首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveTo compare induction targets, and the haemodynamic and respiratory effects, of propofol, or as an admixture with two different concentrations of alfentanil, delivered via a propofol target-controlled infusion (TCI) system.Study designProspective blinded randomized clinical study.Animals Sixty client-owned dogs scheduled for elective surgery under general anaesthesia. Mean body mass (SD) 28.5 kg (8.7) and mean age (SD) 3.5 years (2.4).MethodsDogs received pre-anaesthetic medication of acepromazine (0.03 mg kg−1) and morphine (0.2 mg kg−1) administered intramuscularly. Animals were randomly assigned to receive one of three induction protocols: propofol alone (group 1), a propofol/alfentanil (11.9 μg mL−1) admixture (group 2), or a propofol/alfentanil (23.8 μg mL−1) admixture (group 3), via a TCI system. Blood target concentrations were increased until endotracheal intubation was achieved, and induction targets were recorded. Heart rate (HR), respiratory rate (fr) and non-invasive arterial blood pressure were recorded pre-induction, at endotracheal intubation (time 0) and at 3 and 5 minutes post-intubation (times 3 and 5, respectively). Data were analysed using anova for normally distributed data or Kruskal–Wallis test, with significance assumed at p < 0.05.ResultsThere were no significant differences between groups with respect to age, body mass, HR, fr, systolic and diastolic blood pressure. The blood propofol targets to achieve endotracheal intubation were significantly higher in group 1 compared with groups 2 and 3. Mean arterial blood pressure (MAP) was significantly higher in group 1 at time 0 when compared with groups 2 and 3.Conclusions and clinical relevanceInduction of anaesthesia with a TCI system can be achieved at lower blood propofol targets when using a propofol/alfentanil admixture compared with using propofol alone. However, despite reduced targets with both propofol/alfentanil admixture groups, MAP was lower immediately following endotracheal intubation than when using propofol alone.  相似文献   

2.
ObjectiveTo compare a propofol continuous rate infusion (CRI) with a target-controlled infusion (TCI) in dogs.Study designRandomized prospective double-blinded clinical study.AnimalsA total of 38 healthy client-owned dogs.MethodsDogs premedicated intramuscularly with acepromazine (0.03 mg kg–1) and an opioid (pethidine 3 mg kg–1, morphine 0.2 mg kg–1 or methadone 0.2 mg kg–1) were allocated to P-CRI group (propofol 4 mg kg–1 intravenously followed by CRI at 0.2 mg kg–1 minute–1), or P-TCI group [propofol predicted plasma concentration (Cp) of 3.5 μg mL–1 for induction and maintenance of anaesthesia via TCI]. Plane of anaesthesia, heart rate, respiratory rate, invasive blood pressure, oxygen haemoglobin saturation, end-tidal carbon dioxide and body temperature were monitored by an anaesthetist blinded to the group. Numerical data were analysed by unpaired t test or Mann–Whitney U test, one-way analysis of variance and Dunnett’s post hoc test. Categorical data were analysed with Fisher’s exact test. Significance was set for p < 0.005.ResultsOverall, propofol induced a significant incidence of relative hypotension (mean arterial pressure 20% below baseline, 45%), apnoea (71%) and haemoglobin desaturation (65%) at induction of anaesthesia, with a higher incidence of hypotension and apnoea in the P-CRI than P-TCI group (68% versus 21%, p = 0.008; 84% versus 58%, p = 0.0151, respectively). Propofol Cp was significantly higher at intubation in the P-CRI than P-TCI group (4.83 versus 3.5 μg mL–1, p < 0.0001), but decreased during infusion, while Cp remained steady in the P-TCI group. Total propofol administered was similar between groups.Conclusions and clinical relevanceBoth techniques provided a smooth induction of anaesthesia but caused a high incidence of side effects. Titration of anaesthesia with TCI caused fewer fluctuations in Cp and lower risk of hypotension compared with CRI.  相似文献   

3.
Objective-To evaluate hemodynamic effects in dogs after IM administration of dexmedetomidine (7.5 μg/kg, butorphanol (0.15 mg/kg), and tiletamine-zolazepam (3 mg/kg [DBTZ]) or dexmedetomidine (15 μg/kg), butorphanol (0.3 mg/kg), and ketamine (3 mg/kg [DBK]). Animals-5 healthy adult mixed-breed dogs. Procedures-Each dog received DBTZ and DBK in a randomized crossover study with a 48-hour interval between treatments. Anesthesia was induced and maintained with sevoflurane in 100% oxygen while instrumentation with Swan-Ganz and arterial catheters was performed. Following instrumentation, hemodynamic measurements were recorded at 3.54% (1.5 times the minimum alveolar concentration) sevoflurane; then sevoflurane administration was discontinued, and dogs were allowed to recover. Six hours after cessation of sevoflurane administration, baseline hemodynamic measurements were recorded, each dog was given an IM injection of DBTZ or DBK, and hemodynamic measurements were obtained at predetermined intervals for 70 minutes. Results-DBTZ and DBK induced hypoventilation (Paco(2), approx 60 to 70 mm Hg), respiratory acidosis (pH, approx 7.2), hypertension (mean arterial blood pressure, approx 115 to 174 mm Hg), increases in systemic vascular resistance, and reflex bradycardia. Cardiac output, oxygen delivery, and oxygen consumption following DBTZ or DBK administration were similar to those following sevoflurane administration to achieve a surgical plane of anesthesia. Blood l-lactate concentrations remained within the reference range at all times for all protocols. Conclusions and Clinical Relevance-In healthy dogs, both DBTZ and DBK maintained oxygen delivery and oxygen consumption to tissues and blood lactate concentrations within the reference range. However, ventilation should be carefully monitored and assisted when necessary to prevent hypoventilation.  相似文献   

4.
Target-controlled infusion (TCI) anesthesia using target effect-site concentration rather than plasma concentration provides less drug consumption, safer anesthesia, less undesired side effects and improved animal welfare. The aim of this study was to calculate the constant that converts propofol plasma into effect-site concentration ( k e0) in dogs, and to implement it in a TCI system and compare it with the effect on the central nervous system (CNS). All dogs were subjected to general anesthesia using propofol. Fourteen dogs were used as the pilot group to calculate k e0, using the t peak method. Fourteen dogs were used as the test group to test and validate the model. R ugloop ii ® software was used to drive the propofol syringe pump and to collect data from S/5 Datex monitor and cerebral state monitor. The calculated k e0 was incorporated in an existing pharmacokinetic model (Beths Model). The relationship between propofol effect site concentrations and anesthetic planes, and propofol plasma and effect-site concentrations was compared using Pearson's correlation analysis. Average t peak was 3.1 min resulting in a k e0 of 0.7230 min−1. The test group showed a positive correlation between anesthetic planes and propofol effect-site concentration ( R  = 0.69; P <  0.0001). This study proposes a k e0 for propofol with results that demonstrated a good adequacy for the pharmacokinetic model and the measured effect. The use of this k e0 will allow an easier propofol titration according to the anesthetic depth, which may lead to a reduction in propofol consumption and less undesired side effects usually associated to high propofol concentrations in dogs.  相似文献   

5.
OBJECTIVE: To compare physiologic and analgesic effects of morphine when given by IV constant-rate infusion or by IM injection to dogs undergoing laparotomy and to determine pharmacokinetics of morphine in dogs following IV constant-rate infusion. DESIGN: Prospective randomized controlled trial. ANIMALS: 20 dogs. PROCEDURE: Dogs undergoing laparotomy were treated with morphine beginning at the time of anesthetic induction. Morphine was administered by IV infusion (0.12 mg/kg/h [0.05 mg/lb/h] of body weight) or by IM injection (1 mg/kg [0.45 mg/lb]) at induction and extubation and every 4 hours thereafter. Treatments continued for 24 hours after extubation. RESULTS: Blood gas values did not indicate clinically significant respiratory depression in either group, and degree of analgesia (determined as the University of Melbourne Pain Scale score) and incidence of adverse effects (panting, vomiting, defecation, and dysphoria) were not significantly different between groups. Dogs in both groups had significant decreases in mean heart rate, rectal temperature, and serum sodium and potassium concentrations, compared with preoperative values. Mean +/- SEM total body clearance of morphine was 68 +/- 6 ml/min/kg (31 +/- 3 ml/min/lb). Mean steady-state serum morphine concentration in dogs receiving morphine by constant-rate infusion was 30 +/- 2 ng/ml. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that administration of morphine as a constant-rate IV infusion at a dose of 0.12 mg/kg/h induced effects similar to those obtained with administration at a dose of 1 mg/kg, IM, every 4 hours in dogs undergoing laparotomy. Panting was attributed to an opioid-induced resetting of the hypothalamic temperature set point, rather than respiratory depression.  相似文献   

6.
ObjectiveTo assess the cardiorespiratory and hypnotic-sparing effects of ketamine co-induction with target-controlled infusion of propofol in dogs.Study designProspective, randomized, blinded clinical study.AnimalsNinety healthy dogs (ASA grades I/II). Mean body mass 30.5 ± SD 8.6 kg and mean age 4.2 ± 2.6 years.MethodsAll dogs received pre-anaesthetic medication with acepromazine (0.03 mg kg?1) and morphine (0.2 mg kg?1) administered intramuscularly 30 minutes prior to induction of anaesthesia. Heart rate and respiratory rate were recorded prior to pre-medication. Animals were allocated into three different groups: Group 1 (control) received 0.9% NaCl, group 2, 0.25 mg kg?1 ketamine and group 3, 0.5 mg kg?1 ketamine, intravenously 1 minute prior to induction of anaesthesia, which was accomplished using a propofol target-controlled infusion system. The target propofol concentration was gradually increased until endotracheal intubation was possible and the target concentration at intubation was recorded. Heart rate, respiratory rate and noninvasive blood pressure were recorded immediately prior to induction, at successful intubation and at 3 and 5 minutes post-intubation. The quality of induction was graded according to the amount of muscle twitching and paddling observed. Data were analysed using a combination of chi-squared tests, Fisher's exact tests, Kruskal–Wallis, and anova with significance assumed at p< 0.05.ResultsThere were no significant differences between groups in the blood propofol targets required to achieve endotracheal intubation, nor with respect to heart rate, noninvasive blood pressure or quality of induction. Compared with the other groups, the incidence of post-induction apnoea was significantly higher in group 3, but despite this dogs in this group had higher respiratory rates overall.Conclusions and clinical relevanceUnder the conditions of this study, ketamine does not seem to be a useful agent for co-induction of anaesthesia with propofol in dogs.  相似文献   

7.
ObjectiveTo determine the dose and cardiopulmonary effects of propofol alone or with midazolam for induction of anesthesia in American Society of Anesthesiologists status ≥III dogs requiring emergency abdominal surgery.Study designProspective, randomized, blinded, clinical trial.AnimalsA total of 19 client-owned dogs.MethodsDogs were sedated with fentanyl (2 μg kg–1) intravenously (IV) for instrumentation for measurement of heart rate, arterial blood pressure, cardiac index, systemic vascular resistance index, arterial blood gases, respiratory rate and rectal temperature. After additional IV fentanyl (3 μg kg–1), the quality of sedation was scored and cardiopulmonary variables recorded. Induction of anesthesia was with IV propofol (1 mg kg–1) and saline (0.06 mL kg–1; group PS; nine dogs) or midazolam (0.3 mg kg–1; group PM; 10 dogs), with additional propofol (0.25 mg kg–1) IV every 6 seconds until endotracheal intubation. Induction/intubation quality was scored, and anesthesia was maintained with isoflurane. Variables were recorded for 5 minutes with the dog in lateral recumbency, breathing spontaneously, and then in dorsal recumbency with mechanical ventilation for the next 15 minutes. A general linear mixed model was used with post hoc analysis for multiple comparisons between groups (p < 0.05).ResultsThere were no differences in group demographics, temperature and cardiopulmonary variables between groups or within groups before or after induction. The propofol doses for induction of anesthesia were significantly different between groups, 1.9 ± 0.5 and 1.1 ± 0.5 mg kg–1 for groups PS and PM, respectively, and the induction/intubation score was significantly better for group PM.Conclusions and clinical relevanceMidazolam co-induction reduced the propofol induction dose and improved the quality of induction in critically ill dogs without an improvement in cardiopulmonary variables, when compared with a higher dose of propofol alone.  相似文献   

8.
9.
OBJECTIVE: To evaluate the isoflurane-sparing and clinical effects of two constant rate infusions of remifentanil in healthy dogs undergoing orthopaedic surgery. STUDY DESIGN: Prospective, randomized clinical study. ANIMALS: Forty-one American Society of Anesthesiologists I-II client-owned dogs (age, 7 months-9 years; body mass 11-59 kg). METHODS: Dogs were randomly assigned to one of three groups and received either: intramuscular (IM) meperidine 2 mg kg(-1) every 2 hours throughout surgery (control group (C); n = 13); remifentanil infused intravenously (IV) at 0.1 microg kg(-1) minute(-1) (low remifentanil group (L); n = 14) or remifentanil infused at 0.25 microg kg(-1) minute(-1) IV (high remifentanil group (H); n = 14). Anaesthesia was induced with thiopental administered to effect and maintained using isoflurane in 100% oxygen. During controlled ventilation when the end-tidal CO(2) was maintained between 4.65 and 5.98 kPa [35-45 mmHg], the end-tidal isoflurane concentration (e'iso%), mean arterial blood pressure (MAP) and heart rate (HR) were measured every 5 minutes. Bradycardia (HR < 40 minute(-1) lasting >5 minutes) was corrected with 0.01 mg kg(-1) IV glycopyrrolate. Data were analysed using the Kruskal-Wallis test with a post-hoc Mann-Whitney U-test and Bonferroni correction. Statistical significance was accepted at < or = 0.05. Data are expressed as mean +/- standard deviation. RESULTS: The e'iso% was reduced in a dose-dependent manner by remifentanil. In C, e'iso% was 1.28 +/-0.13 and was significantly different from L (0.78 +/- 0.17, p < 0.001) and H (0.65 +/- 0.16, p < 0.001). HR was significantly different between groups (p < 0.001). There were no significant differences in MAP between groups. Glycopyrrolate was required in two, three and six dogs in the C, L and H groups respectively. CONCLUSIONS: Remifentanil infusion reduced the isoflurane concentration required for surgical anaesthesia during orthopaedic surgery. CLINICAL RELEVANCE: Remifentanil infusions may be a useful additive to isoflurane anaesthesia in healthy dogs.  相似文献   

10.
11.
ObjectiveTo evaluate the cardiorespiratory, sedative and antinociceptive effects of dexmedetomidine alone or in combination with methadone, morphine or tramadol in dogs.Study designExperimental, blinded, randomized, crossover study.AnimalsSix mixed breed dogs (two males and four females) weighing 10 ± 4 kg.MethodsThe animals were randomly divided into four treatments: D (10 μg kg?1 of dexmedetomidine), DM (dexmedetomidine 10 μg kg?1 and methadone 0.5 mg kg?1); DMO (dexmedetomidine 10 μg kg?1 and morphine 0.5 mg kg?1), and DT (dexmedetomidine 10 μg kg?1 and tramadol 2 mg kg?1). The combinations were administered intramuscularly in all treatments. The variables evaluated were heart rate (HR), respiratory rate (fR), rectal temperature (RT), systolic arterial pressure (SAP), sedation scale and pedal withdrawal reflex. These variables were measured at T0 (immediately before the administration of the protocol) and every 15 minutes thereafter until T105.ResultsA decrease in HR and fR occurred in all the treatments compared with T0, but no significant difference was observed between the treatments. The RT decreased from T45 onward in all the treatments. The SAP did not show a difference between the treatments, but in the DT treatment, the SAP was lower at T30 and T45 compared with T0. The D treatment had lower scores of sedation at T15 to T75 compared with the other treatments, and the DMO and DM treatments showed higher scores at T60 and T75 compared with DT.Conclusions and clinical relevanceThe treatments with morphine and methadone added to the dexmedetomidine showed higher sedation scores than the control treatment and the treatment with tramadol added to the dexmedetomidine showed no relevant differences in any of the variables evaluated in the study.  相似文献   

12.
13.
14.
Continuous infusion of propofol in dogs premedicated with methotrimeprazine   总被引:1,自引:0,他引:1  
Objective To evaluate the cardiopulmonary and clinical effects of three different infusion rates of propofol in dogs premedicated with methotrimeprazine. Study design Randomized experimental trial. Animals Ten healthy adult mixed‐breed male and female dogs, weighing from 14 to 20 kg. Methods Dogs were premedicated with methotrimeprazine [1 mg kg?1 intravenously (IV)] followed by induction of anesthesia with 4.5 mg kg?1 of propofol IV and maintenance with propofol for 60 minutes as follows: T1, 0.2 mg kg?1 minute?1; T2, 0.3 mg kg?1minute?1; and T3, 0.4 mg kg?1minute?1. Heart rate (HR), respiratory rate (RR), mean arterial pressure (MAP), end‐tidal CO2 (PETCO2), arterial hemoglobin O2 saturation, arterial blood gases, and pedal and cutaneous reflexes were measured before and 5, 10, 20, 30, 45 and 60 minutes after the beginning of the propofol infusion. Statistical analysis was performed using an anova . Results Heart rate increased during anesthesia in all cases and arterial blood pressure decreased only in dogs in the T3 category. Respiratory depression was proportional to the infusion rate of propofol. Muscle relaxation was satisfactory, but analgesia was inadequate in the three treatments. Conclusions The infusion of 0.2–0.4 mg kg?1 minute?1 of propofol produced a dose‐dependent respiratory depression. The presence of a pedal withdrawal reflex and marked cardiovascular responses to this noxious stimulus suggests that anesthesia may not be of sufficient depth for surgery to be carried out. Clinical relevance Although several studies have been performed using propofol in animals, few studies have investigated the cardiopulmonary and analgesic effects with different doses. The determination of an adequate propofol infusion rate is necessary for the routine use of this intravenous anesthetic for the maintenance of anesthesia during major surgical procedures in dogs.  相似文献   

15.
The aim of this study was to evaluate the correlation between the cerebral state index (CSI) and the estimated propofol plasma concentrations in dogs during induction of anaesthesia. Fifteen healthy dogs undergoing scheduled routine surgical procedures were enrolled in this study. Target controlled infusion (TCI) software, based on the pharmacokinetic model for propofol, was used to control the syringe pump and to estimate plasma propofol concentrations (PropCp) and the CSI values every five-seconds. Three electrodes placed in the centre of the forehead, on the left side of the forehead and on the left mastoid were used to collect the electroencephalographic (EEG) signal converted by the cerebral state monitor into the CSI. The cerebral electrical changes induced by increasing propofol concentrations appear to be detected by CSI monitoring in dogs. The negative correlation between CSI and PropCp demonstrates that the CSI could be used to assess electrical brain activity in dogs during the induction of anaesthesia with propofol.  相似文献   

16.
OBJECTIVE: To evaluate the cardiopulmonary effects of anesthetic induction with thiopental, propofol, or ketamine hydrochloride and diazepam in dogs sedated with medetomidine and hydromorphone. ANIMALS: 6 healthy adult dogs. PROCEDURES: Dogs received 3 induction regimens in a randomized crossover study. Twenty minutes after sedation with medetomidine (10 microg/kg, IV) and hydromorphone (0.05 mg/kg, IV), anesthesia was induced with ketamine-diazepam, propofol, or thiopental and then maintained with isoflurane in oxygen. Measurements were obtained prior to sedation (baseline), 10 minutes after administration of preanesthetic medications, after induction before receiving oxygen, and after the start of isoflurane-oxygen administration. RESULTS: Doses required for induction were 1.25 mg of ketamine/kg with 0.0625 mg of diazepam/kg, 1 mg of propofol/kg, and 2.5 mg of thiopental/kg. After administration of preanesthetic medications, heart rate (HR), cardiac index, and PaO(2) values were significantly lower and mean arterial blood pressure, central venous pressure, and PaCO(2) values were significantly higher than baseline values for all regimens. After induction of anesthesia, compared with postsedation values, HR was greater for ketamine-diazepam and thiopental regimens, whereas PaCO(2) tension was greater and stroke index values were lower for all regimens. After induction, PaO(2) values were significantly lower and HR and cardiac index values significantly higher for the ketamine-diazepam regimen, compared with values for the propofol and thiopental regimens. CONCLUSIONS AND CLINICAL RELEVANCE: Medetomidine and hydromorphone caused dramatic hemodynamic alterations, and at the doses used, the 3 induction regimens did not induce important additional cardiovascular alterations. However, administration of supplemental oxygen is recommended.  相似文献   

17.
ObjectiveTo compare the antinociceptive effects of magnesium sulphate (MgSO4) when administered epidurally alone and in combination with morphine.Study designExperimental, randomized, ‘blinded’, crossover study.AnimalsSix healthy adult Beagle dogs.MethodsEvaluated treatments were MgSO4 (2.5 mg kg−1) alone (Mg), morphine (0.1 mg kg−1) alone (Mo), MgSO4 in combination with morphine (Mm), and sterile water (0.115 mL kg−1; Co) that were injected in the lumbosacral epidural space using an epidural catheter. Antinociception was measured using the von Frey mechanical threshold device applied to the carpal pads, both sides of the thorax and metatarsi. Measurements were obtained at time points: before treatment (baseline) and 0.5, 1, 2, 4, 6, 12, 18 and 24 hours after the epidural injection. Sedation, behaviour score and presence of motor deficits were assessed. Data were analyzed using a linear mixed model and Bonferroni adjustments, with significance set at p < 0.05.ResultsThere were significant effects of treatment and time in all regions. Overall threshold values in grammes force [median (interquartile range)] when stimulation regions were combined were significantly higher in Mg [164 (135–200)], Mo [156 (129–195)] and Mm [158 (131–192)] compared to Co [145 (120–179)]. Thresholds were significantly higher compared to Co in Mg, Mo and Mm at the thorax and metatarsi, but only in Mg and Mo at the carpal pads. No motor deficits were observed at any time point. Thresholds (combined regions) were increased from baseline at one or more time points with all treatments, including control.Conclusion and clinical relevanceEpidural MgSO4 produced an antinociceptive effect characterised by an increase in the mechanical thresholds of similar magnitude to that produced by epidural morphine, compared with the control group, without causing any motor deficits. No potentiation of morphine antinociception was observed. The onset and offset times of antinociception could not be clearly established. To what extent these results can be extrapolated to clinical cases requires further investigation.  相似文献   

18.
OBJECTIVE: To compare cardiovascular effects of equipotent infusion doses of propofol alone and in combination with ketamine administered with and without noxious stimulation in cats. ANIMALS: 6 cats. PROCEDURE: Cats were anesthetized with propofol (loading dose, 6.6 mg/kg; constant rate infusion [CRI], 0.22 mg/kg/min) and instrumented for blood collection and measurement of blood pressures and cardiac output. Cats were maintained at this CRI for a further 60 minutes, and blood samples and measurements were taken. A noxious stimulus was applied for 5 minutes, and blood samples and measurements were obtained. Propofol concentration was decreased to 0.14 mg/kg/min, and ketamine (loading dose, 2 mg/kg; CRI, 23 microg/kg/min) was administered. After a further 60 minutes, blood samples and measurements were taken. A second 5-minute noxious stimulus was applied, and blood samples and measurements were obtained. RESULTS: Mean arterial pressure, central venous pressure, pulmonary arterial occlusion pressure, stroke index, cardiac index, systemic vascular resistance index, pulmonary vascular resistance index, oxygen delivery index, oxygen consumption index, oxygen utilization ratio, partial pressure of oxygen in mixed venous blood, pH of arterial blood, PaCO2, arterial bicarbonate concentration, and base deficit values collected during propofol were not changed by the addition of ketamine and reduction of propofol. Compared with propofol, ketamine and reduction of propofol significantly increased mean pulmonary arterial pressure and venous admixture and significantly decreased PaO2. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of propofol by CRI for maintenance of anesthesia induced stable hemodynamics and could prove to be clinically useful in cats.  相似文献   

19.
20.
An 18-month-old Lurcher was anaesthetized for surgical ligation of a patent ductus arteriosus using a target-controlled infusion (TCI) of propofol and a variable rate infusion of remifentanil. Before anaesthesia, radiographic and echocardiographic examination indicated that the dog had left-sided congestive heart failure and impaired left ventricular systolic function. Ramipril and furosemide were administered pre-operatively. Following pre-anaesthetic medication with morphine, 0.5 mg kg(-1), by intramuscular injection, and pre-oxygenation, remifentanil was infused for 5 minutes at 0.2 microg kg(-1) minute(-1), followed by induction of anaesthesia using intravenous propofol administered by TCI, set at a target concentration of 3.5 microg mL(-1) of propofol in blood. Tracheal intubation was performed and 100% oxygen delivered through a non-rebreathing (Bain) system and then a circle system in the operating theatre. Anaesthesia was maintained with propofol and remifentanil, adjusted according to clinical requirements. Peri-operative analgesia consisted of intercostal bupivacaine nerve block, with meloxicam, morphine and remifentanil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号