首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Submergence is a major stress causing yield losses particularly in the direct-seeded rice cultivation system and necessitates the development of a simple, rapid and reliable bioassay for a large scale screening of rice germplasms with tolerance against submergence stress. We developed two new bioassay methods that were based primarily on the seedling vigor evaluated by the ability of fast shoot elongation under submerged conditions, and compared their effectiveness with two other available methods. All four bioassay methods using cultivars of 7 indica and 6 japonica types revealed significant and consistent cultivar differences in seedling vigor under submergence and/or submergence tolerance. Japonica cultivars were more vigorous than indica cultivars, with Nipponbare being the most vigorous. The simplest test tube method showed the highest correlations to all other methods. Our results suggest that seedling vigor serves as a submergence avoidance mechanism and confers tolerance on rice seedlings to flooding during early crop establishment. A possible relationship is discussed between seedling vigor based on fast shoot elongation and submergence tolerance defined by recovery from submergence stress.  相似文献   

2.
Summary Inheritance of submergence tolerance in rice (Oryza sativa L.) was investigated in an 8×8 diallel cross. Duration to 50% mortality of the diallel populations (F1's + parents) under completely submerged conditions at the seedling stage was used to characterize submergence tolerance instead of the usual submergence survival percentages.A strong prepotency of parents was found in transmitting the character to their offspring. Additive and nonadditive gene effects were highly significant. Parents highly tolerant to submergence also had high gca effects, and F1's between two tolerant parents were found to be the most tolerant of the diallel combinations. A high narrow-sense heritability was also observed.The additive-dominance model was found valid for this diallel cross. Submergence tolerance was partially dominant over susceptibility and recessive alleles were more concentrated in the susceptible parents IR42 and IR11288-B-B-69-1.  相似文献   

3.
Summary The genetic control of tolerance of wheat to high concentrations of soil boron was studied for five genotypes. Each genotype represented one of five categories of response to high levels of boron, ranging from very sensitive to tolerant. Tolerance to boron was expressed as a partially dominant character, although the response of an F1 hybrid, relative to the parents, varied with the level of boron applied. The F1 hybrids responded similarly to the more tolerant parent at low B treatments and intermediate to the parents at higher treatments. Ratios consistent with monogenic segregation were observed for the F2 and F3 generations for the combinations (WI*MMC) × Kenya Farmer, Warigal × (WI*MMC) and Halberd × Warigal. The three genes, Bo1, Bo2 and Bo3, while transgressive segregation between two tolerant genotypes, G61450 and Halberd, suggested a fourth locus controlling tolerance to boron.  相似文献   

4.
Summary The genetics of stem elongation ability in rice was studied in parents, F1, F2 and backcross generations of six crosses. Segregation analysis indicated dominance for stem elongation ability. Estimation of genetic parameters under epistatic model indicated more than one locus control stem elongation ability and both additive and nonadditive gene effects were important. Epistatic effects were predominant over additive and dominance effects with an important role of duplicate type of epistasis. The occurrence of significant additive and additive x additive types of genetic variation and the moderately high broad sense heritability indicated the possibility of selection for an increased manifestation of stem elongation ability.  相似文献   

5.
Summary In a comparison of methods to study inheritance of plant elongation ability, 15-, 20-, 25-, 30-, and 35-day-old F2 populations of a cross between Baisbish (floating variety) and IR42 (nonelongating semidwarf modern variety) of rice, (Oryza sativa L.) were subjected to 65 cm water depth for 7 days. Frequency distribution of plant height before and after submergence was obtained. Bimodal curves in 15-, 20- and 25-day-old populations gave good fits to 9:7 elongating: nonelongating plants, suggesting that elongation was due to two dominant complementary genes. Segregation in the 30-day-old population was not clear-cut. A seedling age of 20 days was subsequently chosen for further studies.Two F2's involving floating rice and a nonelongating semidwarf; four F2's involving floating rice and an elongating semidwarf; and two F2's involving elongating and nonelongating semidwarf parents were studied with 20-day-old seedlings in the same way. Floating rice combinations with nonelongating semidwarf parents as well as with elongating semidwarf parents segregated into 9:7 elongating: nonelongating ratio. It is possible that because elongating and nonelongating dwarf parents did not differ much in elongation ability at seedling age, their combination with floating rice parents provided similar segregation. The F2 distributions for height in elongating and nonelongating dwarf cross combinations were continuous with one peak.Genetic constitution of parents proposed are Sd1 Sd1 El El for floating parents, sd1 sd1 El El for semidwarf elongating, and sd1 sd1 el el for dwarf nonelongating.  相似文献   

6.
Flooding is one of the major hazards of rice production for the rainfed lowland rice ecosystem, and tolerant cultivars are urgently needed to help protect farmers from submergence damage. A quick and efficient strategy was implemented to introgress SUB1, a major QTL for submergence tolerance, into a rainfed lowland mega variety BR11 of Bangladesh by only two backcrosses and one selfing generation. In marker-assisted backcrossing (MABC), one tightly-linked simple sequence repeat (SSR) and two gene-based markers, four flanking SSR and 116 background SSR markers were used for foreground, recombinant and background selection, respectively, in backcrosses between a SUB1 donor IR40931-33-1-3-2 and BR11. BR11-Sub1, identified in a BC2F2 plant, possessed BR11 type SSR alleles on all fragments analyzed except the SUB1 QTL. The introgression size in BR11-Sub1 was 800 Kb indicating approximately 99.8% identity to BR11. BR11-Sub1 along with other introgression lines showed submergence tolerance similar to the tolerant parent. Yield, yield-component parameters and grain physico-chemical properties showed successful recovery of the BR11 traits in BR11-Sub1, with yield potential ranging from 5.2 to 5.6 t/ha, not significantly different from the recurrent parent mega variety BR11. Producing a large number (~1000) of backcross F1 plants was considered essential to achieve recombination on both sides of the gene, limiting linkage drag with only two backcrosses. A large number of background markers ensured proper recovery of the recurrent parent genome in the BC2F2 generation. The study demonstrates a rapid and highly precise strategy to introgress a major QTL by BC2F2 generation into a modern rice variety using an unadapted donor. The variety can replace BR11 on more than 2 million of ha in Bangladesh and provide major increases in rice production.  相似文献   

7.
Inheritance of salt tolerance in rice   总被引:7,自引:0,他引:7  
Summary The genetic behavior of salt tolerance was studied in artificially salinized conditions at the International Rice Research Institute.Divergent selection, carried out at a salinity level where the ECe was 15.2 mmhos/cm at 25 C in F3 lines from two crosses confirmed the effects of salt tolerance on F4 progeny with realized heritability values of 0.39 and 0.62, respectively.In a cross between two tolerant cultivars there was clear over-dominance for tolerance, despite the high environmental fluctuation which resulted in a low genetic response as indicated by a low but significant repeatability of 0.20–0.25, and many progeny lines more tolerant than the parents were recovered. The superior tolerance of these progenies compared to the parents was confirmed subsequently at 3 different salt levels. In the same experiment a cross between tolerant and susceptible cultivars produced some progeny of comparable tolerance with tolerant sources.In a 6×6 diallel cross experiment with two tolerant, moderate, and susceptible varieties each, both general and specific combining ability were significant.The findings indicate the possibility of breeding rices more tolerant than existing tolerant cultivars through cumulative crosses of tolerant cultivars. Further improvement can be attained by crossing highly tolerant lines with donors of good agronomic traits and pest and disease resistance.  相似文献   

8.
Cattle production based on natural pastures is often subject to flooding periods, which affect plant performance and as a result, forage production. Although most forage legumes are not tolerant to flooding, Lotus spp. are outstanding alternatives, since species, such as L. tenuis (Lt) and L. corniculatus (LcT), have high forage quality and are adaptable to different environments. We recently obtained a L. tenuis × L. corniculatus hybrid (LtxLc) with potential new cultivar traits, although its tolerance to flooding stress has not yet been evaluated. In the present study, the performance of LtxLc, its parental diploid accessions, the model legume L. japonicus and tetraploid LcT were evaluated under 55 days of partial submergence stress and a 35‐day recovery period. Physiological, morphological and anatomical traits were analysed, showing that tolerance to partial submergence was positively associated with aerenchyma and adventitious root formation and relative growth rates. Overall, Lt and LtxLc showed the best responses under stress and during the recovery period. Nevertheless, the higher forage value of LtxLc makes it recommendable for use in environments affected by flooding. Our results could be used as breeding criteria for the generation of new cultivars tolerant to partial submergence stress.  相似文献   

9.
Drought is a severe abiotic stress and the major constraint on wheat (Triticum aestivum L.) productivity world wide. Deciphering the mechanisms of drought tolerance is a challenging task because of the complexity of drought responses, environmental factors and their interactions. The objective of this study was to evaluate the ability of the antioxidative defence system in imparting tolerance against drought‐induced oxidative stress and yield loss in two wheat genotypes, when subjected to long‐term field drought. Drought resulted in an increase in H2O2 accumulation and lipid peroxidation and decrease in ascorbate level in roots and leaves at different plant developmental stages. Drought‐tolerant genotype having higher antioxidative enzymes activities, and ascorbate level was superior to that of sensitive genotype in maintaining lower H2O2 content and lipid peroxidation and higher growth, yield and yield components under water deficit. Various antioxidative enzymes showed positive correlation with ascorbate and negative with H2O2 content. In developing grains, antioxidative defence response was nearly similar among both the genotypes under control condition; however, sensitive genotype failed to modulate the activities of antioxidative enzymes according to the ROS rush under field drought. Poor capacity of the antioxidative defence system in vegetative and reproductive tissues of sensitive genotype seems to be responsible, at least partly, for reduced yield potential under water deficit.  相似文献   

10.
Summary The inheritance of tolerance to high concentrations of soil boron in pea (Pisum sativum L.) was studied in five cross combinations and their reciprocals. Segregation patterns for boron response in F2 populations and F3 derived families were established by visual assessment of leaf damage. The segregation ratios were explained in terms of two major gene loci interacting in an additive manner with incomplete dominance at each locus. Evaluation of selected tolerant and susceptible families indicated that tolerant families contained a significantly lower concentration of boron in shoots than susceptible families.  相似文献   

11.
Frost tolerance is a main component of winter-hardiness and improving it would promote faba bean (Vicia faba L.) cropping in cool-temperate regions. In many species, leaf fatty acid composition was found to be related to frost tolerance. The objective of this study was to determine, in a representative sample of genotypes, the effect of hardening on leaf and stem (1) frost tolerance and (2) fatty acid composition, and to seek correlations between them. First leaf, second leaf and stem of 31 faba bean genotypes were analyzed after hardening and without hardening. High frost tolerance of known winter genotypes and several experimental lines was shown. Hardening had a significant, positive effect on frost tolerance of all three organs. Stems were on average more frost tolerant than leaves. Hardening induced significant changes in the fatty acid composition: oleic acid decreased significantly in leaves by 3.24% and in stems by 1.77%, whereas linolenic acid increased in leaves by 6.28% and in stems by 9.06%. In stems, correlations between frost tolerance and fatty acid composition were not significant. Correlation coefficients strongly indicated that non-hardened oleic acid content, changes in oleic acid and in linoleic plus linolenic acid content in leaves partly explained their frost tolerance; 0.347 (P < 0.1) < |r| < 0.543 (P < 0.01). The results corroborate the importance of using genetic differences in the fatty acid metabolism in breeding grain legumes for frost tolerance.  相似文献   

12.
Summary Quantitative trait loci (QTL) analysis for Al tolerance was performed in rice using a mapping population of 98 BC1F10 lines (backcross inbred lines: BILs), derived from a cross of Al-tolerant cultivar of rice (Oryza sativa L. cv. Nipponbare) and Al-sensitive cultivar (cv. Kasalath). Three characters related to Al tolerance, including root elongation under non-stress conditions (CRE), root elongation under Al stress (SRE) and the relative root elongation (RRE) under Al stress versus non-stress conditions, were evaluated for the BILs and the parents at seedling stage. A total of seven QTLs for the three traits were identified. Among them, three putative QTLs for CRE (qCRE-6, qCRE-8 and qCRE-9) were mapped on chromosomes 6, 8 and 9, respectively. One QTL for SRE (qSRE-4) was identified on chromosome 4. Three QTLs (qRRE-5, qRRE-9 and qRRE-10) for RRE were detected on chromosomes 5, 9, 10 and accounted for 9.7–11.8% of total phenotypic variation. Interestingly, the QTL qRRE-5 appears to be syntenic with the genomic region carrying a major Al tolerance gene on chromosome 6 of maize. Another QTL, qRRE-9, appears to be similar among different rice populations, while qRRE-10 is unique in the BIL population. The common QTLs for CRE and RRE indicate that candidate genes conferring Al tolerance in the rice chromosome 9 may be associated with root growth rates. The existence of QTLs for Al tolerance was confirmed in substitution lines for corresponding chromosomal segments. These results also provide the possibilities of enhancing Al tolerance in rice through using marker-assisted selection (MAS) and pyramiding QTLs.  相似文献   

13.
An experiment was conducted on the three indica rice ( Oryza sativa L.) cultivars IR 42, CR 383-10 and FR 13A, which are susceptible to submergence, submergence-avoiding and tolerant to submergence, respectively. A deleterious effect of submergence was noted as both above-ground dry matter accumulation and chlorophyll content decreased during submergence and subsequent re-aeration. However, the rate of reduction was lower in the tolerant cultivar. The tolerant cultivar FR 13A maintained higher dry weight during submergence and subsequent re-aeration and accumulated lower proline and malondialdehyde contents than the other cultivars. The activities of the enzymes catalase, peroxidase and superoxide dismutase, expressed on a per g fresh weight of leaves basis, were higher in FR 13A than in the other cultivars, both under water and 24 h after the initiation of re-aeration. However, ascorbic acid oxidase activity was lower in FR 13A. The cultivar CR 383-10, which has the capacity to accumulate more above-ground dry matter under normal conditions, showed a greater elongation ability under submergence and was similar to the susceptible cultivar IR 42 in terms of enzyme activities and the other parameters investigated during submergence and subsequent re-aeration.  相似文献   

14.
Summary A haploid breeding program was initiated to develop doubled haploid salt tolerant rice breeding line via anther culture. Two sensitive breeding lines BR4608-R1-R2 and BR4909-R1-R2 were crossed with a salt tolerant line IR13146-13-3-3 to transfer its salt tolerant character to the doubled haploids.Anther from confirmed F1s of the two crosses were cultured in defined medium for callus induction and eventual plant regeneration. Fifteen doubled haploid (DH) lines were obtained from two crosses. Test for salt tolerance were done in vitro. Five out of 15 lines were found tolerant at the level of 8–10 decisiemens/m (ds/m) while the rests were sensitive to that level of salinity.Field experiment was conducted to evaluate the doubled haploids under saline and non saline soil. Five salt tolerant lines produced comparable yield with the resistant control (BR 23) under saline condition, whereas these lines yielded even higher in non saline soil under irrigated condition when evaluated with other 10 sensitive DH linesAbbreviations LSD Least Significant Difference - NAA Napthalene Acetic Acid  相似文献   

15.
Stagnant flooding (SF) during vegetative growth triggers stem elongation usually at the cost of tiller production in rice, reducing grain yield. To explore physiological mechanisms associated with tillering suppression under SF, three contrasting genotypes (Swarna and Swarna‐Sub1, both sensitive and IRRI154, tolerant) were evaluated under standing water depths of 0, 5, 30 and 50 cm. SF significantly suppressed tiller formation but increased plant height, root biomass, shoot elongation (ratio of plant height before and after flooding), leaf emergency and non‐structural carbohydrate (NSC) concentration (in root–shoot junction) in all genotypes at the early stage of development. Chlorophyll concentration in the upper leaves (upper most fully expanded leaf at top) was higher than in lower leaves (lowest green leaf at base), but decreased under SF in both. SF increased hydrogen peroxide (H2O2) at the early stage of treatment, with concomitant increase in malondialdehyde (MDA) production by stems and leaves. MDA concentration in root–shoot junction increased but delayed. Tiller number correlated negatively with plant height, shoot elongation, leaf emergency, MDA concentration in leaves and root–shoot junction, root biomass, and NSC concentration in the root–shoot junction. The results suggested existence of compensatory mechanisms between tiller growth and shoot elongation in rice for resilience under SF, where energy is mainly diverted for shoot elongation to escape flooding. The SF‐tolerant genotype produced less H2O2 and maintained energy balance for higher survival and better growth under stagnant flooding.  相似文献   

16.
17.
Summary Variations with regard to heat tolerance, in terms of heading ability, and water consumption under high temperatures were studied in various Chinese cabbage (Brassica campestris spp. pekinensis Rupr.) varieties. Total water consumption did not differ among entries; however, heat tolerant varieties had greater water uptake than heat sensitive ones at the onset of head formation. Heat tolerant varieties also possessed thicker leaves, higher leaf sap electrical conductivity and chlorophyll content, and lower stomatal number. These characteristics appeared to facilitate water transport to the leaves and reduce transpiration, thus enabling the heat tolerant plants to maintain leaf turgidity during the heading stage at high temperature. Vigorous root growth also seems essential to supply adequate water to the leaves so that they can maintain good turgor at high temperature. Breeding for heat tolerance in Chinese cabbage may be accomplished indirectly by selecting for plants which possess relative thick leaves, high levels of electrolytes, high chlorophyll content, few stomata, and vigorous root growth.Journal paper no. 95 of the Asian Vegetable Research and Development Center(AVRDC).  相似文献   

18.
To identify scorable marker traits that can be used in cereal breeding programs for selecting drought tolerant individuals, we investigated the correlation among the drought-associated traits in two F2 populations derived from the crosses made between drought tolerant and sensitive barley and wheat parental genotypes. The parental genotypes of these crosses also differed by at least three other traits – paraquat tolerance, leaf size, and the relative water content. These three traits were scored in two F2populations of 80 individuals for each barley and wheat cross. Analysis of results indicated that the enhanced tolerance to paraquat was correlated with reduced leaf size and increased relative water content, two traits associated with water stress phenotypes of the drought tolerant barley and wheat parents. Our results suggested that the selection based on paraquat tolerance istechnically less demanding and thus useful for rapid screening of individuals for enhanced drought tolerance in segregating populations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Cold tolerance at the early growth stage in wild and cultivated rice   总被引:1,自引:0,他引:1  
The present study was conducted to understand the pattern of variation and the genetic bases for cold tolerance at the early growth stage in Asian rice. The genetic variation was investigated at the germination, plumule and seedling stages among 57 strains including cultivated rice (Oryza sativa ssp. indica and ssp. japonica) and its wild progenitor (Oryza rufipogon). The significant differentiation of cold tolerance was observed among the taxonomically divided groups. At the germination stage, both indica and japonica subspecies tended to be more tolerant than O. rufipogon, whereas at the plumule and seedling stages, ssp. japonica tended to be more tolerant than ssp. indica and O. rufipogon. Furthermore, in cold tolerance at the plumule stage, the clinal variation across the latitude of origins was observed within O. rufipogon and ssp. japonica, suggesting that the current pattern of variation seems to have been shaped by both their phylogenetic histories and on-going adaptation to the local environments. QTL analysis between O. sativa ssp. japonica (tolerant) and O. rufipogon (susceptible) revealed five putative QTLs for cold tolerance at the plumule and seedling stages but not at the germination stage. Substitution mapping was also carried out to precisely locate the two major QTLs for cold tolerance at the plumule stage, which could be used for improvement of tolerance to cold stress in ssp. indica.  相似文献   

20.
Sixty Nicotiana species were examined for tolerance against various osmotica for seed germination and seedling growth in vitro. The species showed a wide variety of tolerance, and based on the results of the in vitro tests, 31 species were selected and further evaluated for salt and drought tolerance in a glasshouse. The degrees of tolerance of germination among the 57 species toward NaCl were approximately related to those toward mannitol, indicating that the osmolarity plays a majorrole in seed germination. However, the responses during the seedling growth differed in NaCl and mannitol or drought, and there was no correlation between salt and drought tolerance. Based on the responses in vitro and in the glasshouse, N. paniculata and N. excelsior were selected as the salt tolerant species, and N. arentsii as the salt sensitive species. The degrees of accumulation of dry matter and of Na+ in the leaves were different in the two tolerant species; during NaCl treatment, N. paniculata and N. arentsii accumulated less dry matter relative to the control plants than N. excelsior, and N. paniculata accumulated more Na+ in its leaves than N. excelsior and N. arentsii. It is assumed that the two salt tolerant species have different mechanisms for tolerance to the salt. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号