首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 107 faecal samples were collected from diarrhoeic lambs of high altitude terrains (2,000 to 5,000 m above the mean sea level) of Tawang and West Kameng districts of Arunachal Pradesh, India. Total 234 Escherichia coli were isolated and further subjected to PCR for the study of virulence repertoire characteristics of Shiga toxin-producing E. coli (STEC) and enterotoxigenic E. coli (ETEC). Out of the 234 isolated E. coli, 32% were found positive for STEC, and 9% were carrying virulence gene for ETEC. The isolated STEC serogroups were O159, O127, O120, O113, O60, O30, O25, O8 and O2. Of all the 74 STEC strains, PCR showed that 18% isolates carried stx 1 , 26% possessed stx 2 and 47% produced positive amplicon for both. Other virulent attributes like intimin (eaeA), enterohaemolysin (ehxA) and STEC auto-agglutinating adhesin (saa) were present in 18%, 43% and 44% of the isolates, respectively. The isolated ETEC serogroups were O172, O170, O159, O146, O127, O120, O113, O86, O75, O60, O30, O25, O8, O2, OR and OUT. Of the 22 ETEC-positive isolates, 23%, 18% and 4.5% possessed the gene only for LT, STa and STb, respectively, whereas 54% carried genes for both LT and STb. Some serogroups of E. coli like O159, O127, O120, O113, O60, O30, O25, O8 and O2 possessed genes for both Shiga toxin and enterotoxin. This study is the first report of ETEC isolation from diarrhoeic lambs in India. The moderately high proportion of STEC and ETEC in the diarrhoeic lambs implicated that these animals are important reservoir of STEC and ETEC. This is really a grave concern for the ‘brokpas’ and nomads (shepherds) who share a close relationship with this animals for their livelihood. This study also indicates that ETEC may be a major cause for frequent diarrhoeal episodes in lambs of this region.  相似文献   

2.

Neonatal calf mortality is a major concern to livestock sector worldwide. Neonatal calf diarrhoea (NCD), an acute severe condition causes morbidity and mortality in calves. Amongst various pathogens involved in NCD, E. coli is considered as one of the major causes. The study was targeted to characterize E. coli isolates from neonatal calves for diarrhoeagenic Escherichia coli (DEC) types (pathotyping), antimicrobial resistance (AMR) profiling and to correlate with epidemiological parameters. From neonates, a total of 113 faecal samples were collected, out of that 308, lactose fermenting colonies were confirmed as E. coli. Pathotypable isolates (12.3%) were represented by STEC (6.1%), EPEC (2.9%), ETEC (1.9%), EAEC (0.9%) and EHEC (0.3%). Occurrence of STEC was more in non-diarrhoeic calves, whereas ETEC was observed more in diarrhoeic calves. EPEC occurrence was observed in both diarrhoeic and non-diarrhoeic calves. Fishers extract test showed no significant association for occurrence of DEC types to type of dairies, health status, species, breed, age and sex of neonatal calves. Two hundred and eighty isolates were tested for antimicrobial susceptibility. The isolates showed maximum resistance towards ampicillin (55.4%) followed by tetracycline (54.3%), while minimum resistance was observed towards meropenem (2.5%). Multidrug resistant E. coli isolates were found to be 139 (49.6%), and Extended-spectrum beta-lactamase (ESBL) producers were 120 (42.9%). DEC pathotypes like STEC, ETEC, EHEC and EAEC that are also multidrug resistant present in neonatal calves have zoonotic potential and hence are of public health significance.

  相似文献   

3.
Escherichia coli was isolated from the feces of 122 piglets with diarrhea on 55 farms in Korea. The virulence genes of each isolate were characterized by polymerase chain reaction (PCR). Of the 562 isolates, 191 carried 1 or more of the virulence genes tested for in this study. Of the 191 isolates, 114 (60%) carried 1 or more of the genes for enterotoxigenic E. coli (ETEC) fimbriae F4, F5, F6, F18, and F41 and ETEC toxins LT, STa, and STb, 57 (30%) carried 1 or more of the genes for the Shiga-toxin-producing E. coli (STEC) toxins Stx1, Stx2, and Stx2e, and 21% and 37% carried the gene for enteropathogenic E. coli intimin and for enteroaggregative E. coli toxin, respectively. Collectively, our results indicate that other pathotypes of E. coli as well as ETEC can be strongly associated with diarrhea in piglets. In addition, detection of the genes for Stx1 and Stx2 indicates that pigs are reservoirs of human pathogenic STEC.  相似文献   

4.
Diarrhoeagenic Escherichia coli (DEC) cause serious foodborne infections in humans. Total of 450 Shigatoxigenic E. coli (STEC) strains isolated from humans, animals and environment in Finland were examined by multiplex PCR targeting the virulence genes of various DEC pathogroups simultaneously. One per cent (3/291) of the human STEC and 14% (22/159) of the animal and environmental STEC had genes typically present in enterotoxigenic E. coli (ETEC). The strains possessed genes encoding both Shiga toxin 1 and/or 2 (stx1 and/or stx2) and ETEC‐specific heat‐stable (ST) enterotoxin Ia (estIa). The identified stx subtypes were stx1a, stx1c, stx2a, stx2d and stx2g. The three human STEC/ETEC strains were isolated from the patients with haemolytic uraemic syndrome and diarrhoea and from an asymptomatic carrier. The animal STEC/ETEC strains were isolated from cattle and moose. The human and animal STEC/ETEC strains belonged to 11 serotypes, of which O2:H27, O15:H16, O101:H‐, O128:H8 and O141:H8 have previously been described to be associated with human disease. Identification of multiple virulence genes offers further information for assessing the virulence potential of STEC and other DEC. The emergence of novel hybrid pathogens should be taken into account in the patient care and epidemiological surveillance.  相似文献   

5.
A total of 52 Escherichia coli strains isolated from diarrhoeic rabbits were investigated for their enteropathogenic E. coli (EPEC) pathotype by PCR amplification of eae and bfp virulence genes. A total of 22 EPEC isolates were identified, serotyped and studied for antibiotic resistance and screened for the detection of extended‐spectrum β‐lactamases (ESBLs). The EPEC isolates belonged to three serogroups (O26, O92 and O103). The most common serogroup (O103:K‐:H2) was observed among 17 EPEC strains, the O92:K‐serogroup in three isolates (the antibiotic sensitive ones) and the remaining O26:K‐serogroup in two isolates (the ESBLs isolates). Resistances to ampicillin and tetracycline were the most frequent and detected followed by resistance to nalidixic acid, streptomycin, trimethoprim–sulphamethoxazole, cefoxitin, gentamicin and ciprofloxacin. All the isolates were sensitive for amikacin, ceftazidime, aztreonam, imipenem, chloramphenicol, tobramycin and amoxicillin + clavulanic acid. Two isolates recovered from two adult animals showed an intermediate susceptibility to cefotaxime, and a positive screening test for ESBL was demonstrated in both. The blaTEM gene was demonstrated in the majority of ampicillin‐resistant isolates. The aac(3)‐II or aac(3)‐IV genes were detected in the four gentamicin‐resistant isolates. In addition, the aadA gene was detected in 60% of streptomycin‐resistant isolates. The tet(A) or tet(B) genes were identified in all tetracycline‐resistant isolates. A total of nine EPEC isolates showed the phenotype SXT‐resistant, and the sul1 and/or sul2 and/or sul3 genes were detected in all of them. Our findings showed that the molecular detection by the eae and bfp genes by PCR followed by serotyping is useful for monitoring trends in EPEC infections of rabbits allowing the identification of their possible reservoirs. The detection of genes involved in the resistance to antibiotics of different families in a relatively high proportion of faecal E. coli isolates of rabbits is of great interest and could be considered a serious public health problem.  相似文献   

6.
The aims of this study were to investigate the prevalence, antibiotic resistance, presence of class 1 and 2 integrons, Extended Spectrum β-Lactamases (ESBL) genes, phylogenetic group and epidemiological relationships of EPEC, ETEC and EHEC pathotypes isolated from patients with diarrhea and farm animals in south east region of Iran. A total of 671 diarrheagenic E. coli (DEC) were collected from stool samples of 395 patients with diarrhea and 276 farm cattles and goats. Presence of EPEC, ETEC and EHEC were identified using multiplex-PCR employing primers targeted the shiga toxin (stx), intimin (eae), bundle forming pili (bfp), and enterotoxins (lt and st) genes. The highest proportion of the patients (64%) were children under age 1–15 year (p ≤ 0.05). Among the isolates, atypical EPEC was detected in 26 patients and 14 animal stool samples, while typical EPEC was found in 2 cattles. ETEC isolates were detected in stools of 13 patients and 4 EHEC was identified in 3 goats and one cattle. The isolates were checked for susceptibility to 14 antibiotics. 50% (n = 13) of EPEC and 61.5% (n =8) of ETEC showed multi-drug resistance (MDR) profiles and one EPEC was found to be extensive drug resistant (XDR). In contrast, EHEC isolates were susceptible to the majority of antimicrobial agents. The MDR isolates were positive for blaTEM and blaCTX-M ESBL genes and carried class 1 integrons. Further study on the biofilm formation indicated that, 3 out of 4 EHEC isolates showed strong biofilm, while other pathotypes had either moderate, weak or no biofilm activity. Majority of EPEC isolates were belonged to phylogenetic group B1, all except one ETEC were classified as phylogenetic group A and two EHEC were belonged to phylogroup D, respectively. A multilocus variable tandem repeat analysis (MLVA) exhibited 22 distinct patterns. In conclusion, MLVA data showed high clonal diversity. Presence of EHEC in animal origins pose public health concern in this region.  相似文献   

7.
Fecal samples from 67 3–5-months-old calves with diarrhea were screened for the presence of shiga toxin-producing Escherichia coli (STEC). Several accessory virulence factors genes were also tested. Among 192 E.coli isolates tested, 15 (7.6%) were found to harbour the shiga toxin 1 or 2 (stx1 or stx2) genes. The stx2-carrying samples were further subtyped by PCR for the stx2c, stx2d, and stx2e toxin variants. It was shown that stx2-positive bacteria mainly possessed the stx2c shiga toxin type gene. The enterohemolysin (hlyA) and intimin (eae) genes were found in seven (46.7%) STEC strains whereas the cytotoxic necrotizin factor 1 and 2 or the P fimbrial genes were detected in two isolates only. This study confirmed that calves are a reservoir of STEC strains (with all pathogenicity genes) that may be virulent for humans.  相似文献   

8.
《Veterinary microbiology》1997,54(2):145-153
Nineteen Escherichia coli strains belonging to enteropathogenic (EPEC) serogroups were isolated from calves with diarrhea in Paraná State, Brazil, and studied for virulence markers associated with EPEC or enterohemorrhagic E. coli (EHEC). The 19 isolates belonged to 12 serotypes with isolates of O26:H11, O119:H25 and O114:H being the most prevalent. Localized adherence (LA) was demonstrated for 37% of the isolates, consisting of all four O26:H11, both O114:H and one O114:H40 isolates. All the LA strains were positive in the fluorescent-actin staining (FAS) test and possessed attaching-effacing E. coli (eae) sequences, but only O114 strains hybridized with the EPEC adherence factor (EAF) probe. None of the strains produced Shiga-like toxins (Verotoxin). Only the O26:H11 strains hybridized with the EHEC plasmid specific (CVD419) probe and were enterohemolytic, properties associated with EHEC strains. This investigation demonstrates that among the bovine strains isolated only those of serogroup O114 behaved as typical EPEC.  相似文献   

9.
World-wide, enterotoxigenic Escherichia coli (ETEC) and verotoxigenic E. coli (VTEC)-induced diarrhea are economically important for porcine producers. Our aim was to investigate the prevalence of toxin and fimbrial genes among E. coli isolated from diarrheic piglets from randomly selected piggeries in Zimbabwe.We used multiplex PCR for screening STa, STb, LT, and Stx-2e toxins. Subsequently F4, F5, F6, F18 and F41 fimbriae genes were screened in toxin positive isolates. Toxin positive strains lacking tested fimbriae genes were characterized using transmission electron microscopy, agglutination and agglutination inhibition tests. Approximately 32% of the 1,984 isolates tested positive for STa, STb, LT or Stx-2e genes. Of these, approximately 81% had F4, F5, F6, F18 or F41 fimbriae genes. The remaining toxin positive strains lacked tested fimbriae genes and appeared to either express F1-like fimbriae, or lacked fimbriae. The data constitute an important framework for implementation of prevention measures, such as using relevant fimbriae-based vaccines against ETEC induced diarrhea or VTEC-induced edema.  相似文献   

10.
旨在了解新疆地区腹泻仔猪源大肠杆菌的系统进化分群、血清型及耐药性。本研究对154份腹泻仔猪粪便样品进行大肠杆菌的分离鉴定,采用多重PCR方法对分离株进行系统进化分群和O血清型鉴定,通过K-B纸片法对其进行药物敏感性检测并通过PCR方法进行耐药基因检测。结果显示:共分离到154株大肠杆菌,包括ETEC(n=24)、STEC(n=21)、EPEC(n=1)、EPEC/STEC(n=2)、ETEC/STEC(n=1)和ETEC/EPEC(n=1),其他104株。系统进化分群显示,多数菌株属于B1(37%)和A群(31%)。定型菌株44株,分别属于10种血清型,以O154、O12、O8、O141和O175为主要流行血清型。151株(98%)为多重耐药菌,对复方新诺明、四环素、氨苄西林、链霉素和氯霉素的耐药率为81%~100%,对阿莫西林/克拉维酸、头孢噻肟、庆大霉素、头孢曲松、环丙沙星和阿米卡星的耐药率为31%~66%,对左氧氟沙星、多黏菌素B、头孢他啶、头孢吡肟、氨苄西林-舒巴坦、哌拉西林-他唑巴坦和亚胺培南的耐药率为1%~19%。耐药基因tetA(88%)、tetG(60%)和cmlA(4...  相似文献   

11.
仔猪腹泻致病性大肠杆菌分型鉴定及耐药性分析   总被引:1,自引:1,他引:0  
为了解贵州省规模化养猪场腹泻仔猪致病性大肠杆菌流行情况及耐药性变化,本研究运用凝集试验、PCR和药敏纸片琼脂扩散法等方法对分离的78株致病性大肠杆菌进行血清型、毒力基因及耐药性分析。结果显示,78株致病性大肠杆菌以O138、O87血清型为主,占定型菌株的60.8%;其中62株致病性大肠杆菌检出毒力基因,检出率为79.5%,可分为8种毒力基因类型,分属肠致病性大肠杆菌(EPEC)、肠产毒性大肠杆菌(ETEC)和肠聚集性大肠杆菌(EAEC),毒力基因eaeA、elt和escV检出率较高,分别为38.5%、28.2%和21.8%;分离到的致病性大肠杆菌对β-内酰胺类药物高度耐药,均为多重耐药株,耐药种类可达8种以上。结果表明,当前贵州省规模化养猪场腹泻仔猪致病性大肠杆菌的毒力基因检出率较高且基因型复杂,耐药性严重。本试验结果可为规模化养猪场防控仔猪腹泻提供基础资料及理论依据。  相似文献   

12.
A simple, rapid and specific PCR‐based method for identification of shiga toxin‐producing Escherichia coli (STEC) was developed. The procedure involves amplification of the E. coli‐specific universal stress protein A (uspA) gene (uspa‐PCR), with the primer pair described by other authors, which allows differentiation of E. coli (STEC and non‐STEC) from other gram‐negative bacteria followed by identification of the main genetic virulence traits of the uspA‐positive isolates. For this purpose, two multiplex PCR assays, based on previously published primer sequences, were established. Assay 1 (mPCR‐1) uses three primer pairs and detects the genes encoding O157 (rfb), enterohemolysin (ehly) and shiga toxin (stx), generating amplification products of 420, 534 and 230 bp, respectively. Assay 2 (mPCR‐2) uses four primer pairs specific for rfb (E. coli O157), eaeA (intimin), stx1 and stx2 (shiga toxin 1 and 2, respectively), generating PCR amplicons of 420, 840, 348 and 584 bp, respectively. These two assays were validated by testing several E. coli reference strains and 202 previously characterized E. coli isolates originating from calves and from children, and 100% agreement with previous results was obtained. The method developed can be used for specific identification of STEC bacteria including those of the O157 serogroup.  相似文献   

13.
The aim of the present study was to determine the analysis of virulence genes and antimicrobial profile of diarrheagenic Escherichia coli isolated from diseased lambs. Two hundred ninety E. coli isolates were recovered from 300 rectal swabs of diarrheic lambs and were confirmed by biochemical tests. The pathotype determination was done according to the presence of genes including f5, f41, LTI, STI, bfp, ipaH, stx 1 , stx 2 , eae, ehlyA, cnf 1 , cnf 2 , cdIII, cdIV, and f17 by PCR method. Sixty-six isolates (23.72%) possessed the STI gene and categorized into entrotoxigenic E. coli (ETEC). Nine isolates (3.1%) and five isolates (1.72%) were positive for the cnf1 and cnf2 genes which categorized into necrotoxic E. coli (NTEC). Hundred and seventeen isolates (40.34%) harbored stx 1 and/or stx 2 and classified as Shiga toxin-producing E. coli (STEC). Thirteen isolates (4.48%) were assigned to atypical entropathogenic E. coli (aEPEC) and possessed eae gene. Two isolates (0.68%) were positive for ipaH gene and were assigned to entroinvasive E. coli (EIEC). Statistical analysis showed a specific association between eae gene and STEC pathotype (P?<?0.0001). The most prevalent resistance was observed against lincomycin (96.5%) and the lowest resistance was against kanamycine (56.02%), respectively. The high prevalence of STEC and ETEC indicates that diarrheic lambs represent an important reservoir for humans. ETEC may play an important role for frequent occurrence of diarrhea in lambs observed in this region. Due to high antibiotic resistance, appropriate control should be implemented in veterinary medicine to curb the development of novel resistant isolates.  相似文献   

14.
Faecal samples obtained from 190 healthy mithuns were examined for the presence of Escherichia coli. Total one‐hundred and five E. coli isolates were obtained from these samples, which belonged to 55 different serogroups. These isolates were subjected to multiplex polymerase chain reaction (m‐PCR) for detection of stx1, stx2, eaeA and hlyA genes. Twenty‐three (21.90%) E. coli isolates belonging to 14 serogroups revealed the presence of at least one virulence gene when examined by m‐PCR. Nineteen percent and 2.85% of the mithuns were found to carry Shiga toxin‐producing E. coli (STEC) and enteropathogenic E. coli, respectively. stx1 and stx2 genes were found to be prevalent in 7 (6.67%) and 18 (17.14%) of the isolates respectively, whereas eaeA and hlyA genes were found to be carried by three (2.85% each) isolates. Interestingly, none of the STEC isolates belonged to serogroup O157.  相似文献   

15.
Feces of 70 diarrhoeic and 230 non‐diarrhoeic domestic cats from São Paulo, Brazil were investigated for enteropathogenic (EPEC), enterohaemorrhagic (EHEC) and enterotoxigenic (ETEC) Escherichia coli types. While ETEC and EHEC strains were not found, 15 EPEC strains were isolated from 14 cats, of which 13 were non‐diarrhoeic, and one diarrhoeic. None of 15 EPEC strains carried the bfpA gene or the EPEC adherence factor plasmid, indicating atypical EPEC types. The EPEC strains were heterogeneous with regard to intimin types, such as eae‐θ (three strains), eae‐κ (n = 3), eae‐α1 (n = 2), eae‐ι (n = 2), one eae‐α2, eae‐β1 and eae‐η each, and two were not typeable. The majority of the EPEC isolates adhered to HEp‐2 cells in a localized adherence‐like pattern and were positive for fluorescence actin staining. The EPEC strains belonged to 12 different serotypes, including O111:H25 and O125:H6, which are known to be pathogens in humans. Multi locus sequence typing revealed a close genetic similarity between the O111:H25 and O125:H6 strains from cats, dogs and humans. Our results show that domestic cats are colonized by EPEC, including serotypes previously described as human pathogens. As these EPEC strains are also isolated from humans, a cycle of mutual infection by EPEC between cats and its households cannot be ruled out, though the transmission dynamics among the reservoirs are not yet understood clearly.  相似文献   

16.
This study was conducted to evaluate alterations in coagulation parameters in dairy cows affected with acute Escherichia coli (E. coli) mastitis and to compare those values to cows affected with Staphylococcus aureus (S. aureus ) mastitis. Twenty-four, adult Holstein-Friesian dairy cows affected with acute E. coli mastitis and 17 cows affected with S. aureus mastitis were studied. Cows affected with E. coli mastitis had significantly prolonged activated partial thromboplastin time (APTT) (P < 0.01), prothrombin time (PT) (P < 0.05) and decreased (P < 0.05) platelets numbers. Cows with S. aureus mastitis had only significantly prolonged APTT (P < 0.05) and decreased (P < 0.05) platelet counts. In the hematology evaluation, cows affected with E. coli and those affected with S. aureus mastitis had elevated hematocrit values but only significantly (P < 0.05) so in mastitic cows caused by E. coli. Both groups of mastitic cows had significantly (P < 0.05) lower leukocyte counts. Only cows with E. coli mastitis had significantly (P < 0.05) lower neutrophil count. In the plasma biochemical evaluation, creatinine concentrations were significantly (P < 0.05) elevated in both groups of cows. Blood urea nitrogen (BUN) concentration was only significantly elevated in cows affected with E. coli mastitis. Results of this study indicated that dairy cows affected with acute E. coli mastitis are more likely to develop clinical manifestations of disseminated intravascular coagulation than cows affected with S. aureus mastitis.  相似文献   

17.
These experiments determined the ability of Escherichia coli O157:H7 to colonize and persist in pigs simultaneously inoculated with other pathogenic E. coli strains. Three-months-old pigs were inoculated with a mixture of five E. coli strains. The mixture included two Shiga toxigenic E. coli (STEC) O157:H7 strains, two enterotoxigenic E. coli (ETEC) strains and one enteropathogenic E. coli (EPEC) strain. A high dose mixture with all five strains at 10(10)CFU/animal (CFU: colony forming units) and a low dose mixture with the STEC strains at 10(7)CFU and the EPEC and ETEC strains remaining at 10(10)CFU were used. The STEC strains persisted in the alimentary tracts of some pigs at 2 months post-inoculation, following inoculation with both the high and low dose mixtures. When all strains were given at 10(10)CFU (high dose) the STEC strains persisted in greater numbers and in more pigs than did the other E. coli strains. The results demonstrated that persistent colonization (> or =2 months) by E. coli O157:H7 can occur in pigs. These findings were similar to those reported from sheep inoculated with the same mixture of E. coli strains. The results are consistent with reports suggesting that pigs have the potential to be reservoir hosts for STEC O157:H7.  相似文献   

18.
L Beutin 《Veterinary research》1999,30(2-3):285-298
Certain strains of Escherichia coli behave as pathogens in dogs and cats causing gastro-intestinal and extra-intestinal diseases. Among the five known groups of diarrhoeagenic E. coli, namely enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), shiga-toxin producing E. coli (STEC) and enteroaggregative E. coli (EAggEC), only EPEC and ETEC were clearly associated with enteric disease in young dogs. ETEC isolates from diarrhoeic dogs were found to be positive for the heat-stable enterotoxins STa and STb but negative for heat-labile enterotoxin (LT). Canine ETEC were found to be different from those of other animals and humans by their serotypes, production of alpha-haemolysin and adhesive factors and by the production of uncharacterized types of enterotoxins by some ETEC. Canine EPEC could be distinguished from EPEC of humans or other animals by their serotypes and by the eae-protein intimin which mediates intimate adherence of EPEC to intestinal mucosa cells. STEC were occasionally isolated from faeces of healthy and diarrhoeic dogs but their role in canine diarrhoea is not yet well known. EIEC and EAggEC were not reported to occur in dogs or cats. Very little is known on diarrhoegenic E. coli in cats and further epidemiological investigations on this subject are needed. Besides its role in gastro-intestinal infections, E. coli can cause infections of the urogenital tract and systemic disease in dogs and cats. Extra-intestinal pathogenic E. coli strains from dogs and cats belong to a limited number of serotypes and clonal groups and are frequently found as a part of the normal gut flora of these animals. Many of these E. coli strains carry P-fimbriae and produce alpha-haemolysin and a necrotizing cytotoxin (CNF1). Some of the frequently isolated types of extra-intestinal pathogenic E. coli from dogs, cats and humans were found to be highly genetically related but showed differences in their P-fimbrial adhesins which determine host specificity. Transmission of extra-intestinal and enteral pathogenic E. coli between dogs and humans was reported. Further research is needed, however, to determine the role of dogs and cats as transmission vectors of pathogenic E. coli strains to other animals and humans.  相似文献   

19.
Faecal samples from 76 diarrhoeic calves belonging to 36 farms located in the Pampas plain, Argentina, were examined for Shiga toxin‐producing Escherichia coli (STEC). A total of 15 STEC strains were isolated from 12 (15.8%) calves which came from six different farms. All stx positive strains assayed by PCR were also positives in the Vero cell cytotoxicity test. The majority (60.0%) of the STEC strains carried the stx1 gene. Twelve (80.0%) of the STEC isolates which belonged to serotypes O5:H‐ (n = 4), O26:H11 (n = 4), O26:H‐ (n = 1), O111:H‐ (n = 2), and O123:H38 (n = 1) were also enterohaemolysin (EHly) positive and carried the gene encoding for intimin (eae). All the stx positive strains were negative for the bfpA gene. Localized adherence to HEp‐2 cells were observed in 83.3% of the eae+ STEC strains. STEC belonging to serotype O5:H‐ showed atypical biochemical properties, including urease production. Urease was also produced by two strains belonging to serotypes O153:H? and non‐typeable, respectively. Resistance to three or more antibiotics was observed in 12 (80.0%) of the STEC isolates. Most of the serotypes of STEC recovered in this survey carried virulence traits that are associated with increased human and bovine pathogenicity. The present study shows that highly virulent STEC strains are being shed by diarrhoeic calves from farms located in a high incidence area of human STEC infections.  相似文献   

20.
Cheng D  Sun H  Xu J  Gao S 《Veterinary microbiology》2006,115(4):320-328
Fimbriae, toxins and pathogenicity islands (PAIs) are main virulence factors of the pathogenic Escherichia coli strains. To investigate into their prevalence in clinical E. coli isolates associated with porcine postweaning diarrhea (PWD) and/or pig edema disease (ED), 240 isolates were obtained from diseased piglets (140 from PWD, 76 from ED and 24 from ED/PWD) and submitted to PCR detection for genes coding for fimbriae, enterotoxins, shiga toxins, intimin and high-molecular-weight protein 2 (HMWP2). Among the 240 isolates detected, detection rates of the genes for F18, F4, intimin, HMWP2, Stx2e, LTa, STa and STb were 26.25%, 3.75%, 28.33%, 16.67%, 35%, 10.83%, 14.58% and 9.17%, respectively, and 67.92% of the isolates could be assigned into 20 different virulence factor patterns. Further more, F18ab+ STEC are the prevalent pathogens of ED, and F18+ and/or intimin+ STEC/ETEC are the dominant pathogens of ED/PWD, while F18ab+, F4+ and/or intimin+ ETEC and HPI+ and/or LEE+ E. coli are more frequently associated with PWD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号