首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Room-temperature quantum Hall effect in graphene   总被引:1,自引:0,他引:1  
The quantum Hall effect (QHE), one example of a quantum phenomenon that occurs on a truly macroscopic scale, has attracted intense interest since its discovery in 1980 and has helped elucidate many important aspects of quantum physics. It has also led to the establishment of a new metrological standard, the resistance quantum. Disappointingly, however, the QHE has been observed only at liquid-helium temperatures. We show that in graphene, in a single atomic layer of carbon, the QHE can be measured reliably even at room temperature, which makes possible QHE resistance standards becoming available to a broader community, outside a few national institutions.  相似文献   

2.
Ma DD  Lee CS  Au FC  Tong SY  Lee ST 《Science (New York, N.Y.)》2003,299(5614):1874-1877
Small-diameter (1 to 7 nanometers) silicon nanowires (SiNWs) were prepared, and their surfaces were removed of oxide and terminated with hydrogen by a hydrofluoric acid dip. Scanning tunneling microscopy (STM) of these SiNWs, performed both in air and in ultrahigh vacuum, revealed atomically resolved images that can be interpreted as hydrogen-terminated Si (111)-(1 x 1) and Si (001)-(1 x 1) surfaces corresponding to SiH3 on Si (111) and SiH2 on Si (001), respectively. These hydrogen-terminated SiNW surfaces seem to be more oxidation-resistant than regular silicon wafer surfaces, because atomically resolved STM images of SiNWs were obtained in air after several days' exposure to the ambient environment. Scanning tunneling spectroscopy measurements were performed on the oxide-removed SiNWs and were used to evaluate the electronic energy gaps. The energy gaps were found to increase with decreasing SiNW diameter from 1.1 electron volts for 7 nanometers to 3.5 electron volts for 1.3 nanometers, in agreement with previous theoretical predictions.  相似文献   

3.
Stable quantum bits, capable both of storing quantum information for macroscopic time scales and of integration inside small portable devices, are an essential building block for an array of potential applications. We demonstrate high-fidelity control of a solid-state qubit, which preserves its polarization for several minutes and features coherence lifetimes exceeding 1 second at room temperature. The qubit consists of a single (13)C nuclear spin in the vicinity of a nitrogen-vacancy color center within an isotopically purified diamond crystal. The long qubit memory time was achieved via a technique involving dissipative decoupling of the single nuclear spin from its local environment. The versatility, robustness, and potential scalability of this system may allow for new applications in quantum information science.  相似文献   

4.
Dilute magnetic semiconductors and wide gap oxide semiconductors are appealing materials for magnetooptical devices. From a combinatorial screening approach looking at the solid solubility of transition metals in titanium dioxides and of their magnetic properties, we report on the observation of transparent ferromagnetism in cobalt-doped anatase thin films with theconcentration of cobalt between 0 and 8%. Magnetic microscopy images reveal a magnetic domain structure in the films, indicating the existence of ferromagnetic long-range ordering. The materials remain ferromagnetic above room temperature with a magnetic moment of 0.32 Bohr magnetons per cobalt atom. The film is conductive and exhibits a positive magnetoresistance of 60% at 2 kelvin.  相似文献   

5.
We describe a general method for producing ultrahigh-density arrays of aligned metal and semiconductor nanowires and nanowire circuits. The technique is based on translating thin film growth thickness control into planar wire arrays. Nanowires were fabricated with diameters and pitches (center-to-center distances) as small as 8 nanometers and 16 nanometers, respectively. The nanowires have high aspect ratios (up to 10(6)), and the process can be carried out multiple times to produce simple circuits of crossed nanowires with a nanowire junction density in excess of 10(11) per square centimeter. The nanowires can also be used in nanomechanical devices; a high-frequency nanomechanical resonator is demonstrated.  相似文献   

6.
Hierarchical nanostructures of lead sulfide nanowires resembling pine trees were synthesized by chemical vapor deposition. Structural characterization revealed a screwlike dislocation in the nanowire trunks with helically rotating epitaxial branch nanowires. It is suggested that the screw component of an axial dislocation provides the self-perpetuating steps to enable one-dimensional crystal growth, in contrast to mechanisms that require metal catalysts. The rotating trunks and branches are the consequence of the Eshelby twist of screw dislocations with a dislocation Burgers vector along the 110 directions having an estimated magnitude of 6 +/- 2 angstroms for the screw component. The results confirm the Eshelby theory of dislocations, and the proposed nanowire growth mechanism could be general to many materials.  相似文献   

7.
Current-controlled magnetic domain-wall nanowire shift register   总被引:1,自引:0,他引:1  
The controlled motion of a series of domain walls along magnetic nanowires using spin-polarized current pulses is the essential ingredient of the proposed magnetic racetrack memory, a new class of potential non-volatile storage-class memories. Using permalloy nanowires, we achieved the successive creation, motion, and detection of domain walls by using sequences of properly timed, nanosecond-long, spin-polarized current pulses. The cycle time for the writing and shifting of the domain walls was a few tens of nanoseconds. Our results illustrate the basic concept of a magnetic shift register that relies on the phenomenon of spin-momentum transfer to move series of closely spaced domain walls.  相似文献   

8.
合成了4种相对分子质量和官能度各不相同的聚酯多元醇,并与MDI反应合成了端羟基及端异氰酸基预聚体,通过红外光谱对其结构进行了表征.研究了不同端羟基化合物与端异氰酸基化合物所构体系的粘接性能、热老化性能及热失重情况,结果表明该体系室温剪切强度为35~40 MPa,80℃,100℃和200℃剪切强度可达12~16 MPa,6~8 MPa和3~5 MPa,90°剥离强度为5~7 kN/m,T5最高为286℃,加入石棉后体系的高温剪切强度及耐热老化性能都得到提高.  相似文献   

9.
Nanowires are conventionally assumed to grow via the vapor-liquid-solid process, in which material from the vapor is incorporated into the growing nanowire via a liquid catalyst, commonly a low-melting point eutectic alloy. However, nanowires have been observed to grow below the eutectic temperature, and the state of the catalyst remains controversial. Using in situ microscopy, we showed that, for the classic Ge/Au system, nanowire growth can occur below the eutectic temperature with either liquid or solid catalysts at the same temperature. We found, unexpectedly, that the catalyst state depends on the growth pressure and thermal history. We suggest that these phenomena may be due to kinetic enrichment of the eutectic alloy composition and expect these results to be relevant for other nanowire systems.  相似文献   

10.
A demultiplexer is an electronic circuit designed to separate two or more combined signals. We report on a demultiplexer architecture for bridging from the submicrometer dimensions of lithographic patterning to the nanometer-scale dimensions that can be achieved through nanofabrication methods for the selective addressing of ultrahigh-density nanowire circuits. Order log2(N) large wires are required to address N nanowires, and the demultiplexer architecture is tolerant of low-precision manufacturing. This concept is experimentally demonstrated on submicrometer wires and on an array of 150 silicon nanowires patterned at nanowire widths of 13 nanometers and a pitch of 34 nanometers.  相似文献   

11.
12.
So far, single-molecule imaging has predominantly relied on fluorescence detection. We imaged single nonfluorescent azo dye molecules in room-temperature glycerol by the refractive effect of the heat that they release in their environment upon intense illumination. This photothermal technique provides contrast for the absorbing objects only, irrespective of scattering by defects or roughness, with a signal-to-noise ratio of ~10 for a single molecule in an integration time of 300 milliseconds. In the absence of oxygen, virtually no bleaching event was observed, even after more than 10 minutes of illumination. In a solution saturated with oxygen, the average bleaching time was of the order of 1 minute. No blinking was observed in the absorption signal. On the basis of bleaching steps, we obtained an average absorption cross section of 4 angstroms(2) for a single chromophore.  相似文献   

13.
Piezoelectric nanogenerators based on zinc oxide nanowire arrays   总被引:2,自引:0,他引:2  
Wang ZL  Song J 《Science (New York, N.Y.)》2006,312(5771):242-246
We have converted nanoscale mechanical energy into electrical energy by means of piezoelectric zinc oxide nanowire (NW) arrays. The aligned NWs are deflected with a conductive atomic force microscope tip in contact mode. The coupling of piezoelectric and semiconducting properties in zinc oxide creates a strain field and charge separation across the NW as a result of its bending. The rectifying characteristic of the Schottky barrier formed between the metal tip and the NW leads to electrical current generation. The efficiency of the NW-based piezoelectric power generator is estimated to be 17 to 30%. This approach has the potential of converting mechanical, vibrational, and/or hydraulic energy into electricity for powering nanodevices.  相似文献   

14.
We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 x 10(11) wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.  相似文献   

15.
Majorana fermions are particles identical to their own antiparticles. They have been theoretically predicted to exist in topological superconductors. Here, we report electrical measurements on indium antimonide nanowires contacted with one normal (gold) and one superconducting (niobium titanium nitride) electrode. Gate voltages vary electron density and define a tunnel barrier between normal and superconducting contacts. In the presence of magnetic fields on the order of 100 millitesla, we observe bound, midgap states at zero bias voltage. These bound states remain fixed to zero bias, even when magnetic fields and gate voltages are changed over considerable ranges. Our observations support the hypothesis of Majorana fermions in nanowires coupled to superconductors.  相似文献   

16.
17.
18.
Because semiconductor nanowires can transport electrons and holes, they could function as building blocks for nanoscale electronics assembled without the need for complex and costly fabrication facilities. Boron- and phosphorous-doped silicon nanowires were used as building blocks to assemble three types of semiconductor nanodevices. Passive diode structures consisting of crossed p- and n-type nanowires exhibit rectifying transport similar to planar p-n junctions. Active bipolar transistors, consisting of heavily and lightly n-doped nanowires crossing a common p-type wire base, exhibit common base and emitter current gains as large as 0.94 and 16, respectively. In addition, p- and n-type nanowires have been used to assemble complementary inverter-like structures. The facile assembly of key electronic device elements from well-defined nanoscale building blocks may represent a step toward a "bottom-up" paradigm for electronics manufacturing.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号