首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 531 毫秒
1.
土壤入渗参数、田面糙率、坡度等自然要素是畦灌方案设计的基础参数,其变异性是导致灌水质量远低于预期的重要原因。为揭示畦田自然要素时空变异特征及其对灌水质量的影响,该研究在11组畦田上开展了4 a畦灌观测试验,通过实测数据全面研究了灌前自然要素的畦内空间变异性、畦间空间变异性和年际时间变异性,并结合WinSRFR地面灌溉模型,模拟分析了自然要素时空变异性对畦灌水流运动过程及灌水质量的影响。结果表明:对畦灌灌水质量影响最大的3个自然要素依次是入渗系数、入渗指数和糙率,三者空间变异系数平均值分别为11.00%、4.05%和7.94%,时间变异系数平均值是分别为26.87%、7.73%和21.86%。畦田自然要素变差导致灌水质量整体下降,自然要素的时间变异性对灌水质量的影响大于其空间变异性的影响。入渗参数和糙率的变异性对畦田后半段的水流消退过程影响较大,忽视其年际时间变异性会加大畦尾积水风险。该研究结果可为畦灌方案设计提供指导,为精细地面灌溉发展提供科学依据。  相似文献   

2.
不同畦面结构下地面灌溉效果的对比分析   总被引:3,自引:0,他引:3  
为研究畦面结构变化对地面灌溉效果的影响,在4种不同畦面结构的大田灌溉试验基础上,用WinSRFR3.1模型对平作畦灌、细沟灌、畦作浅沟灌和微垄沟灌的田面土壤特性参数和灌水效果进行估算和模拟,比较了不同灌溉方式由于畦面结构改变引起的田面土壤特性和灌水效果差异,并提出不同畦面结构的适宜畦田规格。研究认为,不同畦面结构的田面糙率系数和土壤入渗特性差异明显,微垄沟灌糙率系数最大而平作畦灌糙率系数最小,平作畦灌入渗速率最快而畦作浅沟灌入渗速率最慢;对长畦田来说,畦作浅沟灌灌水效果最好,微垄沟灌次之,平作畦灌最差;在  相似文献   

3.
基于土壤入渗变异性的畦灌单宽流量优化   总被引:1,自引:1,他引:0  
农田土壤入渗变异性给畦灌系统的设计和管理带来了困难.为进一步提高畦灌灌水质量,该研究利用已有考虑土壤变异条件下的畦灌灌水质量计算模型,采用数值模拟与理论分析相结合的方法,扩展了模型的使用范围,并结合畦灌试验资料对其进行了验证;在此基础上分析了土壤入渗变异性对畦灌灌水质量的影响,提出了考虑农田土壤入渗变异条件下入畦单宽流量的确定方法.结果表明,文中扩展后的模型可用于计算异质土壤和均质土壤情景模式下的畦灌灌水质量指标,其计算值与田间实测值和WinSRFR软件模拟值一致性较好,相对误差均值分别为10%;土壤入渗变异对畦灌灌水质量的影响显著,贡献度高达56.71%~95.68%,其对灌水均匀度的影响最为敏感,其次为灌水效率和储水效率;基于均质土壤入渗条件下优化的入畦单宽流量,可用于异质土壤畦灌灌水流量设计,两者符合1∶1的线性关系.研究结果可为考虑农田土壤变异性的畦灌系统设计和管理提供理论依据和技术支撑.  相似文献   

4.
为探讨不同耕整地方式对甘蔗地耕层土壤结构特性和产量的影响,以1.4 m和1.6 m两种种植行距为主处理,以深松35 cm+旋耕25 cm、深翻50 cm+旋耕25 cm、不深松(旋耕25 cm)3种耕整地作业方式为副处理,对甘蔗产量性状,土壤容重、紧实度、孔隙度、三相容积率、田间持水量、土壤贯入阻力和抗剪强度等土壤结构特性进行研究。结果表明:1.6 m行距处理甘蔗蔗茎产量显著低于1.4 m行距处理;1.6 m行距处理土壤紧实度显著小于1.4 m行距,容重显著高于1.4 m行距处理,1.6 m行距处理显著改善土壤贯入阻力和抗剪强度。与对照不深松(旋耕25 cm)相比,深松35 cm+旋耕25 cm及深翻50 cm+旋耕25 cm处理通过增加土壤耕作深度,显著改善了耕层土壤紧实度和耕层土壤容重,改善了耕层的整体疏松程度;深松作业通过提高耕层土壤总孔隙度,尤其增加了30~40 cm土层的毛管孔隙度,提高了深层土壤的保水能力,对甘蔗中后期株高伸长和茎径增粗产生显著的促进效应。深松35 cm+旋耕25 cm与深翻50 cm+旋耕25 cm均显著降低了耕层土壤贯入阻力,但对土壤抗剪强度的改善效果不显著;深松35 cm+旋耕25 cm的固相容积率最小,气相容积率最大,不深松(旋耕25 cm)耕作措施的固相容积率最大,气相容积率最小,3种耕作措施的液相容积率没有显著差异。深松35 cm+旋耕25 cm和深翻50 cm+旋耕25 cm均对土壤物理结构的改善具有积极作用,能显著提高甘蔗产量,在具有大马力拖拉机和高质量深松器的蔗区建议采用深松35 cm+旋耕25 cm的耕整地方式,在缺乏大马力拖拉机和高质量深松器的蔗区,可以采用铧式犁深翻50 cm+旋耕25 cm的耕整地方式来代替深松,以达到增厚耕层的目的。  相似文献   

5.
以济麦22为试验材料,在大田条件下设置条旋耕(SR)、深松+条旋耕(SRS)、深松+旋耕(RS)、旋耕(R)和翻耕(P) 5个耕作方式处理,研究了耕作方式对冬小麦氮素积累、分配和转运及土壤硝态氮含量的影响。结果表明,1)深松+条旋耕和深松+旋耕处理小麦开花至成熟期20140 cm各土层的土壤含水量较低; 拔节期之后的小麦氮素吸收强度、开花和成熟期植株氮素积累量、成熟期氮素向子粒中的分配比例及开花期营养器官中贮存的氮素向子粒中的转运量均高于条旋耕和旋耕处理; 深松+条旋耕和深松+旋耕处理成熟期氮素向子粒中的分配量高于翻耕,翻耕高于旋耕和条旋耕处理。2)深松+条旋耕和深松+旋耕处理成熟期080 cm各土层的土壤硝态氮含量低于翻耕处理,翻耕低于旋耕和条旋耕处理,条旋耕最高; 深松+旋耕在120160 cm土层的土壤硝态氮含量高于其他处理; 各处理在160200 cm土层的土壤硝态氮含量无显著差异。3)深松+旋耕和深松+条旋耕的子粒产量和氮肥偏生产力最高且两者无显著差异,翻耕次之,旋耕和条旋耕低于上述处理。在本试验条件下,综合考虑氮素利用、子粒产量和土壤中硝态氮的淋溶,深松+条旋耕为最佳耕作方式,可供生产中参考。  相似文献   

6.
基于土壤入渗参数空间变异性的畦灌灌水质量评价   总被引:7,自引:4,他引:3  
畦灌灌水质量的客观评价是制定合理灌水方案的重要基础。该文假定土壤空间变异性主要体现在入渗系数的变化上,以在杨凌区一级阶地和三级阶地上进行的大田畦灌试验为例,分析土壤空间变异性对畦灌灌水质量的影响,并揭示畦灌灌水质量变化规律。结果表明灌水效率、灌水均匀度和储水效率随入渗系数的变异系数增大均呈现下降趋势,其中灌水效率和储水效率下降幅度较小,而灌水均匀度下降幅度较大。由此说明土壤入渗系数的变异性对灌水均匀度影响最大,而对灌水效率和储水效率影响相对较小。该文的研究方法对畦灌灌水质量评价结果可更好地反映客观实际,从而为制定合理的灌水方案提供依据和技术支持。  相似文献   

7.
深松和压实对旱地棕壤硬度和水分入渗性能的影响   总被引:2,自引:1,他引:1  
通过比较分析深松与压实及对照处理棕壤农田土壤的硬度剖面分布和水分入渗曲线变化,研究不同耕作措施对土壤机械物理性质和通透性能的影响。结果表明:(1)深松和压实处理后,0~25 cm土层硬度大小顺序为压实对照深松,25~40 cm土层的硬度为深松压实对照;而这一处理效果随处理后时间的延长而逐渐减弱,但90天后0~25 cm土层处理间差异依然存在,而25~40 cm土层这一差异不明显;(2)菲利浦公式能较好地表达压实、深松和对照处理土壤水分入渗速率随时间的变化过程,且不同处理及各处理重复间的土壤入渗曲线变异性较大;(3)对各处理土壤入渗菲利浦公式做标定处理求得的代表性入渗曲线,其初始入渗速率大小顺序为深松对照压实,而稳定入渗速率则为对照压实深松处理;说明深松和压实对土壤入渗能力影响明显不同,深松不仅能提高前期土壤水入渗能力、还能抑制入渗后期的深层渗漏。  相似文献   

8.
耕作方式转变和秸秆还田对土壤活性有机碳的影响   总被引:1,自引:3,他引:1  
深松是解决长期旋免耕后耕层浅薄化、亚表层(15~30 cm)容重增加等问题的有效方法之一,长期旋免耕后进行深松显著影响土壤有机碳及其组分的周转。为对比转变耕作方式对土壤活性有机碳(LOC)及碳库管理指数的影响,该研究基于连续6 a的旋耕转变为深松和免耕转变为深松定位试验,对比了2012-2014年长期旋免耕农田进行深松对农田土壤活性有机碳及碳库管理指数的影响。研究结果表明,耕作方式转变和秸秆还田均对土壤LOC含量、活性有机碳与有机碳的比例(LOC/SOC)和碳库管理指数产生显著影响。相对于原旋耕秸秆还田处理(RTS),虽然旋耕-深松秸秆还田处理(RTS-STS)提高了0~30 cm土层的LOC含量,但其土壤中LOC/SOC比例和碳库管理指数显著下降。而免耕-深松秸秆还田(NTS-STS)处理和耕作方式未转变的免耕秸秆还田处理(NTS)在0~10 cm土层其LOC含量无显著性差异,但NTS-STS处理显著提高LOC/SOC比例。耕作方式转变导致RTS-STS处理碳库管理指数随着土层的加深而逐渐降低,而NTS-STS处理则呈逐渐升高趋势。耕作、秸秆、年份、耕作与秸秆、耕作与年份及3者交互作用是导致耕作方式转变后各处理0~30 cm的LOC含量变化的主要作用力(P0.05)。秸秆还田条件下,将长期旋耕处理转变为深松可显著降低土壤SOC中的LOC比例,降低碳库管理指数,促进土壤碳库的稳定性;而长期免耕处理转变为深松能够显著提高土壤下层(10~30 cm)的土壤碳库活性。  相似文献   

9.
耕作方式对麦田土壤水分消耗和硝态氮淋溶的影响   总被引:4,自引:2,他引:2  
以高产冬小麦品种济麦22为材料,设置条旋耕、深松+条旋耕、旋耕、深松+旋耕和翻耕5种耕作方式处理,研究耕作方式对小麦各生育阶段土壤水分消耗和硝态氮淋溶的影响。结果表明:(1)深松+条旋耕处理小麦各生育时期棵间蒸发量、播种至拔节阶段0-40cm土层土壤贮水消耗量和农田日耗水量显著低于旋耕、深松+旋耕和翻耕处理的;开花至成熟阶段60-120cm土层土壤贮水消耗量、农田日耗水量和灌浆后期旗叶水势显著高于其他处理的。(2)深松+条旋耕处理成熟期0-80cm土层土壤硝态氮含量与深松+旋耕处理的无显著差异,均低于其他处理的;80-120cm土层土壤硝态氮含量低于深松+旋耕处理的。(3)深松+条旋耕处理籽粒产量与深松+旋耕处理的无显著差异,均高于其他处理的,水分利用效率最高,是本试验条件下的高产高水分利用效率处理。  相似文献   

10.
基于主成分分析的畦灌质量评价   总被引:6,自引:5,他引:1  
针对畦灌灌水质量影响因素和评价指标较多造成分析和评价困难的问题,基于大田灌水试验数据,使用主成分分析方法将各评价指标的加权和作为灌水质量综合主成分指标,并利用该指标评价和分析灌水质量。结果表明,灌水质量综合主成分可以代表96.74%的灌水质量变异信息,且服从正态分布,具有较好的代表性与客观性,可用于畦灌灌水质量的评价。利用灌水质量综合主成分作为指标分析表明,畦长和改水成数对灌水质量有显著的影响,各因子对灌水质量的影响从大到小依次为改水成数、畦长、坡度、单宽流量、灌水定额、入渗系数、粗糙系数和入渗指数,并且影响灌水质量的因子之间存在相互拮抗作用或相互协同的作用。  相似文献   

11.
该文选用华北平原壤土区常用的深松旋耕联合作业机作为试验设备,分析深松、旋耕作业次序对其作业质量及功耗的影响。运用离散元仿真分析结果表明,旋耕深松作业次序比深松旋耕作业次序的工作紧凑、刀辊受力均匀。随着作业深度的增加,深松旋耕作业次序作用的深层土壤较多。建立以旋耕深度、深松深度为因素,以2种作业次序功耗为指标的回归方程综合分析得出,作业深度较浅时,深松旋耕作业次序功耗、地表平整度、植被覆盖率优于旋耕深松作业次序;作业深度较大时,旋耕深松作业次序功耗明显小于深松旋耕作业次序,且两者作业质量差异不显著。田间试验表明,离散元仿真建立的2种作业次序作业深度与作业功耗的回归方程及测量的地表平整度、土壤膨松度及植被埋覆率基本能真实反映田间作业情况。  相似文献   

12.
深松对春玉米根系形态特征和生理特性的影响   总被引:14,自引:11,他引:14  
为研究深松对春玉米根系形态特征和生理特性的影响。以郑单958和先玉335为供试品种,设旋耕(R)、深松加旋耕(S+R)2个处理,于2012和2013年进行田间试验。结果表明,深松可以显著提高2个品种春玉米实测产量(P0.05)、春玉米乳熟期和完熟期根干质量(P0.05)且40 cm以下土层尤为明显。2个品种春玉米30 cm土层处的株、行间根幅均表现为S+R小于R处理,其中行间根幅的差异达到了显著水平(P0.05),单株根条数和比根长均表现为S+R显著高于R处理(P0.05)。乳熟期60 cm以下土层根系活力S+R高于R处理且随着土层的加深差异逐渐增大,超氧化物歧化酶和过氧物酶活性在吐丝期和乳熟期各土层S+R均高于R处理,而丙二醛含量低于旋耕处理。深松促进根系特别是下层根系干质量的增加,增加根系纵深分布,春玉米根系重心下移,并保持较高的生理活性,是其能够增产的重要原因。该文可为春玉米高产栽培提供依据。  相似文献   

13.
耕作方式对冀西北栗钙土土壤物理性状及莜麦生长的影响   总被引:8,自引:5,他引:3  
为了探索不同耕作方式对冀西北栗钙土农田土壤物理性状及莜麦生长的影响,以河北省张北县10 a栗钙土长期定位试验莜麦田为研究对象,研究了免耕、松耕和翻耕对莜麦田土壤容重、土壤含水率、土壤硬度及莜麦生长的影响。结果表明:松耕和翻耕可以显著降低莜麦播种期到拔节期土壤容重,播种期免耕土壤容重1.49 g/cm3,松耕和翻耕分别为1.31和1.30g/cm3;不同耕作方式对土壤含水率影响不大;免耕显著提高土壤硬度,拔节期免耕土壤硬度58.51kg/cm2,为松耕1.74倍(P0.05),为翻耕2.53倍(P0.01);栗钙土土壤硬度与土壤容重、土壤含水率关系模型表明高土壤容重条件下土壤硬度对土壤含水率更敏感,低土壤含水率条件下土壤硬度对土壤容重更敏感;免耕莜麦株高和叶面积生长受到抑制,穗数和穗粒数显著降低,经济产量413.79 kg/hm2,分别为松耕和翻耕的62.27%和51.64%。栗钙土莜麦田免耕与松耕、翻耕相比土壤容重大,土壤硬度高,莜麦产量显著降低;3种耕作方式中,松耕是兼顾生态与经济效益的耕作措施。  相似文献   

14.
施磷深度和深松对春玉米磷素吸收与利用的影响   总被引:3,自引:0,他引:3  
【目的】 磷肥施用深度是影响玉米对磷吸收利用的因素之一,深松可以打破犁底层,促进根系重心下移,提高根系的生理活性。研究深松措施下不同施磷深度春玉米对磷素吸收利用的影响,以期明确深松措施下春玉米高产栽培减磷增效的适宜施磷方式。 【方法】 2014年采用裂区田间试验,以耕作方式为主区,设旋耕、深松 + 旋耕两个处理;以施磷深度为副区,设6 cm (P6)、12 cm (P12)、18 cm (P18)、24 cm (P24) 4个处理,以不施磷肥为CK。2015年进行了深松措施下大田验证试验。测定了春玉米植株地上部干物质重、磷含量、磷素吸收量,分析了不同施磷深度下春玉米的磷素吸收效率和磷肥利用效率的差异性,讨论了土壤磷素分布与春玉米根系分布的匹配关系对磷素吸收和磷肥利用的影响。 【结果】 不同施磷深度下春玉米籽粒产量均表现为P12 > P6 > P18 > P24,耕作措施间表现为深松 + 旋耕处理高于旋耕处理,在深松 + 旋耕处理下P12处理与其他处理间的差异均达到显著水平。植株地上部磷含量吐丝期和完熟期均以P12处理最高,P6处理次之,P24处理最低。干物质重均以P12处理最高,耕作措施间表现为深松 + 旋耕处理高于旋耕处理,旋耕处理下吐丝期和完熟期不同施磷深度处理间差异均不显著,深松 + 旋耕处理下吐丝期不同施磷深度处理间差异均不显著,完熟期P12处理与P24处理之间的差异达到了显著水平。磷素吸收量均以P12处理最高,旋耕处理下吐丝期前P12处理较P6处理 (常规施磷深度) 提高7.47% (2014),吐丝期后P12处理较P6处理提高3.85% (2014),深松 + 旋耕处理下吐丝期前P12处理较P6处理提高10.32% (2014)、9.01% (2015),吐丝期后P12处理较P6处理提高9.34% (2014)、10.20% (2015),深松进一步促进了春玉米对磷素的吸收,且在吐丝期后表现得更为明显。磷素吸收效率均以P12处理最高,P6处理次之,P24处理最低,P12处理与其他处理之间差异均达到了显著水平。磷肥利用效率均以P12处理最高,在旋耕处理下P12处理较P6处理提高19.22% (2014),深松 + 旋耕处理下P12处理较P6处理提高29.22% (2014)、29.04% (2015)。 【结论】 深松措施下,磷肥施用深度适度下移至 12 cm 可提高春玉米的磷素吸收效率、磷肥利用效率和籽粒产量,是玉米高产栽培减磷增效的有效途径。   相似文献   

15.
【目的】 农田固碳保水性能是影响作物产量的关键因素,研究耕作方式对耕层 (0—20 cm) 土壤碳、水含量和产量的影响,为选择适宜该地区的最佳耕作措施提供参考。 【方法】 保护性耕作长期定位试验始于2002年,种植制度为冬小麦–夏玉米一年两熟,两季秸秆全量粉碎 (3~5 cm) 还田,试验设传统翻耕、深松、旋耕和免耕4种耕作方式。对2015—2016年作物生长各时期土壤有机碳含量、土壤含水量、碳水储量、产量和等价产量等进行了测定。 【结果】 不同处理麦–玉轮作农田0—20 cm土层有机碳含量有所不同。耕作措施对土壤有机碳含量有显著 (P < 0.05) 影响,表现为深松和免耕能显著增加0—10 cm土层有机碳含量,且以深松效果最为显著 ( P < 0.05)。与传统翻耕相比,免耕和旋耕降低了10—20 cm土层土壤有机碳含量;深松比传统翻耕显著 ( P < 0.05) 增加了小麦季土壤有机碳含量,玉米季没有显著性差异 ( P < 0.05)。0—10 cm土层,玉米季旋耕和免耕处理的土壤含水量高于深松和传统翻耕;在10—20 cm土层小麦季免耕处理土壤含水量高于其他三种耕作方式。产量结果表明,深松能有效增加作物的有效穗数、穗粒数和千粒重,进而增加籽粒产量和周年等价产量;免耕显著 ( P < 0.05) 降低了亚表层 (10—20 cm) 有机碳含量,降低穗粒数和千粒重,不利于作物增产。两年小麦玉米单作产量和周年等价产量均表现为深松 > 传统翻耕 > 旋耕 > 免耕。 【结论】 深松能有效促进耕层土壤有机碳积累和保水性能提高,增加作物的有效穗数、穗粒数和千粒重,从而增加产量;免耕显著 (P < 0.05) 提高了表土层 (0—10 cm) 碳储量,有助于增强耕层土壤的保水性能。   相似文献   

16.
【目的】浅旋耕是内蒙古河套灌区常用的耕作方式,长期采用浅旋耕导致耕层变浅、犁底层变硬、土壤保水保肥能力下降。本文探索了翻耕和深松对内蒙古河套平原灌区不同产量水平下玉米农田土壤肥力的作用,以明确适宜本地区长期可持续的耕作技术。【方法】本研究在巴彦淖尔市黄河沿岸进行。选择了长期引黄灌溉,且分别采用浅旋耕 (10—15 cm)、传统翻耕 (20—30 cm) 和深松 (30—35 cm) 3种耕作措施及低、中、高3个产量水平地块。在玉米收获后,采集0—20、20—35和35—50 cm土层样品,测定土壤容重、土壤固液气三相比、土壤水分含量和养分含量,调查玉米产量,分析传统翻耕和深松对不同产量水平地块土壤质量及玉米产量的作用效果,以及不同产量水平地块采用深松和传统翻耕的增产潜力。【结果】3个产量水平土壤上,深松和翻耕较浅旋耕处理的土壤含水量分别提高7.25%~32.11%、5.36%~21.91%,土壤容重降低5.23%~8.61%、0.69%~4.91%,土壤固液气三相比R值降低12.24%~89.97%、7.30%~57.74%,土壤全氮含量提高了17.88%~55.60%、9.81%~22.25%,土壤速效磷含量提高21.23%~41.26%、10.84%~22.04%,土壤速效钾含量提高36.85%~71.99%、6.01%~50.99%,土壤有机质含量提高28.85%~54.14%、14.63%~36.38%;深松的效果显著好于传统翻耕。低、中、高产量水平地块采用深松,玉米的增产潜力分别为29.56%、25.37%、16.13%,采用传统翻耕分别为22.75%、16.96%、16.55%,采用深松的增产潜力大于采用翻耕。【结论】内蒙古河套平原耕作措施由浅旋耕改为深松与传统翻耕,能显著改善低、中、高产肥力地块土壤的理化特性,并提高玉米产量,其中深松效果均好于传统翻耕。低肥力与中肥力水平下采取深松耕作效果最佳,高肥力水平下深松与传统翻耕均可。  相似文献   

17.
耕作方式对土壤水分入渗、有机碳含量及土壤结构的影响   总被引:14,自引:6,他引:14  
为探明不同耕作方式对土壤剖面结构、水分入渗过程等的作用机理,采集田间长期定位耕作措施(常规耕作、免耕、深松)试验中的原状土柱(0~100 cm)及0~10 cm、10~20 cm、…、90~100 cm环刀样、原状土及混合土样,通过室内模拟试验进行了0~100 cm土层土壤入渗过程和饱和导水率的测定,分析了不同土层的土壤有机碳含量、土壤结构特征及相互关系。结果表明:从土柱顶部开始供水(恒定水头)到水分全部入渗到土柱底部的时间为:常规耕作免耕深松;土柱土壤入渗速率和累积入渗量为:深松免耕常规耕作;土柱累积蒸发量为:常规耕作免耕深松。土壤的饱和导水率表现为:0~10 cm和50~60 cm土层,免耕深松常规耕作;20~50 cm和60~100 cm土层,深松免耕常规耕作。随土层的加深,0.25 mm水稳性团聚体含量和土壤有机碳含量均表现为先增加(10~20 cm)再降低的趋势。在0~40 cm土层和80~100 cm土层,均以深松处理0.25 mm水稳性团聚体含量最高。在60 cm以上土层,土壤有机碳含量表现为:免耕深松常规耕作,而60 cm土层以下土壤有机碳显著降低,均低于4 g·kg?1,且在70 cm以下土层,常规耕作免耕深松。综上,耕作措施能够改变土壤有机碳含量,改善土壤结构,促进土壤蓄水保墒;深松更利于水分就地入渗,而免耕则更利于有机碳的提升和水分的储存,其作用深度在0~60 cm土层。  相似文献   

18.
旋耕转深松和秸秆还田增加农田土壤团聚体碳库   总被引:8,自引:4,他引:4  
土壤耕作和秸秆还田能够显著影响土壤结构和养分周转,也是土壤团聚体分布及更新周转的主要驱动因素。该研究基于连续9 a的旋耕-深松定位试验,对比了长期旋耕农田转变为深松以及秸秆还田对农田土壤0~50 cm土壤团聚体分布、稳定性及团聚体碳含量的影响,分析了团聚体碳对土壤有机碳的贡献率及相互关系。研究结果表明,将长期旋耕农田转变为旋耕-深松农田显著影响了0~50 cm土层的团聚体分布及其碳含量。旋耕-深松配合秸秆还田(RTS-STS)模式能够显著提高表层土壤较大粒级团聚体的比例,且显著提高了土壤团聚体稳定性,分别比旋耕-深松无秸秆还田(RTA-STA)、旋耕秸秆还田(RTS)和旋耕无秸秆还田(RTA)处理高6.1%、65.4%和87.8%;同时,RTS-STS处理显著提高了0~20 cm土层团聚体碳含量和对有机碳的贡献率,虽然在20~30和30~50 cm土层之间,2个处理的团聚体碳含量差异并不明显,但RTS-STS处理的团聚体碳含量对有机碳的贡献率较0~20 cm土层和RTS处理显著降低。通过耕作方式转变、秸秆还田和两者的交互作用对土壤团聚体分布及其碳含量影响的作用力分析可看出,耕作、秸秆及其交互作用是影响不同土层中各处理在不同粒级团聚体分布比例及碳含量差异的主要因素。通过相关分析表明,土壤有机碳含量与团聚体稳定性及其自身碳含量之间存在显著或极显著的正相关关系。旋耕-深松配合秸秆还田(RTS-STS)模式促进了0~20 cm土壤团聚体的形成和稳定,提高了土壤团聚体碳库和对有机碳的贡献,对提升土壤有机碳水平具有积极意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号