体的实际效应明显偏离理想气体.以工业上常见的空气、CO2(二氧化碳)、H2(氢气)和N2(氮气)为例,针对广泛使用的螺旋槽干气密封,利用CFD商业软件的三维数值模拟功能,考虑实际气体效应,并同时考虑了气体流经密封环端面时温度发生变化的情况,得到了实际气体效应对干气密封开启力和泄漏率等密封性能的影响规律.结果表明:在压力不超过4.6 MPa研究范围内,空气、N2实际气体与理想气体的密封性能基本相同,而CO2实际气体的开启力和泄漏率大于理想气体结果,H2实际气体开启力和泄漏率则略微小于理想气体结果.实际气体效应对干气密封的泄漏率影响较大,对开启力的影响不大.  相似文献   

15.
针对螺旋槽上游泵送机械密封的研究和设计过程中,利用未考虑修正因素的近似解析法所得结果与试验结果偏差进行比较,为准确、高效地解析计算螺旋槽上游泵送机械密封的性能,考虑液体进入螺旋槽时会产生压力损失的“端部效应”,对螺旋槽根处的压力进行了修正,获得了修正后的液膜压力分布近似解析表达式和密封的开启力.并将开启力与未修正的近似解析计算结果、数值模拟结果和试验结果进行了比较.结果表明:修正后的近似解析计算结果与数值模拟结果和试验结果基本吻合,当密封处于低压差工况时,与数值模拟结果的平均相对误差为19%,最大相对误差为62%,与试验结果的平均相对误差为86%,最大相对误差为155%;当密封处于高压差工况时,与数值模拟结果的平均相对误差为19%,最大相对误差为25%.研究结果可为上游泵送机械密封等液膜润滑机械密封的研究、设计和应用提供参考.  相似文献   

16.
为了研究干气密封在高速高压运转下受到外力作用导致密封腔内不规则变形时的流动特性.考虑力和热作用2种情况下,分别获得密封环的变形量及其气膜厚度的近似解析式.将力变形量叠加至热弹变形中,获得热力耦合作用下密封腔内气膜厚度的近似解析式,进而获得密封腔的理论流量,并对比分析无变形、热弹变形、力变形以及热力耦合变形4种情况下的理论流量与实测流量.研究结果表明:密封腔内流量随介质压力增大而增大;当仅考虑力作用时,所获得的流量值大于试验值;仅考虑热弹作用时,流量值虽然小于试验值,但误差较大,与其他几种情况相比,热力耦合作用下密封腔内的流量值与试验值的误差较小.在工程运用中,考虑热力耦合变形为优化槽型结构参数提供了理论基础,进而达到控制流量的目的.  相似文献   

17.
为了研究上游泵送机械密封润滑膜内部微小颗粒的分布规律及其对密封性能的影响,建立密封动、静环间液膜三维几何模型和数值模拟计算模型.基于两相流体的连续介质理论,利用Mixture模型对液膜内的两相流动进行数值模拟,分析了微尺度液膜内颗粒相的分布特点、进口颗粒体积分数对颗粒分布的影响以及由此引起的密封性能变化.研究表明:微小颗粒相主要存在于螺旋槽的槽根半径处及靠近螺旋槽的密封坝处,分布特征随着颗粒进口体积分数的增大而逐渐明显,这可能是上游泵送机械密封易出现螺旋槽堵塞的原因;在所研究的参数范围内,颗粒相的存在使液膜开启力增大且开启力和端面摩擦扭矩随着颗粒进口体积分数的增大而增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号