首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
基于多源无人机影像特征融合的冬小麦LAI估算   总被引:3,自引:3,他引:0  
为探讨无人机多源影像特征融合估测作物叶面积指数的能力,该研究以冬小麦为研究对象,利用多旋翼无人机搭载高清数码相机和UHD185成像光谱仪获取研究区冬小麦关键生育期(扬花期、灌浆期)的可见光和高光谱影像。综合考虑可见光、高光谱影像特征与冬小麦叶面积指数的相关性及影像特征重要性进行特征筛选,然后,以可见光植被指数、纹理特征、可见光植被指数+纹理特征、高光谱波段、高光谱植被指数及高光谱波段+植被指数分别作为输入变量构建多元线性回归、支持向量回归和随机森林回归的叶面积指数估测模型(单传感器数据源);以优选的两种影像特征结合支持向量回归、随机森林回归构建叶面积指数估测模型(两种传感器数据源),比较分析单源与多源影像特征监测冬小麦叶面积指数的性能。进一步地,考虑到小区土壤空间异质性会影响冬小麦叶面积指数估测结果,该研究探讨了不同影像采样面积下基于单源遥感数据构建的小麦叶面积指数估测模型精度。研究结果表明:在扬花期和灌浆期,使用两种影像优选特征构建的随机森林回归估测模型精度最佳,验证集决定系数分别为0.733和0.929,均方根误差为0.193和0.118。可见光影像采样面积分别为30%和50%,高光谱影像采样面积为65%时,基于单源影像特征构建的随机森林回归估测模型在扬花期和灌浆期效果最好。综上,该研究结果可为无人机遥感监测作物生理参数提供有价值的依据和参考。  相似文献   

2.
  【目的】  叶绿素含量高低反映植被的健康状况与光合能力。研究准确、有效地将冠层影像反演为叶绿素含量的技术参数,以便经济快速、实时地监测作物生长状况。  【方法】  田间试验于2018—2020年在内蒙古阴山北麓马铃薯主产区进行,设置氮肥梯度处理,在马铃薯块茎膨大期和淀粉积累期,测定试验地马铃薯植株SPAD值,通过线性关系将其转化成叶绿素含量。利用无人机为平台搭载S185成像光谱仪获取马铃薯试验区高光谱影像,并从中提取马铃薯冠层光谱反射率。将3年田间试验所获取的125个样本点数据按80%、20%的比例随机划分为训练集与验证集。用训练集数据建立了8个比率、归一化光谱指数,通过波段优化算法建立优化光谱指数和马铃薯关键生育期叶绿素含量的相关性与估测模型,并用验证集数据检验所建立模型的精度,最后利用所构建的估测模型制作马铃薯叶绿素含量分布图。  【结果】  根据训练集数据,马铃薯植株叶绿素含量分布范围在10.58~23.14 mg/g,平均叶绿素含量为19.80 mg/g,变异系数为14.9%;根据验证集数据,马铃薯植株叶绿素含量分布范围在12.80~23.73 mg/g,平均为19.59 mg/g,变异系数为17.0%。基于绿光波段建立的叶绿素光谱指数(CIgreen)和归一化光谱指数550 (ND550)均与马铃薯叶绿素含量具有较好相关性(R2分别为0.48、0.61),但作物种类及生育时期的影响降低了估测的准确性。通过优化波段586、462 nm和586、498 nm计算的优化比率光谱指数(RSI)和优化归一化光谱指数(NDSI)能够明显提高模型准确性,具备良好的线性拟合效果,决定系数R2分别由0.48和0.61提高到0.82和0.83。经验证后,估测模型预测值与实测值接近1∶1线,决定系数R2分别为0.77和0.79,均方根误差RMSE较低。通过反演马铃薯叶绿素含量分布图可知,优化光谱指数(NDSI)模型反演效果较好,叶绿素含量分布范围为18~21 mg/g,与实测值相符合。  【结论】  本研究优化光谱指数RSI和NDSI最佳敏感波段分别为586、462和586、498 nm,此波段范围内RSI和NDSI与马铃薯关键生育期叶绿素含量相关性最优,通过波段优化算法重新构建的优化光谱指数预测模型可靠性及精度显著高于已有光谱指数,决定系数分别为0.82和0.83,且验证效果较好。应用两种光谱指数对研究区高光谱影像进行叶绿素反演估测,生成的田间马铃薯叶绿素含量分布图显示优化光谱指数NDSI估测效果最好,为光谱指数估测马铃薯关键生育期叶绿素含量提供了理论支持。  相似文献   

3.
利用无人机多光谱估算小麦叶面积指数和叶绿素含量   总被引:2,自引:4,他引:2  
利用无人机遥感的方式进行农作物长势监测是目前精准农业、智慧农业发展的重要方向,为了探究无人机多光谱反演小麦叶面积指数(Leaf Area Index,LAI)和叶绿素含量的模型估算潜力,该研究在3个飞行高度(30、60、120 m)采集多光谱影像,通过使用全波段差值光谱指数(Difference Spectral Index,DSI)、比值光谱指数(Ratio Spectral Index,RSI)、归一化光谱指数(Normalized Spectral Index,NDSI)和经验植被指数与地面实测数据进行相关性分析,获得不同高度下的光谱指数与LAI和叶绿素含量的关系模型及其决定系数,以决定系数为依据分别构建多元逐步回归、偏最小二乘回归和人工神经网络模型,分析不同飞行高度无人机多光谱反演小麦冠层LAI和叶绿素含量SPAD(Soil and Plant Analyzer Development)值的精度。结果表明:1)30 m高度下,绿-红比值光谱指数与小麦LAI的相关性最高,相关系数为0.84;60 m高度下,红-蓝比值光谱指数与小麦叶绿素含量的相关性最高,相关系数为0.68;2)在60 m高度下,经验植被指数与小麦LAI和叶绿素含量的相关性较好,最大相关系数分别为0.77和0.50;3)利用偏最小二乘回归反演小麦LAI的精度最高,决定系数为0.732,均方根误差为0.055;利用人工神经网络模型反演小麦叶绿素含量的精度最高,决定系数为0.804,均方根误差0.135。该研究成果可为基于无人机平台的高通量作物监测提供理论依据,并为筛选无人机多光谱波段实现作物长势参数快速估测提供应用参考。  相似文献   

4.
番茄叶片叶绿素含量光谱估算模型   总被引:2,自引:0,他引:2  
以番茄品种“金粉2号”为试验材料,在玻璃温室内设置3种土壤水分胁迫水平,以正常灌溉为对照,于2013年3—7月和8—12月两个生长季对番茄进行全生育期持续处理。采用便携式地物光谱仪测定各生育期番茄冠层的光谱反射率,同步测定叶片总叶绿素和叶绿素a含量,并基于3—7月数据计算常见高光谱植被指数,分别建立番茄叶片叶绿素总量和叶绿素a估算模型,用8一12月生长季的试验数据对模拟精度进行检验。结果表明:(1)水分胁迫对番茄叶片总叶绿素、叶绿素a含量和番茄冠层光谱反射率产生明显影响,水分胁迫越严重,叶绿素总量和叶绿素a含量均越低,番茄冠层光谱反射率也越低;(2)随着生育期的推进,番茄总叶绿素和叶绿素a含量均持续增加,而冠层光谱反射率在红光和蓝光波段的反射率逐渐减少;(3)4种估算模型中R670模型的决定系数(R。)最高,效果最佳(P〈0.01),番茄叶片总叶绿素和叶绿素a最佳估算模型分别为:C_chl(a+b)=44.83R670+_670+7.36,C_chl=39.92R_670+5.12,均根方误差分别为0.45、0.42mg·g^-1,表明利用高光谱数据估算番茄叶片的叶绿素含量可行。  相似文献   

5.
直链淀粉含量是评价稻米品质的重要指标之一,其累积生长过程是多生育期、多因素综合作用的结果。为了探究多生育期信息引入对水稻籽粒直链淀粉含量监测模型的影响,实现水稻品质信息的大规模准确监测。该研究选取水稻孕穗期、抽穗期、灌浆期和成熟期这4个有关水稻籽粒形成发育的生育期的冠层光谱,分析原光谱、植被指数、高光谱特征参数,及其变换形式与水稻籽粒直链淀粉含量的相关性,筛选得到相关性较好的光谱变量,并利用逐步回归的方法进行建模,建立基于多生育期光谱变量的直链淀粉含量预测模型。结果表明:一阶导数、差值植被指数(Difference Vegetation Index,DVI)、比值植被指数(Ratio Vegetation Index, RVI)及成熟期特征参数表现出较高敏感性,最适用于直链淀粉含量预测的生育期为成熟期,而多生育期信息的综合利用能显著提高模型预测精度,最佳多生育期预测模型为孕穗-抽穗-成熟期组合模型,建模决定系数(Coefficient of Determination, R^2)为0.708,均方根误差(Root Mean Square Error, RMSE)为0.711%,平均绝对百分比误差(Mean Absolute Percent Error, MAPE)为3.22%,验证R2为0.631,RMSE为0.768%,MAPE为3.99%,证明该模型能较为精确地预测籽粒直链淀粉含量,为稻米品质指标大尺度统计监测提供一定的技术支撑和应用基础。  相似文献   

6.
利用一次寒潮降温过程,以苗期12个品种的冬小麦为研究对象,测定其低温逆境下叶片光谱反射率和SPAD(Soil and Plant Analyzer Development,SPAD)值。以2020年12月28日(最高/最低温为15℃/3℃)的观测值为胁迫前数据,12月31日(最高/最低温为1℃/−9℃)的观测值为低温胁迫后数据,分析低温胁迫前后小麦叶片原始光谱和SPAD值的变化规律。在多种光谱参数中,采用相关分析方法遴选出5个与SPAD值密切相关的特征变量,分别建立低温胁迫前、后以原始光谱数据、一阶光谱导数和三种植被指数为自变量的小麦叶片叶绿素含量反演模型,并进行交互验证,筛选出低温胁迫后小麦叶绿素含量的最优反演模型。结果表明:(1)与胁迫前相比,低温胁迫后小麦叶片SPAD整体呈上升趋势,光谱反射率在叶绿素吸收较好的可见光区域有所降低,叶片表现出受冻特征;(2)构建的低温胁迫前后两种混合模型,交互验证后精度较低,表明常温下小麦叶绿素含量估算模型并不适用于遭受低温胁迫后的小麦叶绿素估算,需单独建立低温胁迫后的估算模型;(3)利用光谱数据构建冬小麦低温胁迫下叶绿素含量反演混合模型中,以一阶光谱导数在694nm处建立的模型估算效果最优,拟合度(R2)为0.694,均方根误差(RMSE)为3.191,说明利用小麦叶片光谱特征波段建立低温胁迫下叶片叶绿素含量反演模型的方法是可行的。研究结果可为多品种冬小麦叶片叶绿素含量无损监测提供参考。  相似文献   

7.
基于赤池信息准则的冬小麦植株氮含量高光谱估算   总被引:4,自引:2,他引:2  
为了快速、准确地测定冬小麦植株氮含量,利用2014?2015年的冬小麦冠层反射光谱数据构建了16种氮素或叶绿素敏感光谱指数,基于变量投影重要性(variable importance projection,VIP)-偏最小二乘(partial least squares,PLS)-赤池信息准则(Akaike’s information criterion,AIC)整合模型构建了不同生育期植株氮含量最佳回归模型,并用2012?2013年挑旗期数据对模型进行了验证。结果表明:在AIC下,拔节期以4个植被指数为自变量的模型最优;挑旗期以5个植被指数为自变量的模型最优;开花期以4个植被指数为自变量的模型最优;灌浆期以6个植被指数为自变量的模型最优。4个生育期建模的决定系数(R2)和均方根误差(RMSE)分别为0.71、0.86、0.75、0.46和0.23%、0.13%、0.12%、0.15%,以挑旗期决定系数为最大。挑旗期验证集的R2和RMSE分别为0.81和0.41%,预测模型和验证模型均具有较高的估算精度和可靠性,研究结果为选择小麦合适的生育期估算小麦植株氮营养状况提供参考。  相似文献   

8.
基于无人机平台的柑橘树冠信息提取   总被引:2,自引:1,他引:1  
为了快速获取柑橘树冠信息,提升柑橘园精准管理,该研究基于无人机平台获取了柑橘数码和多光谱影像,分析了无人机影像反演柑橘树冠信息的效果。首先利用无人机数码影像及分水岭算法进行柑橘单木分割,然后构建柑橘树冠层高度模型,提取柑橘株数、株高、冠幅投影面积等结构参数信息,进而利用无人机多光谱影像获取柑橘的8种常用植被指数,采用全子集分析法筛选柑橘冠层氮素含量的敏感植被指数,构建基于多元线性回归的冠层氮素遥感反演模型,进行以冠幅为基本单元的柑橘树冠层氮素含量遥感制图。研究结果表明:柑橘的单木识别准确率在93%以上,召回率在95%以上,平均F值为96.52%;柑橘树的反演株高与实测株高具有较强的相关性,决定系数R2为0.87,均方根误差为31.9cm;单株冠幅投影面积与人工绘制的冠幅面积的决定系数,除果园A在12月的结果较低(R2为0.78)外,其余均在0.94及以上;采用全子集分析法筛选的柑橘冠层氮素敏感植被指数为归一化植被指数(NDVI)、绿色归一化植被指数和冠层结构不敏感指数,所建立的多元回归模型的决定系数R2达0.82,均方根误差为0.22%,相对误差为6.59%。综上,无人机影像在柑橘树冠参数信息提取方面具有较好的应用效果,能够快速有效地提取柑橘树冠参数信息。该研究可为使用无人机平台进行果园精准管理提供技术支撑。  相似文献   

9.
为了探究无人机多指标构建叶面积指数(Leaf Area Index,LAI)估算模型的能力,该研究通过不同纹理组合方式优选纹理指数,分别以光谱特征、纹理指数和作物覆盖度作为输入量建立一元线性模型,3类指标结合构建多元逐步回归和人工神经网络模型,分析多指标结合估算LAI的精度。结果表明:新的纹理指数能够明显提高纹理特征值与LAI的相关性,近红外波段均值与蓝波段均值的差值较近红外波段均值提高了13.54%;将绿度归一化植被指数(Green Normalized Difference Vegetation Index,GNDVI)、差值纹理指数和作物覆盖度结合来估算水稻LAI的精度最好,多指标结合的多元逐步回归模型的决定系数为0.866,调整后决定系数为0.816,均方根误差为0.308,人工神经网络模型结果再次验证这一结论。该研究成果可为基于无人机平台估算作物结构参数提供理论依据,并为其他作物LAI估算提供借鉴。  相似文献   

10.
该文研究不同水分胁迫条件下无人机遥感与地面传感器协同估算玉米作物系数的可行性。利用自主研发的六旋翼无人机遥感平台搭载多光谱传感器获取内蒙古达拉特旗昭君镇试验站不同水分胁迫下大田玉米冠层光谱影像,计算植被指数,采用经气象因子和作物覆盖度校正后的FAO-56双作物系数法计算玉米的作物系数,研究作物系数与简单比值植被指数(simple ratio index,SR)、叶面积指数(leaf area index,LAI)和表层土壤含水率(surface soil moisture,SM)的相关关系,结果表明,作物系数与SR、LAI和SM的相关程度与水分胁迫程度有关,但均呈现出显著或极显著的线性关系,说明了基于这些指标建立作物系数估算模型的可能性。利用逐步回归分析方法建立了作物系数的估算模型,其估算模型,修正的决定系数、均方根误差和归一化的均方根误差分别为0.63、0.21、25.16%。经验证,模型决定系数、均方根误差和归一化的均方根误差分别为0.60、0.21、23.35%。研究结果可为利用无人机多光谱遥感平台进行作物系数估算提供技术参考。  相似文献   

11.
[目的]作物水分状况的实时监测对于节水灌溉、缓解我国水资源紧缺具有重要意义.本研究旨在探寻利用无人机多光谱影像数据实时监测玉米干旱胁迫状况的可行性,比较无人机数据和田间实测农学指标对作物干旱胁迫的敏感程度.[方法]大田试验在河北吴桥进行,采用两个玉米品种'富民985'和'郑单958',设置畦灌、滴灌和雨养3种模式.分别...  相似文献   

12.
冬小麦叶片氮含量与叶片光合作用和营养状况密切相关,直接影响植株生长发育,而茎秆中的氮含量与茎秆中纤维素、半纤维素和木质素的比例和含量密切相关,直接影响茎秆质量及植株的抗倒伏能力。然而,有关对冬小麦茎秆氮含量估算研究较为有限,限制了从氮含量角度判断茎秆质量及对倒伏的预测能力。为精准估算冬小麦不同器官(叶片、茎秆)氮含量,该研究通过2年田间试验,获取冬小麦4个关键生育期(拔节期、抽穗期、开花期、灌浆期)和3种施氮水平条件下(N1、N2和N3)的冠层光谱反射率、叶片、茎秆氮含量及叶片SPAD (soil and plant analyzer development, SPAD)值。分析了不同生育期和施氮水平条件下高光谱植被指数对叶片和茎秆氮含量的敏感性,并结合5种常用的机器学习算法:随机森林回归(random forest regression,RFR)、支持向量回归(support vector regression,SVR)、偏最小二乘回归(partial least squares regression,PLSR)、高斯过程回归(gaussian process regression,GPR)、深度神经网络回归(deep neural networks,DNN)构建冬小麦叶片和茎秆氮含量估算模型。结果表明:高光谱植被指数对叶片和茎秆氮含量的敏感性受到生育期和施氮水平的影响。在灌浆期,最佳植被指数双峰冠层植被指数 DCNI(double-peak canopy nitrogen index)对叶片氮含量的敏感性最高,R2为0.866。对茎秆氮含量,在抽穗期的敏感性最高,最佳植被指数归一化叶绿素比值指数 NPQI(normalized phaeophytinization index)与氮含量相关系数R2=0.677。施氮水平的提升增加了光谱植被指数对茎秆氮含量的敏感性。结合SPAD值的机器学习算法提升了氮含量的估算精度,对叶片氮含量,在不同生育期和施氮水平条件下估算精度提升了1%~7%,其中在全生育期的归一化均方根误差NRMSE从0.254提升到0.214,抽穗期的NRMSE提升最大,从0.201提升到0.128。对茎秆氮含量,全生育期的NRMSE从0.443提升到0.400,抽穗期的NRMSE提升最大,从0.323提升到0.268。在全生育期,结合SPAD值的DNN模型对叶片(R2=0.782、NRMSE=0.214)和茎秆(R2=0.802、NRMSE=0.400)氮含量的估算精度最佳。研究说明,SPAD值与光谱植被指数结合有利于提升冬小麦不同生育期和施氮水平条件下叶片和茎秆氮含量的估算精度。  相似文献   

13.
基于综合指标的冬小麦长势无人机遥感监测   总被引:10,自引:7,他引:3  
作物长势监测可以及时获取作物的长势信息,该文尝试建立新型长势指标,监测小麦总体长势情况。将反映小麦长势的叶面积指数(leaf area index,LAI)、叶片叶绿素含量、植株氮含量、植株水分含量和生物量5个指标按照均等权重综合成一个指标,综合长势指标(comprehensive growth index,CGI)。利用450~882 nm范围内单波段和任意两个波段构建归一化光谱指数(normalized difference spectral index,NDSI),比值光谱指数(ratio spectral index,RSI)和简单光谱指数(simple spectral index,SSI),计算CGI与光谱指数的相关性,筛选出相关性好的光谱指数,结合偏最小二乘回归(partial least squares regression,PLSR)建立反演模型。以CGI为指标,运用无人机高光谱影像对2015年小麦多生育期的长势监测。结果表明:1)冬小麦各生育期,总体上CGI与光谱指数的决定系数R~2均好于各项单独指标与相应光谱指数的R~2。仅孕穗期CGI和RSI(754,694)的R~2比叶绿素和RSI(486,518)的R~2低,开花期的CGI和R570的R~2比生物量和R834的R~2低以及灌浆期CGI和SSI(582,498)的R~2比植株含水量和SSI(790,862)的R~2低。2)拔节期,孕穗期,开花期,灌浆期和全生育期PLSR模型的建模R~2分别为0.70,0.72,0.78,0.78和0.61。拔节期,孕穗期和开花期的无人机CGI影像验证模型的均方根误差RMSE(root mean square error)分别为0.050,0.032和0.047。CGI与相应光谱指数的R~2高于单独各项指标与相应光谱指数的R~2,光谱指数能够很好反映CGI包含的信息。无人机高光谱影像反演CGI精度较高,能够判断出小麦总体的长势差异,可为监测小麦长势提供参考。  相似文献   

14.
作物产量准确估算在农业生产中具有重要意义。该文利用无人机获取冬小麦挑旗期、开花期和灌浆期数码影像和高光谱数据,并实测产量。首先利用无人机数码影像和高光谱数据分别提取数码影像指数和光谱参数,然后将数码影像指数和光谱参数与冬小麦产量作相关性分析,挑选出相关性较好的9个指数和参数,最后以选取的数码影像指数和光谱参数为建模因子,通过MLR(multiple linear regression,MLR)和RF(random forest,RF)对产量进行估算。结果表明:数码影像指数和光谱参数与实测产量均有很强的相关性。利用数码影像指数和光谱参数通过MLR和RF构建的产量估算模型均在灌浆期表现精度最高,在灌浆期,数码影像指数和光谱参数构建的MLR模型R~2和NRMSE分别为0.71、12.79%,0.77、10.32%。对模型对比分析可知,以光谱参数为因子的MLR模型精度较高,更适合用于估算冬小麦产量。利用无人机遥感数据,通过光谱参数建立的MLR模型能够快速、方便地对作物进行产量预测,并可以根据不同生育期的产量估算模型有效地对作物进行监测。  相似文献   

15.
基于遥感监测多品种玉米成熟度进而掌握最佳收获时机,对提高其产量和品质至关重要。该研究在玉米成熟阶段获取无人机多光谱影像,同步采集叶片叶绿素含量(chlorophyll content,C)、籽粒含水率(moisture content,M)、乳线占比(proportion of milk line,P)等地面实测数据,以此构建玉米成熟度指数(maize maturity index,MMI),从而定量表征玉米成熟度。通过MMI与植被指数构建回归模型和随机森林模型,验证MMI适用性,并分析无人机遥感对不同品种玉米成熟度的监测精度。结果表明:1)不同品种玉米的叶片叶绿素含量、籽粒含水率、乳线占比的变化速率均存在差异。2)MMI与所选植被指数的相关性均可达到0.01显著水平,其中与归一化植被指数(normalized difference vegetation index,NDVI)、转换叶绿素吸收率(transformed chlorophyll absorbtion ratio index,TCARI)相关性最高,相关系数均为0.87。3)该研究基于不同组合的数据集进行了模型验证,其中随机森林模型对MMI的估测精度最高,测试集决定系数(coefficient of determination,R2)为0.84,均方根误差(root mean squared error,RMSE)为8.77%,标准均方根误差(normalized root mean squared error,nRMSE)为12.05%。此外,随机森林模型对不同品种MMI的估测精度较好,京九青贮16精度最优,其中R2RMSE、nRMSE为0.76、10.67%、15.88%,模型精度证明了可以利用无人机平台对不同品种玉米成熟度进行监测。研究结果可为多光谱无人机实时监测农田多品种玉米成熟度的动态变化提供参考。  相似文献   

16.
高光谱图像检测马铃薯植株叶绿素含量垂直分布   总被引:5,自引:6,他引:5  
为了检测马铃薯作物叶绿素含量,该文按照叶片垂直分布位置采集马铃薯叶片样本的成像高光谱数据,提取并计算了400个划分区域的平均光谱,使用手持式SPAD-502叶绿素仪测定了相应位置的SPAD(soil plant analysis development)值。采用标准正态变量校正(standard normal variate,SNV)方法对光谱数据进行预处理,分析了开花期植株自下而上垂直叶位间光谱和叶绿素分布关系,其光谱反射率在382~700 nm区间随叶位的升高反射率增加(上中下),在700~1 019 nm范围下叶位反射率高于上部和中部叶位(下上中),且SPAD均值依次为36.41、43.11、47.04。分别采用相关系数分析法和随机蛙跳(random frog,RF)算法筛选叶绿素含量敏感波长,并建立偏最小二乘回归(partial least squares regression,PLSR)模型。结果如下:基于相关系数分析法筛选的12个敏感波长主要位于530~550和706~708nm范围,建模精度RC2为0.7 588,验证精度RV2为0.5 773;基于random frog算法筛选的11个敏感波长(554.62、560.26、575.04、576.35、595.09、604.7、649.44、731.8、752.78、786.38、789.97 nm),建模精度RC2为0.8 423,验证精度RV2为0.7 676。选取RF-PLS模型计算马铃薯叶片每个像素点的叶绿素含量,绘制不同叶位马铃薯叶片叶绿素含量可视化分布图,结果可反映马铃薯在开花期植株上叶片叶绿素动态响应关系,实现了不同叶位马铃薯叶片叶绿素含量无损检测以及分布可视化表达。  相似文献   

17.
基于无人机多光谱影像的夏玉米叶片氮含量遥感估测   总被引:6,自引:6,他引:0  
利用无人机平台搭载多光谱相机组成的遥感监测系统在农业上已取得了一些成果,但利用无人机多光谱影像开展作物氮素估测研究少有尝试。基于此,该文利用国家精准农业基地2017年夏玉米3个关键生育期无人机多光谱影像和田间实测叶片氮含量数据,开展夏玉米叶片氮素含量的无人机遥感估测研究。对该研究选用的15个光谱变量,通过相关性分析解析光谱变量与LNC的相关关系,筛选出对玉米叶片氮素含量敏感的光谱变量;应用后向逐步回归方法分析不同变量指数下估测精度变化,最终确定不同生育期夏玉米LNC估测的光谱变量,实现对夏玉米叶片氮含量的较高精度监测。研究发现:1)在3个生育时期,GRE和GNDVI与LNC都有很强的相关性,表明绿波段可以很好地进行夏玉米生物理化参数的反演;2)在喇叭口期和灌浆期,OSAVI、SAVI与LNC具有高度相关性,证明在夏玉米生长前期和后期选择控制土壤因素的光谱变量可以提高对氮素估测的能力。在筛选最优光谱变量建模过程中发现,喇叭口期选取5个光谱变量(GNDVI、GRE、OSAVI、REG、SAVI)建模效果最好,估测模型的R~2、RMSE和nRMSE分别为0.63、27.63%、11.62%;抽雄吐丝期选取6个光谱变量(REG、GRE、GNDVI、MNLI、RED、NDVI)建模效果最好,估测模型的R~2、RMSE和n RMSE分别为0.64、20.50%、7.80%;灌浆期选取5个光谱变量(GRE、GNDVI、RED、NDVI、OSAVI)建模效果最好,估测模型的R~2、RMSE和n RMSE分别为0.56、31.12%、12.71%;在不同生育期选取最优光谱变量进行夏玉米LNC估测具有很好的效果。应用无人机多光谱遥感影像数据可以很好地监测田块尺度夏玉米LNC的空间分布,可为玉米田间氮素精准管理提供空间决策服务信息支持。  相似文献   

18.
高效、快速、准确获取冬小麦长势信息在农业发展和经营决策中具有重要作用。该研究以冬小麦为对象,开展无人机冬小麦长势监测,获取冬小麦生物量、株高、叶绿素含量和植株含水率数据,基于变异系数法(Coefficient of Variation Method,CV)构建综合长势监测指标(Comprehensive Growth Monitoring Indicators,CGMICV),通过16种植被指数与CGMICV进行相关性分析,计算植被指数间的方差膨胀因子,筛选最优植被指数作为模型输入变量,采用偏最小二乘(Partial Least Squares Regression,PLSR)、随机森林(Random Forest,RF)、反向传播神经网络(Back Propagation Neural Networks,BPNN)及遗传算法(Genetic Algorithm,GA)优化的BPNN模型建立冬小麦长势反演模型,结合评价指标获得冬小麦最优长势反演模型,最终得到研究区冬小麦长势空间分布信息。研究结果表明:以变异系数法得到的冬小麦CGMICV相关性比单一指标的相关性有不同程度的提高;利用变异系数法结合BPNN得到的冬小麦长势最佳反演模型CGMICV-BPNN,其决定系数R2可达0.71,模型精度较传统赋权法提高了26.79%;采用GA优化后的BPNN模型的不稳定显著下降,其平均相对误差中位数下降了22.22%,决定系数R2也有所提高;研究区内半数以上的冬小麦长势集中于第Ⅲ等级,其所占比例为55.83%,其次集中于第Ⅰ等级,其所占比例为36.08%,研究区冬小麦整体长势较为稳定。研究结果可为冬小麦长势监测及区域作物生产监测提供重要参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号