首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
针对当前小麦籽粒小、播量大、形状不规则,传统排种器难以实现精密播种等问题,该文设计了一种气吸型孔组合式小麦精密排种器。排种器采用气流-型孔组合式工作原理,气流负压吸种与型孔充种相结合能够使其获得良好单粒充种性能。根据小麦精密播种的粒距要求和三维尺寸,通过理论分析,确定了排种器的型孔轮半径为50 mm,以6°螺旋升角布置三排型孔,每排30个型孔,型孔为长槽形,长、宽、深分别为8.5、5和2.5mm;通过流场分析,研究了不同吸孔孔径对气流变化的影响,确定了吸孔的孔径范围1.4~1.8 mm。搭建试验台,以气流负压、吸孔直径和型孔轮转速为试验因素,以重复充种率、漏充率和充种合格率为试验指标,进行三因素三水平正交试验,并分析各试验因素对于性能指标的影响显著性。通过极差和方差分析,得到气吸型孔组合式小麦精密排种器较优的组合参数为负压3500Pa、吸孔直径1.6 mm、排种型孔轮转速40 r/min时,进行试验验证,其重复充种率为5.1%、漏充率为4.7%,充种合格率为90.2%。该排种器能够满足小麦的精密排种对充种性能的要求,在一定程度上促进了小麦精密播种的发展。  相似文献   

2.
风送式水稻侧深精准施肥装置的设计与试验   总被引:11,自引:8,他引:3  
针对中国水稻施肥机械化程度低,传统撒施肥料利用率低、施肥量大的现状,结合侧深施肥农艺特点,对风送式排肥方法进行了理论分析,研制了风送式水稻侧深精准施肥装置。该装置采用模块化设计与乘坐式插秧机配套使用,采用电机驱动排肥、风送肥料、全球定位系统(global position system,GPS)测速的工作原理,侧位深施化肥的施肥方式,采用车辆行驶速度与排肥驱动电机转速实时匹配的精准施肥控制方法。设备在黑龙江七星农场开展了田间实际作业试验。试验表明,该装置与插秧机配合使用时能一次性完成插秧与侧深精准施肥作业,当预置施肥量为300 kg/hm2,车辆稳定行驶速度为1 m/s时,施肥量偏差控制在5.82%以内,能够较好的满足实际生产需求。该研究为开展水稻变量施肥控制技术研究和水稻侧深施肥装置的研发提供了参考。  相似文献   

3.
中草药三七气吸滚筒式精密排种器的设计与试验   总被引:1,自引:14,他引:1  
因中草药三七种植属于密集型精密种植模式,尚无满足种植要求的播种机,为解决三七机械化精密播种问题,研究设计了一种气吸滚筒式精密排种器。该文阐述了三七气吸滚筒式精密排种器的工作原理,确定了其主要结构参数,构建了充种和投种过程种力学模型。以云南文山三七种子为播种对象,采用二次旋转正交组合试验方法,对排种器进行了排种性能试验研究,并通过投种对比试验验证了零速投种的必要性。建立了负压、前进速度、吸种角度3个主要因素与合格率、漏播率、重播率的数学模型,分析了各个因素及交互作用对合格率的影响规律,并进行了参数优化与验证试验。影响排种合格率的因素主次顺序为负压、前进速度和吸种角度;确定最佳参数组合为吸种角度为20°,负压值660~720 Pa,前进速度在0.72~0.76 m/s,可获得合格率大于90.2%,漏播率小于4.9%,重播率小于5.3%。经试验验证,试验结果与优化结果基本一致,满足三七精密播种的种植要求。试验结果表明此种气吸滚筒式精密排种器对于三七种子具有很好的播种适应性。该研究为应用于田间阴棚内播种的气吸滚筒式精密排种器的设计提供了参考。  相似文献   

4.
新型组合吸孔式小麦精密排种器性能的试验研究   总被引:10,自引:6,他引:10  
在室内试验和田间试验的基础上,探讨了新型组合吸孔式小麦精密排种器的排种性能,分析了排种器转速、拖拉机前进速度以及投种高度等因素对其排种性能的影响。试验结果证明,新型组合吸孔式小麦精密排种器实现了单粒精密播种,粒距合格指数达到52%以上,粒距变异系数小于29%,拖拉机前进速度可以达到6 km/h,完全符合小麦精密播种的农业技术要求。  相似文献   

5.
大豆窄行密植播种机单盘双行气吸式排种器设计   总被引:1,自引:3,他引:1  
为满足大豆窄行密植播种作业要求,解决传统大豆播种机窄行密植行距过大,不易调节,排种性能差等问题,设计了一种单盘双行气吸式排种器,阐述了其基本结构与工作原理,并对工作过程及关键部件进行了理论分析,确定了影响排种性能的主要因素,利用搭建的单盘双行气吸式排种器试验装置进行单因素试验,得到排种性能较好情况时负压真空度、排种盘转速以及单圈吸种孔数的合理变化范围。以负压真空度、排种盘转速和单圈吸种孔数为试验因素,以合格指数、漏播指数和重播指数为指标进行3因素3水平正交试验。结果表明:对合格指数、漏播指数和重播指数各指标影响最显著的因素分别为排种盘转速、负压真空度、负压真空度;当参数组合为单圈吸种孔数64孔、排种盘转速18 r/min、负压真空度5 kPa时,内圈合格指数为98.45%,重播指数为0.72%,漏播指数为0.53%;外圈合格指数为97.82%,重播指数为0.63%,漏播指数为1.35%,对该因素组合进行试验验证,各指标优于行业标准要求。该文设计的单盘双行气吸式排种器实现了播种单体120 mm窄行密植播种,排种性能好,为黄淮海地区大豆密植播种机的研发提供参考。  相似文献   

6.
针对现有气力式油菜排种器高速工作过程中种子难以从种群中快速分离被吸孔准确吸附产生漏吸降低排种性能的问题,该文设计了一种提高油菜高速直播充种性能的槽齿组合式吸种盘,分析并确定了槽齿组合式吸种盘的关键结构参数,构建了槽齿扰动作用下种子吸附力学模型。应用EDEM数值模拟分析了平面盘、凹槽盘和槽齿盘3种结构形式的吸种盘对种群定向扰动强度的影响,结合台架试验进行了吸种盘结构形式优选,试验结果表明:在传统平面盘上增设凹槽与扰种齿可明显增加种群的扰动强度和降低种子漏吸率;以平均动能总和作为种群扰动强度的量化指标,在同一转速下,平均动能总和数值从大到小顺序为:槽齿盘凹槽盘平面盘;以德优矮早油菜品种为对象进行了3个种盘优选试验,当工作负压1.5~2.5 kPa、转速10~150 r/min条件下,槽齿盘的漏吸率和吸附合格率均明显优于凹槽盘和平面盘,3个种盘重吸率无明显变化,工作转速大于90 r/min时,槽齿盘的最大漏吸率为7.4%,凹槽盘最小漏吸率为14.02%,平面盘最小漏吸率为30.4%,与凹槽盘相比漏吸率降低了47.2%,与平面盘相比漏吸率降低了75.7%。槽齿盘吸附性能试验表明:以德优矮早和中双11号为对象,在相同工作负压下,漏吸率随转速的增大呈上升趋势,吸附合格率呈下降趋势,重吸率无明显变化;在同一转速下,吸附合格率随负压的增大呈上升趋势,漏吸率呈下降趋势,重吸率无明显变化;在工作转速10~110 r/min、负压1.5~2.5 k Pa条件下,吸附合格率不低于92.0%,漏吸率和重吸率之和不大于8.0%。研究结果可为气力式油菜高速精量排种装置结构改进与优化提供参考。  相似文献   

7.
针对稻茬田小麦机械化带状播种时受黏重土壤与秸秆还田耦合作用制约存在导种装置壅堵导致断条的问题,该研究设计了一种分引组合式双行宽条带导种装置,导种过程中利用球面弹籽部件对下落种群左右均匀分种、借助坡度斜面对分流种群宽带引种。运用质点运动学理论建立了小麦分种、引种过程的力学模型,明确了球面弹籽部件直径和斜面坡度对导种均匀性有影响。运用EDEM软件对小麦导种装置关键结构参数进行优化设计,以球面弹籽部件直径和斜面坡度为试验因素,以各行排量一致性变异系数和行内横向均匀度变异系数为评价指标,通过单因素和二次正交旋转组合试验获取相关试验数据,应用Design-Expert软件对试验数据进行回归分析,建立了试验因素与试验指标之间的回归方程。结果表明,球面弹籽部件直径对各行排量一致性影响显著(P<0.05),斜面坡度对行内横向均匀度有极显著影响( P<0.01 ),斜面底板导种装置最优结构参数为球面弹籽部件直径40 mm、斜面坡度10°。并与市场上已有的波浪底板、弧面底板、平面底板3种型式导种装置进行3种播量下的仿真对比试验。仿真试验结果表明,各播量下的各行排量一致性变异系数和行内横向均匀度变异系数由大到小均为平面底板、弧面底板、波浪底板和斜面底板型导种装置,在播量450 kg/hm2下,斜面底板型导种装置播种效果最佳,各行排量一致性变异系数为2.92%,行内横向均匀度变异系数为14.19%。台架与田间对比试验表明,斜面底板型导种装置的各行排量一致性变异系数和行内横向均匀度变异系数均最小,此时各行排量一致性变异系数均不大于4.0%,行内横向均匀度变异系数均不大于16%;田间对比试验中,在播量450 kg/hm2下,斜面底板型导种装置较其他3种导种装置各行排量一致性变异系数最低下降了2.73个百分比,行内横向均匀度变异系数最低下降了10.61个百分点。试验结果与仿真结果误差不超过5%,表明装置结构参数优化结果可靠,满足国家播种机质量评价技术规范及大田播种农艺要求。研究结果可为稻茬黏壤土环境下小麦宽条带导种装置优化设计提供参考。  相似文献   

8.
针对当前大蒜机械化种植单粒率低的问题,采用"取多留一"的设计思路,设计了爪式循环单粒取种装置,采用离散元技术建立大蒜充种与清种动力学模型,通过单因素仿真试验明晰了该装置完成单粒取种的内在机理。充种过程以取种爪中间板圆弧半径、圆心角及侧板横向间距为试验因素,以目标率为试验指标,通过Box-Behnken试验设计原理进行多因素仿真试验,得到影响目标率的参数依次为取种爪侧板横向间距、中间板圆心角、中间板圆弧半径;清种过程以清种栅板倾角为试验因素,以合格率、漏播率为试验指标,通过One-Factor试验设计原理进行清种性能试验,得到其响应曲线。采用Design-Expert8.0.6进行取种参数优化,结果表明各参数最优值分别为中间板圆弧半径为48.52 mm,中间板圆心角为72.59°,侧板横向间距为25.11 mm,栅板倾斜角度为7.41°;模型预测的目标率为90.64%,合格率为92.52%,漏播率为3.30%。开展了室内及大田试验,试验数据与优化结果一致,为大蒜机械化播种单粒取种技术研究提供了参考。  相似文献   

9.
为满足油菜穴盘育苗移栽作业要求,解决油菜机械化种植茬口紧张难题,该研究设计了一种气吸滚筒式穴盘育苗精密排种器,利用光电传感器和正压投种机构实现同步整排投种。阐述了排种器基本结构与工作原理,对关键部件结构进行设计,应用Fluent软件模拟分析了3种不同正压进气孔间距条件下滚筒内壁和吸种孔与正压气室的流场特征;采用二次旋转正交组合试验方法,对排种器作业性能的主要影响因素(吸种负压、投种正压和吸种孔直径)与播种指标(单粒合格指数、漏播指数和重播指数)的关系进行研究,分析了各因素及其交互作用对各指标的影响规律,并采用多目标优化方法进行参数优化;在优化参数条件下,设定排种器生产率分别为600、700和800盘/h时,对3个品种油菜种子和1个蔬菜种子(茄子)进行排种性能试验。结果表明:当正压进气孔间距为144 mm时,整个正压气室无回流情况,各吸种孔处气流速度相对均匀;影响单粒合格指数的因素主次顺序为投种正压、吸种孔直径和吸种负压,最优参数组合为吸种负压3.73 kPa,投种正压0.23 MPa,吸种孔直径1.28 mm,此时单粒合格指数、漏播指数和重播指数分别为95.13%、2.80%和2.07%。生产率为600~800盘/h时,油菜种子的单粒合格指数均高于93%,漏播指数和重播指数均小于5%;茄子的单粒合格指数高于90%,漏播指数和重播指数均低于5%。该排种器的排种性能适应性较好且精准高效,能够满足油菜及部分蔬菜穴盘育苗播种作业要求。研究结果可为油菜等穴盘育苗播种机研发提供参考。  相似文献   

10.
针对目前大蒜播种机械自动化程度低、蒜种鳞芽朝上率低的现状,基于种盒式大蒜播种方式,设计了一种全自动蒜种盒提取投放装置。该装置主要包括机架、地轮、地轮轴、测速编码器、光电传感器、控制箱、输送装置和提取投放装置,能够实现蒜种盒自动给进、准确抓取、平稳输送、精确投放等功能。设计了机械臂和机械手结构,通过理论分析建立了各关键部件参数数学模型,确定了机械臂和机械手工作参数,探明了机组行进速度对各舵机工作参数的影响规律,明确了影响蒜种盒投放间隙的因素。为了测试蒜种盒投放效果影响进行了试验,结果表明当机组行进速度为0.90 km/h,中心舵机、辅助舵机、控距舵机转速分别为26.04、26.04、13.89 r/min时蒜种盒投放后衔接间隙平均值为5.6 mm,投放效果较优,满足大蒜播种要求。该文研究结果可为实现大蒜播种自动化提供参考。  相似文献   

11.
蔬菜类型多,种子尺寸差异大,为扩大排种器的适用范围,该研究提出一种基于扰种条辅助充种的蔬菜气吸轮式精量排种器。通过理论分析确定了排种器的关键结构参数,设计了一种带有坡度的扰种条结构,最薄处厚度为0.5 mm、最厚处厚度为1.0mm,并对充种阶段种子在扰种条上和清种阶段的受力情况分别进行分析,确定了扰种条和清种装置结构。选取菜心、萝卜和辣椒种子为试验对象,利用台架试验获得扰种条倾角和厚度的较优值;开展较优结构参数下的排种器充种性能试验,以工作负压、排种转速和清种距离为试验因素,进行三因素三水平正交试验。试验结果表明,对于菜心种子,工作负压为0.92 kPa,排种转速为13.3 r/min,清种距离为0.70 mm时,充种合格率为99.20%,漏吸率为0.13%;对于萝卜种子,工作负压为4.47 kPa,排种转速为25.5r/min,清种距离为1.20mm时,充种合格率为97.34%,漏吸率0.53%;对于辣椒种子,工作负压为1.49 kPa,排种转速为16.9 r/min,清种距离为0.69 mm时,充种合格率为88.27%,漏吸率为2.67%,满足菜心、萝卜、辣椒的种植农艺要求,研究结...  相似文献   

12.
水稻气力式播量可调排种器设计与参数优化   总被引:6,自引:6,他引:0  
为了满足杂交水稻播种量不同的要求,该文设计了一种水稻播量可调气力式排种器,对其工作原理进行了分析,对关键部件进行了参数设计,该排种器采用多个相互独立的负压流道对吸种精度进行控制。利用ANSYS-FLUENT有限元流体分析软件对负压流道结构的吸孔负压影响规律进行了分析,优选了最佳流道结构。选取超级杂交稻Y-2优900为试验材料,进行了不同播种量下吸室负压、排种盘转速与排种盘吸孔组数对播种精度的影响试验研究,试验结果表明:当吸孔组数为12、吸种负压为1.6k Pa和排种盘转速为20r/min时,1孔播种达到最佳效果,合格率为82.41%;当吸孔组数为12、吸种负压为1.6k Pa和排种盘转速为40r/min时,2孔播种达到最佳效果,合格率为96.36%;当吸孔组数为12、吸种负压为1.6k Pa和排种盘转速为20r/min时,3孔播种达到最佳效果,合格率为92.79%;当吸孔组数为16、吸种负压为1.2k Pa和排种盘转速为20r/min时,4孔播种达到最佳效果,合格率为91.93%;当吸孔组数为12、吸种负压为1.6 kPa和排种盘转速为30 r/min时,5孔播种达到最佳效果,合格率为87.88%。说明水稻气力式播量可调排种器可满足杂交稻在采用直播式时不同播量的要求,相比于原有的排种器更佳适应水稻的多样性。该研究可为水稻机械化穴直播技术提供了参考。  相似文献   

13.
马铃薯微型种薯振动排序播种装置播种性能优化   总被引:1,自引:0,他引:1  
为推动马铃薯微型种薯(简称微型薯)播种机械化的发展,在现有研究的基础上,提出基于受迫振动原理的单列排序机械化播种技术,设计马铃薯微型种薯振动排序播种装置。在对播种装置工作原理进行阐述的基础上,对投种过程进行运动学和动力学分析,阐明了振动排序播种装置播种特性,并明晰了影响播种性能的主要因素及各因素的试验取值范围。以偏心轮偏心距、驱动轴转速和种床带速度为试验因素,以重播率、漏播率和播种合格率为评价指标,对3个不同级别的微型薯为研究对象开展二次回归正交组合试验,建立各个级别下微型薯的各指标与因素间的回归数学模型,分析相关因素对播种性能参数的影响,获得合理的参数组合,并进行验证试验,结果表明:3个不同级别的微型薯在较优的试验组合下,重播率和漏播率均小于5%,播种合格率在90%以上。由此表明,该播种装置满足马铃薯播种机播种性能要求。该研究为微型薯等大颗粒种子相关播种装置的研究、设计和优化以及播种性能的提升提供参考。  相似文献   

14.
油菜集排器供种装置侧向倾斜排种性能试验与分析   总被引:2,自引:2,他引:0  
针对油菜机械化播种中地表不平引起集排器供种装置倾斜,导致排种稳定性不足的问题,该研究以油菜集排器供种装置为对象,构建排种过程中侧向倾斜时种子与供种装置型孔间的力学模型,应用EDEM仿真开展供种装置侧向倾斜角度和供种装置转速对排种过程中型孔中的种子种量及种子运移轨迹影响的双因素试验。仿真结果表明:在0°~5°范围内,沿播种机作业方向侧向倾斜角度逐渐增大时,充种、携种过程中倾斜一侧型孔中的种子数量相对无倾斜状态时的平均增加量在0~36.55%内逐渐增加,另一侧型孔中的种子数量相对无倾斜状态时的平均减少量在0~26.68%内逐渐增加。利用智能种植机械测试平台开展供种装置转速为20~40 r/min时不同侧向倾斜和摆动对供种装置排种性能影响的试验。结果表明:投种口Ⅰ、投种口Ⅱ排种量与仿真试验中投种口Ⅰ、投种口Ⅱ排种量比值的平均误差为3.86%;随侧向倾斜、侧向摆动、侧向往复摆动角度的增加,总排种速率相对无倾斜状态时的增加量在0~9.02%内逐渐增大;通过提高供种装置转速,可减少侧向倾斜和摆动对排种性能的影响。研究结果可为供种装置的结构改进和性能提升提供参考。  相似文献   

15.
为研究种层厚度对油麦兼用集排器供种装置充种性能的影响,该文运用EDEM(engineering discrete element method)软件和高速摄像技术,对不同种层调节板倾角和种层厚度的种群运动与供种性能进行了仿真与试验研究。EDEM仿真分析了种层厚度与转速对种群压力、种群与供种机构切向力和充种数量的影响;台架试验研究了种层厚度对充填角和供种性能的影响。结果表明:倾角为60°种层调节板的种群压力较大,充填角和充种性能均较优;种群压力和切向力随纵向距离增加而增加,随横向距离增加而降低;随转速增加,种群压力趋于稳定,切向力随之增加,单个型孔充种数量降低5%。转速为10~50 r/min时,初始充填角、充填角和供种速率均随纵向距离增加和横向距离降低而增加,但充种数量变异系数呈先降后升的趋势。种群压力、切向力、初始充填角、充填角与供种速率均呈极显著正相关,种群压力和切向力与初始充填角和充填角均呈极显著正相关,种层厚度和转速影响充填角分别源于种群压力和切向力。在纵向距离分别为15和20 mm,横向距离为46 mm条件下,油菜、小麦供种速率变异系数和破损率分别均低于1.0%和0.1%。田间试验表明该优化种层厚度条件下的集排器油菜种植密度满足农艺种植要求。该研究明确了种层厚度影响油麦兼用集排器供种装置充种性能的原因,为油麦兼用集排器供种装置种层厚度调节和结构改进提供了参考。  相似文献   

16.
为进一步提升正负气压组合式油菜精量排种器性能,该研究提出了一种可增加种群扰动、降低被吸附种子运移阻力的圆锥型孔排种盘。通过理论分析和离散元仿真试验阐明倒角截顶圆锥孔排种盘排种性能提升机理,并通过台架试验对排种性能提升效果进行了验证。理论分析表明,在排种盘上采用圆周密布的圆锥型孔,排种盘型孔临近吸种区域种群横向扰动增大,型孔上被吸附种子随排种盘运移时的切向阻力降低,利于提高充种成功率和携种稳定性。离散元仿真分析表明,相同型孔数条件下倒角截顶圆锥孔盘较圆直孔盘在充种室种群平均速度增大66.72%;在型孔附近临近吸种区种子切向运移速度提高90.45%,轴向运移速度增加83.90%,径向运移速度提高165.60%,吸附在型孔上的种子运动阻力下降35.60%。台架试验表明,在工作负压800~4 800 Pa、转速10~50 r/min条件下,倒角截顶圆锥孔排种盘较圆直孔排种盘单粒排种合格指数提高5.49%、重播指数及漏播指数分别降低68.62%和3.79%,在卸种正压200 Pa、工作负压2 100 Pa、转速25 r/min条件下,其合格指数、重播指数、漏播指数最高可达98.13%、1.25%和0.62%。倒角截顶圆锥孔排种盘在不增加附属搅种和充种装置的基础上,可有效提高单粒排种性能,降低排种器重播指数和漏播指数,提升排种器作业性能,研究结果可为正负气压组合式油菜精量排种器结构优化提供参考。  相似文献   

17.
油菜小麦兼用气送式直播机集排器参数优化与试验   总被引:2,自引:10,他引:2  
为提高油菜小麦兼用气送式集排器的排种性能,该文针对集排器具有较长导种管和气流扰动影响种子迁移轨迹的问题,通过构建导种过程力学模型确定了影响排种性能的主要因素,分析了导种管材料、直径、长度组合、角度布置、气流压强和供种转速对排种性能的影响。试验结果表明:导种管材料、直径、材料与直径的交互作用、长度组合对平均行排种量和各行排量一致性变异系数均有显著(P0.05)或极显著(P0.01)影响,角度布置影响不显著,导种管材料和直径分别为PVC钢丝软管和20 mm的排种性能较优,且应尽量布置导种管长度一致。气流压强和供种转速对各行排量一致性变异系数影响显著(P0.05);供种转速为20~40 r/min时,排种油菜、小麦时气流压强分别为1 200和1 600 Pa时具有较好的排种均匀性,总排量稳定性变异系数和各行排量一致性变异系数分别低于1.0%和4.00%;油菜、小麦的排种均匀性变异系数分别低于19.0%和12.5%,种子破损率低于0.1%。田间试验表明油菜种植密度为40~68株/m2时,稳定性变异系数低于20%;小麦单位面积植株数量为129和252株/m2时,稳定性变异系数分别为8.34%和8.12%,达到油菜、小麦的农艺种植要求。该研究为气送式集排器结构优化和排种性能提升提供了参考。  相似文献   

18.
针对小麦种子在气送式集排器供种装置中因流动性差导致充种能力不足的问题,设计了一种可提高小麦充种性能的搅种装置。该文分析了搅种装置影响充种性能的主要因素,确定了搅种齿与搅种轴的主要结构参数,并构建了种子在搅种装置作用下的充种力学模型。应用EDEM仿真分析了搅种装置安装位置对种群压力、种群与供种机构切向力和型孔充种数量及其变异系数的影响;台架试验研究了搅种齿结构及其排布对充种性能和搅种装置与供种机构转速比对供种性能的影响。结果表明:安装搅种装置能明显增加种群压力、切向力、型孔充种数量、充填角和充种合格率。搅种齿长度显著或极显著影响充填角和型孔充种数,搅种齿排列方式显著影响型孔充种数。研究得出影响充填角和型孔充种数的主次因素为:搅种齿长度>排列方式>搅种齿形状。在搅种齿形状为圆柱形,搅种齿长度为6 mm和双螺旋排列方式条件下,充填角、型孔充种数和充种不合格率分别为78.20°、1.73和0.69%。供种速率随锥孔轮数量、转速比和转速增加而增加,在转速为20~40 r/min条件下,选择锥孔轮数量为6和转速比为1.154优化组合时,供种速率及其变异系数分别为690~1340 g/min和0.23~0.80%。该研究为搅种装置结构改进和供种装置充种性能的提高提供了参考。  相似文献   

19.
为实现小麦播种作业性能实时监控,设计了一种基于CAN总线的小麦精密播种机播种实时监控系统,阐述了系统总体结构,设计了系统硬件和软件,并进行了田间试验。该系统包括传感器信号采集单元、播种监测模块、CAN 模块和播种监测终端,能够实时监测种管状态、机具前进速度和排种轴转速。采用光电传感器和霍尔传感器分别检测排种管落种状态和地轮转速并输出电压或脉冲信号,播种监测模块根据传感器输出的信号,判断排种管播种状态(正常、堵塞和空管),计算出地轮转速和排种轴转速,并计算出机具前进速度,以上信息通过CAN总线传输给播种监测终端并实时显示。试验结果表明,该系统故障状态监测准确率为>98%,堵塞响应时间<0.2 s,空管报警响应时间<0.5 s。系统工作稳定可靠,抗尘、抗震能力强,能够有效监测小麦播种作业性能。该研究成果能满足小麦播种性能实时监测要求,有助于提高小麦播种作业质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号