首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
细菌耐药性的产生机理及控制对策   总被引:1,自引:0,他引:1  
随着抗生素的广泛应用,细菌的耐药性越来越高,给临床治疗带来诸多困难,因此了解细菌耐药的产生机理具有重要意义。本文主要对抗生素的作用机理,细菌耐药性产生的生化机理和基因机理,耐药性的控制对策进行了阐述,希望能为临床上的合理用药提供科学的依据。  相似文献   

2.
抗菌药物的广泛使用,导致细菌耐药性日益严重,耐药菌所致的感染给人类健康及畜禽生产带来巨大威胁。细菌耐药可由多种机制所介导,研究细菌的耐药机制对防止或延缓耐药性的产生具有重要意义。近年来,影响药物与作用靶位结合及作用靶位结构变化等机制介导的耐药受到人们的关注。论文将对作用靶位变化导致细菌耐药问题的最新研究进展进行综述,以期为防止和延缓细菌耐药性的产生提供理论依据。  相似文献   

3.
抗生素耐药性耐药机制的探讨   总被引:3,自引:0,他引:3  
抗生素耐药性日益受到人们的重视。抗生素耐药机理包括酶对抗生素的修饰和破坏、减少抗生素向细菌内的摄入、增加抗生素的主动排出作用、新靶位的产生及药物作用靶位的过度表达。本文指出了目前临床存在耐药性机制以及获得耐药性的途径,以利于促进抗生素的研究。  相似文献   

4.
细菌的耐药性,尤其是多重耐药性给临床治疗带来了巨大的难题。细菌耐药性可以分为天然耐药性和获得耐药性,各种细菌的耐药机制各有不同,但主要有产生灭活酶或钝化酶,药物作用靶位的变化,细胞壁通透性改变,主动外排机制等。只有了解这些机理才能更好地防止细菌产生耐药性。  相似文献   

5.
该文主要对细菌耐药性产生的分子生物学机理及耐药性的控制措施进行了阐述,旨在为临床上合理使用抗菌药物、开发新的抗菌药或防止细菌产生耐药机制提供科学依据。  相似文献   

6.
细菌抗生素类药物耐药性的产生是临床治疗感染性疾病的一大难题,已受到人们的广泛关注。细菌主要通过产生灭活酶或钝化酶获得耐药性,除此之外还有细胞壁的渗透障碍、外排泵的泵出作用、靶位改变等多种机制,这些机制相互作用共同决定细菌的耐药水平。随着新型抗生素的临床应用,新的耐药机制随之出现,耐药菌也越来越广泛。细菌耐药机制的研究对耐药菌的控制和新药开发具有指导性意义。文章从耐药性的起源、产生机理、耐药特性及耐药性的检测方法4个方面进行了阐述。  相似文献   

7.
细菌耐药性在环境中的传递及其应对措施   总被引:1,自引:0,他引:1  
目前,抗菌药的滥用情况不容乐观,因而细菌对抗菌药的耐药性越来越普遍,超级细菌的报道也屡见不鲜。细菌耐药性的产生速度已经超过了新型抗菌药研发并投入临床使用的速度。细菌耐药性在环境中的传递是细菌耐药性广泛存在的一个重要原因。论文以细菌耐药性的传递为讨论对象,从细菌耐药性在环境中的传递方式和畜牧行业对细菌耐药性在环境中传递的影响两个方面,分析了细菌耐药性的传递特性及其对人类和动物健康的威胁,并对目前应对细菌耐药性的一些方法进行了阐述,同时对未来抗菌药耐药基因去除的研究方向进行了展望,以期能对细菌耐药性的控制提供一定的参考。  相似文献   

8.
一、细菌的耐药机理抗生素广泛用于临床后,细菌可在数月或数年间对其产生耐药性。细菌基因的突变是导致细菌产生耐药的根本原因,在一个感染周期中,处于对数生长期的细菌突变率约为1/107,如该突变可对抗生素耐药,将使细菌在敏感菌被杀灭后迅速繁殖成为优势菌。在抗生素的选择性压力下,突变率可成百倍增加,并极易发展为多重耐药。耐药性的迅速扩散通常由携带抗生素耐药性的质粒在不同种属的细菌间穿梭和复制所导致,高度耐药的细菌常同时涉及以下几种耐药机理。1.主动泵出机理药物在达到靶位发挥作用之前,必须通过G-菌的外膜和内膜、G 菌胞壁…  相似文献   

9.
正在畜牧养殖的过程中,因为抗菌药物的使用越来越广泛,所以很多细菌逐渐产生了耐药性。这对我们国家的食品健康安全来说是非常大的危害。1细菌耐药性产生的原因在畜牧业发展的过程中,抗菌药使用的次数非常多。抗菌药主要是用来治疗畜禽的疫病。抗菌药能在短时间内取得显著的效果,对疫病的防治有非常重大的意义。但是,长期大量的使用已使很多细菌产生了耐药性,并已危及到了我们国家的食品安全。因为长期使用相同抗菌药,很多细菌内部的敏感菌株被  相似文献   

10.
志贺菌是引起腹泻感染的主要病原体,近年来β-内酰胺类抗生素的滥用,导致志贺菌对β-内酰胺类抗生素的耐药性呈逐年递增的趋势,且出现多耐药性和交叉耐药性。耐药机制复杂,通常包括产生灭活酶、作用靶位和膜通透性改变等。耐药基因多位于质粒、染色体或转座子上,易于传播,对志贺菌耐药机制的研究对菌痢的控制和新药开发具有指导性意义。  相似文献   

11.
阐述了细菌耐药性现状、国内医学及动物医学领域中药消除细菌耐药性的研究及其机制方面的研究进展,探讨了中药对动物源细菌耐药性的消除作用及中药消除细菌耐药性存在的问题,指出在动物生产中开发中药饲料添加剂代替化学抗菌药物添加剂是解决细菌耐药性、动物源食品中抗菌药物残留问题的重要途径,对绿色动物产品的生产具有重要意义。  相似文献   

12.
喹诺酮类属于合成的广谱抗菌药,用于治疗与肠杆菌科相关的各种感染性疾病.近几十年来,喹诺酮类药物的广泛使用和过度使用导致了喹诺酮耐药菌株的出现.喹诺酮类药物耐药的产生是一个复杂的多因素过程,主要的耐药机制包括染色体介导的一个或多个靶点基因突变改变靶点酶的药物结合力;Ac-rAB-tolC多耐药外排泵的过表达和孔蛋白的改变...  相似文献   

13.
喹诺酮类药物(quinolones,QLs)是一类化学合成的抗菌药物,曾在世界范围内广泛应用于临床细菌病的治疗。其作用靶点为细菌DNA螺旋酶和拓扑异构酶,形成药-酶-DNA三元复合体,阻止蛋白质合成,从而达到抑菌效果。目前,通过对许多三元复合体的晶体结构解析,以及非催化镁离子模型的建立,进一步合理地解释了喹诺酮类药物活性受到影响的现象。临床常见致病菌对喹诺酮类药物产生耐药现象的机理研究较多,主要是基因突变、膜对药物的通透性改变及质粒介导的喹诺酮耐药性(PMQR)3个方面。文章主要对喹诺酮类药物的作用机制和细菌耐药机理进行综述,以期为后期喹诺酮类药物结构优化提供更多的信息支持。  相似文献   

14.
Quinolones (QLs) are synthetic antimicrobials and widely used to treat clinical bacterial disease in the world. Quinolones trap DNA gyrase or topoisomerase Ⅳ to form reversible drug-enzyme-DNA complexes and prevent protein synthesis,resulting in bacteriostasis. Recently, the analysis of crystal structures of cleaved complexes and building of the model of noncatalytic magnesium ion present a reasonable explanation for the phenomenon of the effect of quinolones antibacterial activity. There are many researches for the mechanisms of resistance of quinolones, gene mutation, altered drug permeation and plasmid-mediated quinolone resistance are three main aspects. Here, the molecular basis for the antibacterial action and mechanisms of resistance of quinolones were fully discussed and updated, so as to provide a large number of information for optimization of quinolone antimicrobials based on structural transformation.  相似文献   

15.
大肠埃希菌生物被膜研究进展   总被引:1,自引:0,他引:1  
细菌生物被膜指多个细菌黏附于机体或物体表面,分泌胞外多聚物将其自身包裹其中而形成的结构。研究表明人类许多细菌感染与生物被膜有关,生物被膜具有极高的抗药性和免疫逃逸能力,这也是许多细菌感染难以根除的重要原因之一,近年来已成为医学界关注的热点。大肠埃希菌是最重要的条件致病菌之一,论文从大肠埃希菌生物被膜的形态结构、检测方法、耐药机制、应对策略4个方面综述了大肠埃希菌生物被膜研究的进展。  相似文献   

16.
随着抗菌药物在临床预防与治疗中的广泛应用,细菌耐药性问题日趋严重,泛耐药菌株及多重耐药菌株显著增多。中草药因其特殊的抗菌机制而不易产生耐药性,使得抗耐药菌中草药的研发及其抗菌机制的研究越来越受到人们的关注。天然存在的黄酮类化合物具有一定的抗菌活性,其中大部分种类对金黄色葡萄球菌、链球菌和枯草杆菌等革兰氏阳性菌的抑制作用较明显,不良反应相对较轻,且不易出现耐药性。文章就黄酮类化合物的抗菌作用及机制作一综述。  相似文献   

17.
菌群耐药已成为临床上亟待解决的关键问题,特别是革兰阴性菌引起的耐药现象尤为突出,给临床治疗带来了巨大的挑战,尽快阐明重要细菌复杂耐药表型的调控机制就显得尤为重要。双组分调控系统(two-component regulatory systems,TCS)存在于多种革兰阴性菌中,在细菌诸多生命活动中发挥关键作用,是细菌感知环境变化并产生相应调控的主要机制之一。TCS通常由两种蛋白组成,包括感受器蛋白(通常是组氨酸激酶)和反应调节蛋白(通常是转录因子),二者可通过磷酸化介导的协同作用,整合细菌周围的环境信号、调节细菌相关的基因表达及改变细菌的某些生理行为。近年来,探索细菌TCS介导的耐药性应答机制已成为一个新的研究热点。基于此,本文从TCS介导临床重要革兰阴性菌耐药的结构基础和作用机理等方面进行综述,以期增进对细菌TCS的全面认识,为今后临床上药物的科学研发提供新的思路和对策。  相似文献   

18.
The arthropathogenic effects of quinolones have been described in juvenile animals of multiple species such as dogs, rats, non-human primates, rabbits and guinea pigs. Several studies have been performed to clarify the exact mechanism leading to cartilage damage. In these studies, the investigators focused on the inhibitory effects of quinolones on DNA, collagen and proteoglycan synthesis and on the formation of oxygen-derived reactive molecules. Recently, it was suggested that quinolone-induced arthropathy is possibly associated with the magnesium-chelating properties of quinolones. However, the exact mechanism of quinolone-induced arthropathy is still unkown. This article reviews and summarizes several possible mechanisms for quinolone-induced arthropathy.  相似文献   

19.
Quinolone resistance in Escherichia coli.   总被引:3,自引:0,他引:3  
Escherichia coli is an important pathogen of animals and humans that causes great financial cost in food production by causing disease in food animals. The quinolones are a class of synthetic antimicrobial agents with excellent activity against Escherichia coli and other Gram-negative bacteria used in human and veterinary medicine. Different quinolones are used to treat various conditions in animals in different parts of the world. All members of this class of drug have the same mode of action: inhibition of topoisomerase enzymes, DNA Gyrase and Topoisomerase IV. Escherichia coli can become resistant to quinolones by altering the target enzymes, reducing permeability of the cell to inhibit their entry, or by actively pumping the drug out of the cell. All these resistance mechanisms can play a role in high-level fluoroquinolone resistance, however target site mutations appear to be most important. As all quinolones act in the same way resistance to one member of the class will also confer decreased susceptibility to all members of the family. Quinolone resistant Escherichia coli in animals have increased in numbers after quinolone introduction in a number of different case studies. The resistance mechanisms in these isolates are the same as those in resistant strains found in humans. Care needs to be taken to ensure that quinolones are used sparingly and appropriately as highly resistant strains of Escherichia coli can be selected and may pass into the food chain. As these drugs are of major therapeutic importance in human medicine, this is a public health concern. More information as to the numbers of quinolone resistant Escherichia coli and the relationship between resistance and quinolone use is needed to allow us to make better informed decisions about when and when not to use quinolones in the treatment of animals.  相似文献   

20.
抗菌药仍是治疗病原菌引起的奶牛疾病的常用方法。抗菌药的不合理使用使得细菌产生耐药性已成为全球性的问题,应引起人们的足够重视。奶牛的主要病原菌金黄色葡萄球菌、链球菌、大肠杆菌等也显现出多重耐药的趋势,给奶牛疾病的临床治疗带来困难,同时也威胁人类健康。细菌产生耐药性的速度远超过人们研发抗菌药的速度,因此,保持现有抗菌药的疗效很有必要。一方面应该掌握细菌的耐药机制,如细菌分子耐药机制、抗菌药物外排机制或降低摄入机制、生物膜等,以便找到合适的治疗方法;另一方面采用不同措施减少耐药细菌的出现,如质粒消除、抗菌药替代品、开发高效安全的抗菌药物、临床合理用药(联合治疗)等。作者对奶牛主要病原菌的耐药情况、耐药机制、耐药控制技术进行综述,以期为减少耐药性、规范抗菌药的使用和提高治疗效果提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号