首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compared radiation-use efficiency of growth (epsilon;), defined as rate of biomass accumulation per unit of absorbed photosynthetically active radiation, of forest plots exposed to ambient (approximately 360 micro l l-1) or elevated (approximately 560 micro l l-1) atmospheric CO2 concentration ([CO2]). Large plots (30-m diameter) in a loblolly pine (Pinus taeda L.) plantation, which contained several hardwood species in the understory, were fumigated with a free-air CO2 enrichment system. Biomass accumulation of the dominant loblolly pines was calculated from monthly measurements of tree growth and site-specific allometric equations. Depending on the species, leaf area index (L*) was estimated by three methods: optical, allometric and litterfall. Based on the relationship between tree height and diameter during the first 3 years of exposure, we conclude that elevated [CO2] did not alter the pattern of aboveground biomass allocation in loblolly pine. There was considerable variation in L* estimates by the different methods; total L* was 18-42% lower when estimated by the optical method compared with estimates from allometric calculations, and this discrepancy was reduced when optical measurements were corrected for the non-random distribution of loblolly pine foliage. The allometric + litterfall approach revealed a seasonal maximum total L* of 6.2-7.1 with about 1/3 of the total from hardwood foliage. Elevated [CO2] had only a slight effect on L* in the first 3 years of this study. Mean epsilon; (+/- SD), calculated for loblolly pine only, was 0.49 +/- 0.05 and 0.62 +/- 0.04 g MJ-1 for trees in the ambient and elevated [CO2] plots, respectively. The 27% increase in epsilon; in response to CO2 enrichment was caused primarily by the stimulation of biomass increment, as there was only a small effect of elevated [CO2] on L* during the initial years of fumigation. Long-term increases in atmospheric [CO2] can increase epsilon; in closed-canopy forests but the absolute magnitude and duration of this increase remain uncertain.  相似文献   

2.
We studied the effects of elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) on growth, biomass allocation and leaf area of field-grown O3-tolerant (Clone 4) and O3-sensitive clones (Clone 80) of European silver birch (Betula pendula Roth) trees during 1999-2001. Seven-year-old trees of Clones 4 and 80 growing outside in open-top chambers were exposed for 3 years to the following treatments: outside control (OC); chamber control (CC); 2 x ambient [CO2] (EC); 2 x ambient [O3] (EO); and 2 x ambient [CO2] + 2 x ambient [O3] (EC+EO). When the results for the two clones were analyzed together, elevated [CO2] increased tree growth and biomass, but had no effect on biomass allocation. Total leaf area increased and leaf abscission was delayed in response to elevated [CO2]. Elevated [O3] decreased dry mass of roots and branches and mean leaf size and induced earlier leaf abscission in the autumn; otherwise, the effects of elevated [O3] were small across the clones. However, there were significant interactions between elevated [CO2] and elevated [O3]. When results for the clones were analyzed separately, stem diameter, volume growth and total biomass of Clone 80 were increased by elevated [CO2] and the stimulatory effects of elevated [CO2] on stem volume growth and total leaf area increased during the 3-year study. Clone 80 was unaffected by elevated [O3]. In Clone 4, elevated [O3] decreased root and branch biomass by 38 and 29%, respectively, whereas this clone showed few responses to elevated [CO2]. Elevated [CO2] significantly increased total leaf area in Clone 80 only, which may partly explain the smaller growth responses to elevated [CO2] of Clone 4 compared with Clone 80. Although we observed responses to elevated [O3], the responses to the EC+EO and EC treatments were similar, indicating that the trees only responded to elevated [O3] under ambient [CO2] conditions, perhaps reflecting a greater quantity of carbohydrates available for detoxification and repair in elevated [CO2].  相似文献   

3.
Total Soil Respiration (TSR) was measured in pure and mixed stands of oak and beech and was partitioned into two contributions using the forest floor removal technique: Mineral Soil Respiration (MSR) and Forest Floor Respiration (FFR). In addition, laboratory incubations of the forest floor and the Ah horizon were performed to evaluate the heterotrophic respiration and the DOC production of these horizons. The relationships between soil temperature and the various soil respiration contributions in the three stands were compared using Q 10 functions. In situ, significant differences (α = 0,05) between stands were observed for the R 10 parameter (respiration rate at 10 °C) of the TSR, MSR and FFR contributions, while only the temperature sensitivity (Q 10) of TSR was significantly affected by stand composition. The effect of soil water content was only significant on MSR and followed different patterns according to stand composition. Under controlled conditions, the R 10 of the forest floor and of the Ah horizon varied with stand composition and the Q 10 of the forest floor decreased in the order: oak (2.27) > mixture (2.01) > beech (1.71).  相似文献   

4.
Acclimation of photosynthesis to increasing atmospheric carbon dioxide concentration ([CO2]; 350 to 2,000 micromol mol-1) was followed in silver birch (Betula pendula Roth.) and Scots pine (Pinus sylvestris L.) seedlings for two years. Chlorophyll fluorescence and concentrations of Rubisco, chlorophyll, total soluble protein and nitrogen were monitored together with steady-state gas exchange at three CO2 concentrations (ambient [CO2] (345 +/- 20 micromol mol-1), the growth [CO2] and 1950 +/- 55 micromol mol-1). Rubisco and chlorophyll concentrations decreased in birch and Scots pine with increasing growth [CO2]. A nonlinear response was recorded for Rubisco and chlorophyll concentrations in birch, which was correlated with a significant decrease in specific leaf area. Nitrogen concentration decreased in birch leaves, but was unchanged in Scots pine needles. The species differed substantially in their steady-state CO2 exchange response to increasing growth [CO2]. The principal effect in birch was a significant nonlinear decrease in the steady-state gas exchange rate at the ambient [CO2], whereas in Scots pine the main effect was a significant increase in the steady-state gas exchange rate at the growth [CO2].  相似文献   

5.
Restricted gas exchange between the rhizosphere and aerial environment reduces the concentration of oxygen (O(2)) and elevates the concentration of carbon dioxide (CO(2)) in the root zone, thereby leading to increased resistance to root water uptake. In this study, the effects of hypoxia and 20% CO(2) on water flux (J(v)) through roots of hybrid poplar (Populus trichocarpa Torr. & A. Gray x P. deltoides Bartr. ex Marsh) were measured in detached root systems under pressure in solution culture. Because stomata closed and there was no change in foliar water potential in hypoxic plants, root resistance was measured in detached systems as opposed to using whole plant measurements. However, under aerated conditions root resistance values were similar in intact plants and excised roots. Water fluxes through pressurized root systems treated with nitrogen and low oxygen (< 2% O(2)), elevated CO(2) (20% CO(2)), and low O(2) with elevated CO(2) concentrations were reduced to 40, 51 and 58%, respectively, of J(v) of plants aerated with ambient air. Reductions in J(v) occurred more rapidly in response to elevated CO(2) than to low O(2) concentrations. The effects of low O(2) and elevated CO(2) were not additive. Changes in pH that resulted from elevated CO(2) concentrations did not account for the reduction in J(v). When root systems of intact plants were pretreated for 24 or 48 h with low O(2) concentration, J(v) measured on pressurization was reduced by 33 and 48%, respectively, compared to aerated roots. Stomatal conductance was also reduced, however, so leaf water potential of plants with hypoxic roots were similar to those of aerated controls.  相似文献   

6.
Two varieties of ponderosa pine (Pinus ponderosa Dougl. var. scopulorum (Rocky Mountain variety) and P. ponderosa var. ponderosa (Sierran variety)) seedlings were subjected to elevated atmospheric CO(2) for two and a half years. The CO(2) concentrations were ambient, ambient + 75 microl l(-1), ambient + 150 microl l(-1) and ambient + 300 microl l(-1), or approximately 350, 425, 500 and 650 microl l(-1) CO(2). After one and a half years of exposure to elevated CO(2) and until the end of the study, seedlings of both varieties showed symptoms of stress including mottling, mid-needle abscission and early senescence. In both varieties, exposure to CO(2) concentrations greater than ambient + 75 microl l(-1) resulted in lower chlorophyll a, chlorophyll b and carotenoid concentrations. At elevated CO(2) concentrations, the concentrations of pigments in needles of the Sierran variety were lower than those in the Rocky Mountain variety. Also, at elevated CO(2) concentrations, the pigment concentrations in the 1-year-old needles of both P. ponderosa varieties were lower than those in current-season needles.  相似文献   

7.
Effects of elevated concentrations of tropospheric ozone ([O3]) and carbon dioxide ([CO2]) on leaves of two silver birch (Betula pendula Roth) clones were monitored for three growing seasons (1998, 1999, 2000) by means of electrical impedance spectroscopy (EIS). The field trial with open-top chambers (OTCs) was conducted on two clones (Clone 4 and Clone 80) with five treatments and four independent replicates. Treatments were: (1) outside control, (2) chamber control, (3) 2x ambient [O3], (4) 2x ambient [CO2] and (5) 2x ambient [CO2] + 2x ambient [O3]. Fumigations started in 1999 and continued in 2000. Measurements were made in 1998 before the fumigations and thereafter EIS was carried out four times in each season. The impedance spectra of about 10 leaves from each tree at each time were measured at 42 frequencies between 80 and 1 MHz. Leaf spectra were modeled by a distributed circuit element model (DCE) (one DCE in series with a resistor), which yields the extracellular and intracellular resistances, the relaxation time and the distribution coefficient of the relaxation time. The EIS properties of the leaves changed significantly during the growing season when new leaves were expanding. The clones differed in their EIS properties. Clone 4 had a significantly higher extracellular resistance and distribution coefficient than Clone 80. The clones responded similarly to the fumigation treatments. Differences between treatments emerged especially during the second fumigation season in 2000. Elevated [O3] reduced both the relaxation time and the extracellular resistance, indicating cell membrane damage. Elevated [CO2] increased the intracellular resistance, indicating changes in symplastic composition. The biological interpretation of the EIS parameters in birch leaves is discussed.  相似文献   

8.
Root respiration often exhibits a direct and immediate decline with increasing concentrations of ambient soil carbon dioxide concentration ([CO(2)]), and recent evidence suggests this decline may be attributable to a decline in maintenance respiration within the root. If true, this concept could provide a clue to the biochemical process underlying respiratory inhibition as well as improve our knowledge of the timing and degree to which this inhibition occurs in nature. To test the hypothesis that maintenance respiration exhibits a direct, negative response to increasing [CO(2)], we measured total respiration in intact root systems of western hemlock (Tsuga heterophylla (Raf.) Sarg.) seedlings grown at different relative growth rates and exposed to soil [CO(2)]s ranging from 91 to 7008 &mgr;mol mol(-1). Analysis of covariance was used to separate maintenance from total respiration. Total respiration declined exponentially with increasing [CO(2)]. Maintenance respiration, which comprised 85% of total respiration over all treatments, also declined exponentially with increasing [CO(2)]. Growth respiration was not inhibited at any [CO(2)]. These findings may explain why roots of some fast-growing species do not show [CO(2)] inhibition.  相似文献   

9.
杉木火力楠混交林与杉木纯林土壤碳氮库研究   总被引:4,自引:0,他引:4  
通过实地调查取样和室内C、N元素分析仪的测定,比较了杉木纯林与杉木火力楠混交林的土壤碳库及垂直分布差异,结果显示:混交林的土壤有机碳含量比纯林高,其有机碳贮量比杉木纯林大17.57%,主要差异在枯枝落叶层,分别为3.620 t.hm-2和12.610 t.hm-2。有机碳富集指数20~40 cm差异最大,混交林富集指数是纯林的1.18倍。混交林土壤有机碳贮量(79.460 t.hm-2)大于杉木纯林(67.583 t.hm-2),且均以表层(0~20 cm)碳贮量为主。混交林的全氮含量高于纯林,C/N则低于纯林。这些差异主要是由不同林分凋落物数量和性质上的差异引起的。杉木和火力楠混交林比杉木纯林更有利于碳的贮存,人工造林应多发展混交林。  相似文献   

10.
The net CO2 assimilation rate, stomatal conductance, RuBPcase (ribulose 1,5-biphosphate carboxylose) activity, dry weight of aboveground and belowgroud part, plant height, the length and diameter of taproot ofPinus koraiensis seedlings were measured and analyzed after six-week exposure to elevated CO2 in an open-top chamber in Changbai Mountain of China from May to Oct. 1999. Seedlings were planted in four different conditions: on an open site, control chamber, 500 μL·L−1 and 700 μL·L−1 CO2 chambers. The results showed that the total biomass of the seedlings increased whereas stomatal conductance decreased. The physiological responses and growth to 500 μL·L−1 and 700 μL·L−1 CO2 varied greatly. The acclimation of photosynthesis was downward to 700 μL·L−1 CO2 but upward to 500 μL·L−1 CO2. The RuBPcase activity, chlorophyll and soluble sugar contents of the seedlings grown at 500 μL·L−1 CO2 were higher than that at 700 μL·L−1 CO2. The concentration 500 μL·L−1 CO2 enhanced the growth of aboveground part whereas 700 μL·L−1 CO2 allocated more carbon to belowground part. Elevated CO2 changed the carbon distribution pattern. The ecophysiological responses were significantly different between plants grown under 500 μL·L−1 CO2 and 700 μL·L−1 CO2. Foundation Item: This paper was supported by Chinese Academy of Sciences. Biography: HAN Shi-jie (1956-), male, Ph. Doctor, Professor in Laboratory of Ecological Process of Trace Substance in Terrestrial Ecosystem, Institute of Applied Ecology, Chinese Academy of Sciences. Responsible editor: Chai Ruihai  相似文献   

11.
The net CO2 assimilation rate, stomatal conductance, RuBPcase (ribulose 1,5-biphosphate carboxylose) activity, dry weight of aboveground and belowground part, plant height, the length and diameter of taproot of Pinus koraiensis seedlings were measured and analyzed after six-week exposure to elevated CO2 in an open-top chamber in Changbai Mountain of China from May to Oct. 1999. Seedlings were planted in four different conditions: on an open site, control chamber, 500 μ L.L-1 and 700 μL.L-1 CO2 chambers. The results showed that the total biomass of the seedlings increased whereas stomatal conductance decreased. The physiological responses and growth to 500 μL.L-1 and 700 μ L.L-1 CO2 varied greatly. The acclimation of photosynthesis was downward to 700 μL.L-1 CO2 but upward to 500 μ L.L-1 CO2. The RuBPcase activity, chlorophyll and soluble sugar contents of the seedlings grown at 500 μL.L-1 CO2 were higher than that at 700 μ L.L-1 CO2. The concentration 500 μ L.L-1 CO2 enhanced the growth of aboveground part whereas 700 μL.L-1 CO2 allocated more carbon to belowground part. Elevated CO2 changed the carbon distribution pattern. The ecophysiological responses were significantly different between plants grown under 500 μL.L-1 CO2 and 700 μL.L-1 CO2.  相似文献   

12.
13.
We examined the physiological response of foliage in the upper third of the canopy of 125-year-old giant sequoia (Sequoiadendron giganteum Buchholz.) trees to a 61-day exposure to 0.25x, 1x, 2x or 3x ambient ozone concentration. Four branch exposure chambers, one per ozone treatment, were installed on 1-m long secondary branches of each tree at a height of 34 m. No visible symptoms of foliar ozone damage were apparent throughout the 61-day exposure period and none of the ozone treatments affected branch growth. Despite the similarity in ozone concentrations in the branch chambers within a treatment, the trees exhibited different physiological responses to increasing ozone uptake. Differences in diurnal and seasonal patterns of g(s) among the trees led to a 2-fold greater ozone uptake in tree No. 2 compared with trees Nos. 1 and 3. Tree No. 3 had significantly higher CER and g(s) at 0.25x ambient ozone than trees Nos. 1 and 2, and g(s) and CER of tree No. 3 declined with increasing ozone uptake. The y-intercept of the regression for dark respiration versus ozone uptake was significantly lower for tree No. 2 than for trees Nos. 1 and 3. In the 0.25x and 1x ozone treatments, the chlorophyll concentration of current-year foliage of trees Nos. 1 and 2 was significantly higher than that of current-year foliage of tree No. 3. Chlorophyll concentration of current-year foliage on tree No. 1 did not decline with increasing ozone uptake. In all trees, total needle water potential decreased with increasing ozone uptake, but turgor was constant. Although tree No. 2 had the greatest ozone uptake, g(s) was highest and foliar chlorophyll concentration was lowest in tree No. 3 in the 0.25x and 1x ambient atmospheric ozone treatments.  相似文献   

14.
This study considers a carbon tax system as a policy tool for encouraging carbon sequestration through modification of management in existing forests and examines its welfare impacts and costs of the carbon sequestered. The simulated carbon tax leads to reduced harvest and increased carbon stock in the standing trees and understory biomass. Changes in the level of silvicultural investments vary by owner, depending on the nature of their initial inventory. In general investment under the tax is concentrated in regimes that establish faster growing plantations. Average rotation age increases, varying in extent across ownerships and site qualities. The carbon tax reduces both consumer and producer surpluses in regional timber markets. Producers are compensated by the carbon subsidies, except at low carbon tax levels. Not all rates of carbon tax will attract interest from private owners if participation is voluntary. Estimates of the marginal cost of sequestering carbon in western Oregon private forests are shown to be within the range of costs for projects considering afforestation alone in some eastern regions of the United States.  相似文献   

15.
Rooted cuttings from three aspen (Populus tremuloides Michx.) clones (216, 271 and 259, classified as high, intermediate and low in O(3) tolerance, respectively) were exposed to either diurnal O(3) profiles simulating those of Michigan's Lower Peninsula (episodic treatments), or diurnal square-wave O(3) treatments in open-top chambers in northern Michigan, USA. Ozone was dispensed in chambers ventilated with charcoal-filtered (CF) air. In addition, seedlings were compared to rooted cuttings in their response to episodic O(3) treatments. Early in the season, O(3) caused decreased photosynthetic rates in mature leaves of all clones, whereas only the photosynthetic rates of recently mature leaves of the O(3)-sensitive Clone 259 decreased in response to O(3) exposure. During midseason, O(3) caused decreased photosynthetic rates of both recently mature and mature leaves of the O(3)-sensitive Clone 259, but it had no effect on the photosynthetic rate of recently mature leaves of the O(3)-tolerant Clone 216. Late in the season, however, photosynthetic rates of both recently mature and mature leaves of Clone 216 were lower than those of the control plants maintained in CF air. Ozone decreased the photosynthetic rate of mature leaves of Clone 271, but it increased or had no effect on the photosynthetic rate of recently mature leaves. Photosynthetic response patterns of seedlings to O(3) treatment were similar to those of the clones, but total magnitude of the response was less, perhaps reflecting the diverse genotypes of the seedling population. Early leaf abscission was observed in all clones exposed to O(3); however, Clones 216 and 259 lost more leaf area than Clone 271. By late August, leaf area in the highest O(3) treatment had decreased relative to the controls by 26, 24 and 9% for Clones 216, 259 and 271, respectively. Ozone decreased whole-tree photosynthesis in all clones, and the decrease was consistently less in Clone 271 (23%) than in Clones 216 (56%) and 259 (56%), and was accompanied by declines in total biomass of 19, 28 and 47%, respectively. The relationship between biomass and whole-tree photosynthesis indicates that the negative impact of O(3) on biomass in the clones was determined largely by lower photosynthetic productivity of the foliage, rather than by potential changes in the carbon relations of other plant organs.  相似文献   

16.
We examined the effects of elevated carbon dioxide concentration ([CO2]) on the relationship between light-saturated net photosynthesis (A(sat)) and area-based foliar nitrogen (N) concentration (N(a)) in the canopy of the Duke Forest FACE experiment. Measurements of A(sat) and N(a) were made on two tree species growing in the forest overstory and four tree species growing in the forest understory, in ambient and elevated [CO2] FACE rings, during early and late summer of 1999, 2001 and 2002, corresponding to years three, five and six of CO2 treatment. When measured at the growth [CO2], net photosynthetic rates of each species examined in the forest overstory and understory were stimulated by elevated [CO2] at each measurement date. We found no effect of elevated [CO2] on N(a) in any of the species. The slope of the A(sat)-N relationship was 81% greater in elevated [CO2] than in ambient [CO2] when averaged across all sample dates, reflecting a differential CO2 effect on photosynthesis at the top and bottom of the canopy. We compared A(sat)-N relationships in trees grown in ambient and elevated [CO2] at two common CO2 concentrations, during late summer 2001 and both early and late 2002, to determine if the stimulatory effect of elevated [CO2] on photosynthesis diminishes over time. At all three sample times, neither the slopes nor the y-intercepts of the A(sat)-N relationships of trees grown in ambient or elevated [CO2] differed when measured at common CO2 concentrations, indicating that the responses of photosynthesis to long-term elevated [CO2] did not differ from the responses to a short-term increase in [CO2]. This finding, together with the observation that N(a) was unaffected by growth in elevated [CO2], indicates that these overstory and understory trees growing at the Duke Forest FACE experiment continue to show a strong stimulation of photosynthesis by elevated [CO2].  相似文献   

17.
Clones of aspen (Populus tremuloides Michx.) were identified that differ in biomass production in response to O(3) exposure. (14)Carbon tracer studies were used to determine if the differences in biomass response were linked to shifts in carbon allocation and carbon partitioning patterns. Rooted cuttings from three aspen Clones (216, O(3) tolerant; 271, intermediate; and 259, O(3) sensitive) were exposed to either charcoal-filtered air (CF) or an episodic, two-times-ambient O(3) profile (2x) in open-top chambers. Either recently mature or mature leaves were exposed to a 30-min (14)C pulse and returned to the treatment chambers for a 48-h chase period before harvest. Allocation of (14)C to different plant parts, partitioning of (14)C into various chemical fractions, and the concentration of various chemical fractions in plant tissue were determined. The percent of (14)C retained in recently mature source leaves was not affected by O(3) treatment, but that retained in mature source leaves was greater in O(3)-treated plants than in CF-treated plants. Carbon allocation from source leaves was affected by leaf position, season, clone and O(3) exposure. Recently mature source leaves of CF-treated plants translocated about equal percentages of (14)C acropetally to growing shoots and basipetally to stem and roots early in the season. When shoot growth ceased (August 16), most (14)C from all source leaves was translocated basipetally to stem and roots. At no time did mature source leaves allocate more than 6% of (14)C translocated within the plant to the shoot above. Ozone effects were most apparent late in the season. Ozone decreased the percent (14)C translocated from mature source leaves to roots and increased the percent (14)C translocated to the lower stem. In contrast, allocation from recently mature leaves to roots increased. Partitioning of (14)C among chemical fractions was affected by O(3) more in source leaves than in sink tissue. In source leaves, more (14)C was incorporated into the sugar, organic acid and lipids + pigments fractions, and less (14)C was incorporated into starch and protein fractions in O(3)-treated plants than in CF-treated plants. In addition, there were O(3) treatment interactions between leaf position and clones for (14)C incorporation into different chemical fractions. When photosynthetic data were used to convert percent (14)C transported to the total amount of carbon transported on a mass basis, it was found that carbon transport was controlled more by photosynthesis in the source leaves than proportional changes in allocation to the sinks. Ozone decreased the total amount of carbon translocated to all sink tissue in the O(3)-sensitive Clone 259 because of decreases in photosynthesis in both recently mature and mature source leaves. In contrast, O(3) had no effect on carbon transport from recently mature leaves to lower shoots of either Clone 216 or 271, had no significant effect on transport to roots of Clone 216, and increased transport to roots of Clone 271. The O(3)-induced increase in transport to roots of Clone 271 was the result of a compensatory increase in upper leaf photosynthesis and a relatively greater shift in the percent of carbon allocated to roots. In contrast to those of Clone 271, recently mature leaves of Clone 216 maintained similar photosynthetic rates and allocation patterns in both the CF and O(3) treatments. We conclude that Clone 271 was more tolerant to O(3) exposure than Clone 216 or 259. Tolerance to chronic O(3) exposure was directly related to maintenance of high photosynthetic rates in recently mature leaves and retention of lower leaves.  相似文献   

18.
The photosynthetic response of 12-year oldPinus sylvestriformis to elevated CO2 and its influential factors were tested and analyzed in the forest region of Changbai Mountain in 1999. Trees grown at the natural condition were controlled at three levels of CO2 concentration (350 μL·L−1, 500 μL·L−1 and 700 μL·L−1) by CO2 rich settlement designed by us. Net photosynthetic rates (NPR), temperature, relative humidity, stomatal conductance, intercellular CO2 concentration and photosynthetic active radiation (PAR) were measured at 6:00, 8:00, 10:00, 14:00, 16:00 and 18:00 hours a day. Experimental results showed that the NPR ofPinus sylvestriformis increased by 32.6% and 123.0% at 500 μL·L−1 and 700 μL·L−1 CO2 concentration respectively, compared to ambient atmospheric CO2 concentration (350 μL·L−1). The relations between NPR and influential factors, including temperature, relative humidity, intercellular CO2 concentration and photosynthetic active radiation, were analyzed respectively by regression analysis at different CO2 concentrations. Foundation Item: This project was supported by Chinese Academy of Sciences. Biography: WANG Chen-rui (1970-), male, Assistant Research Fellow in Institute of Applied Ecology, Chinese Academy of Sciences. Responsible editor: Chai Ruihai  相似文献   

19.
IntroductionOur world is changing in the way and at the speedthat are describable, but we are unable to predictthese changes with any degree of accuracy. Radioactive and chemical properties of the atmosphere,global climate, and global ecology are dynamic andmeasurable, but they also linked to each other incomplex and poorly understood ways (Rayal andRamanathan 1989). While many of the physical andbiological sub-processes are understood and modeled in detail, predictive capabilities are poor i…  相似文献   

20.
Elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) affect primary metabolism of trees in opposite ways. We studied their potential interactions on carbohydrate concentrations and contents. Two hypotheses currently under debate were tested. (1) Stimulation of primary metabolism by prolonged exposure to elevated [CO2] does not compensate for the adverse effects of O3 on carbohydrate accumulation and biomass partitioning to the root. (2) Growth in a mixed-species planting will repress plant responses to elevated [O3] and [CO2] relative to conditions in a monoculture. To this end, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) saplings grown under conditions of intra- and interspecific competition were pre-acclimated for 1 year to ambient or elevated [CO2]. In the following 2-year phytotron study, trees were exposed to factorial combinations of ambient and elevated [O3] and [CO2]. The total carbohydrate content (sugar and starch) of spruce was greater in plants exposed to elevated [CO2] than in plants exposed to ambient [CO2]. In beech, the opposite response was observed, especially when this species was grown in combination with spruce. Overall, the data did not support Hypothesis 1, because the adverse effects of O3 were counteracted by elevated [CO2]. Support for Hypothesis 2 was species-dependent. In beech saplings, reduction of carbohydrates by elevated [O3] and stimulation by elevated [CO2] were repressed by competitive interaction with spruce. In contrast, in spruce, stimulation of carbohydrates by elevated [CO2] was similar in mono- and mixed cultures. Thus Hypothesis 2 was supported for beech but not spruce. We conclude that, in juvenile beech and spruce, a 3-year exposure to elevated [CO2] counteracts the adverse effects of O3 on carbohydrate concentrations and contents. For beech, sensitivity to elevated [CO2] and [O3] was high in monoculture but was largely repressed by interspecific competition with spruce. In contrast, the response of spruce to perturbations of atmospheric chemistry was not significantly affected by either intra- or interspecific competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号