首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to estimate direct and indirect selection potential for length of productive life and lifetime prolificacy in Finnish Large White and Landrace swine populations. To study the direct selection potential, the heritabilities of these traits were estimated. The genetic correlations of length of productive life and lifetime prolificacy with prolificacy traits and overall leg conformation were estimated to evaluate whether selection for these traits could indirectly improve measures of sow longevity. In addition, correlations between length of productive life, lifetime prolificacy, ADG, and backfat thickness were estimated. Records were used from Finnish purebred Landrace (n = 26,744) and Large White (n = 24,007) sows born on operations that perform on-farm production tests on all females. Heritabilities were estimated using both a survival analysis procedure and a linear model. Due to computational limitations, correlations were estimated with the linear model only. Estimated length of productive life heritabilities obtained from linear model analyses were less (0.05 to 0.10) than those obtained from survival analyses (0.16 to 0.19). This may be indicative of the superiority of survival analysis compared with linear model analysis methods when evaluating longevity or similar types of data. All the prolificacy traits were genetically correlated with length of productive life and lifetime prolificacy, and the correlations were greater than 0.13. These results indicate that selection for increased number of piglets weaned in the first litter and for short first farrowing interval is beneficial for sow longevity and also for sow's lifetime prolificacy. The genetic correlations between length of productive life and leg conformation score also were favorable (0.32 in Landrace and 0.17 in Large White). The heritability estimates indicate that survival analysis is likely the most appropriate method of evaluating longevity traits in swine. Because of computational problems, simultaneous analysis of linear traits and longevity is not currently possible. More research is needed to develop methods for multiple linear and survival trait analyses.  相似文献   

2.
Background: The overall breeding objective for a nucleus swine selection program is to improve crossbred commercial performance. Most genetic improvement programs are based on an assumed high degree of positive relationship between purebred performance in a nucleus herd and their relatives' crossbred performance in a commercial herd. The objective of this study was to examine the relationship between purebred and crossbred sow longevity performance. Sow longevity was defined as a binary trait with a success occurring if a sow remained in the herd for a certain number of parities and including the cumulative number born alive as a measure of reproductive success. Heritabilities, genetic correlations, and phenotypic correlations were estimated using THRGIBBS1F90.Results: Results indicated little to no genetic correlations between crossbred and purebred reproductive traits.This indicates that selection for longevity or lifetime performance at the nucleus level may not result in improved longevity and lifetime performance at the crossbred level. Early parity performance was highly correlated with lifetime performance indicating that an indicator trait at an early parity could be used to predict lifetime performance. This would allow a sow to have her own record for the selection trait before she has been removed from the herd.Conclusions: Results from this study aid in quantifying the relationship between purebred and crossbred performance and provide information for genetic companies to consider when developing a selection program where the objective is to improve crossbred sow performance. Utilizing crossbred records in a selection program would be the best way to improve crossbred sow productivity.  相似文献   

3.
Abstract

Selection for sow longevity using information from traits, which are expressed in early life and genetically highly related to longevity, is expected to be more effective than direct selection as it can overcome the disadvantage of late recording of true longevity. Our aim was to investigate the correlation between leg conformation recorded on young pigs, litter size at first parity and longevity of Danish Landrace and Yorkshire sows. Information on conformation from 116,733 Landrace and 89,963 Yorkshire pigs and information on reproduction and longevity from 27,070 Landrace and 11,895 Yorkshire sows were analyzed. All considered traits were low to moderately heritable, ranging from 0.02 to 0.41. In general, both conformation and reproduction traits were favorably genetically correlated with longevity (0.07–0.39 and 0.00–0.58, respectively). These estimates suggest a potential of improving sow longevity by selection on conformation recorded at young age and litter size at first parity.  相似文献   

4.
The objective of this study was to obtain heritability estimates for longevity (length of life, length of productive life, number of litters) and lifetime productivity traits (lifetime pig production, lifetime pig efficiency, lifetime litter efficiency) and genetic correlation between them and litter size at first farrowing, growth (ADG), backfat thickness (BF), loin depth, lean meat percentage (LMP), phenotypic selection index (PSI), and exterior in 19423 Polish Landrace (L) and 16049 Polish Large White (LW) sows. Heritabilities for longevity and lifetime productivity traits were 0.10–0.13 for L sows and 0.09–0.11 for LW sows depending on the trait definition. The genetic correlations among these traits were all high and positive, ranging from 0.76 to 0.99. Antagonistic genetic correlations (?0.21 to ?0.26) were found between longevity traits and PSI and LMP in LW sows, while in L sows the respective parameters were lower and not significant for length of productive life. The number of live‐born piglets in the first litter was positively correlated with lifetime pig production and lifetime pig efficiency in both breeds. The genetic correlations of longevity and lifetime pig production with ADG, BF, loin depth and exterior were small, and in most cases, not significant.  相似文献   

5.
Sow longevity is a key component for efficient and profitable pig farming; however, approximately 50% of sows are removed annually from a breeding herd. There is no consensus in the scientific literature regarding a definition for sow longevity; however, it has been suggested that it can be measured using several methods such as stayability and economic indicators such as lifetime piglets produced. Sow longevity can be improved by genetic selection; however, it is rarely included in genetic evaluations. One reason is elongated time intervals required to collect complete lifetime data. The effect of genetic parameter estimation software in handling incomplete data (censoring) and possible early indicator traits were evaluated analysing a 30% censored data set (12 725 pedigreed Landrace × Large White sows that included approximately 30% censored data) with DMU6, THRGIBBS1F90 and GIBBS2CEN. Heritability estimates were low for all the traits evaluated. The results show that the binary stayability traits benefited from being analysed with a threshold model compared to analysing with a linear model. Sires were ranked very similarly regardless if the program handled censoring when all available data were included. Accumulated born alive and stayability were good indicators for lifetime born alive traits. Number of piglets born alive within each parity could be used as an early indicator trait for sow longevity.  相似文献   

6.
Data from 32 nucleus and multiplier herds in Germany was used to estimate variance components and breeding values for five maternal behaviour traits in sows. The estimation was performed univariately using an animal threshold model. About 31,000 farrowings recorded from December 2003 until July 2005 were included. The heritability coefficients were 0.07 (0.06) for group behaviour, 0.06 (0.03) for attitude to people, 0.05 (0.01) for maternal ability, 0.03 (0.01) for crushing of piglets and 0.02 (0.02) for savaging of piglets. Additionally, genetic correlations between the behaviour traits and between the behaviour traits and litter size, respectively, were estimated multivariately by REML with a linear model. Low heritability and weak genetic correlation to litter size at birth indicate that it may be difficult to genetically improve the maternal behaviour, and that selection for better mothering ability is not necessarily accompanied by reduced litter size at birth.  相似文献   

7.
Sow longevity influences farm economy and can be considered an important indicator of animal welfare. Body features such as leg conformation can play a key role in sow longevity, although little is known about its effect on culling decisions. Within this context, longevity data from 587 Duroc, 239 Landrace, and 217 Large White sows were analyzed with special emphasis on the effect of leg conformation. Sow longevity was analyzed twice for each breed, testing the effect of a subjective overall score for leg conformation, or the presence or absence of 6 specific leg conformation defects. Each preliminary model also included a teat conformation score with 3 levels, farm or origin, backfat thickness at 6 mo of age, and 2 continuous sources of variation, namely the age at the first farrowing and the number of piglets born alive at each farrowing. Overall leg conformation score influenced (P < 0.01) sow longevity in Duroc, Landrace, and Large White sows, with a greater hazard ratio (HR) for poorly conformed sows (1.56, 2.16, and 1.79, respectively) than for well-conformed sows (0.32, 0.66, and 0.68, respectively). Abnormal hoof growth reduced survivability in Duroc (HR = 2.78; P < 0.001) and Landrace sows (HR = 1.88; P < 0.01); the presence of splayed feet (P < 0.05) or bumps and injuries (P < 0.001) increased the risk of culling in Duroc sows (HR = 2.08 and 3.57, respectively), whereas the incidence of straight pastern increased the HR in Large White sows (HR = 2.49; P < 0.01). In all 3 breeds, longevity decreased for plantigrade sows, with a greater HR in Duroc (HR = 3.38; P < 0.001) than in Landrace (HR = 1.53; P < 0.10) and Large White sows (HR = 1.73; P < 0.05). Teat conformation did not influence sow longevity (P > 0.10). Estimates of heritability for longevity in Duroc sows ranged from 0.05 to 0.07 depending on the algorithm applied. Leg conformation had a substantial effect on sow longevity, where an accurate removal of poorly leg-conformed candidate gilts before first mating could improve sow survival and reduce culling costs. These moderate estimates of heritability indicated that survivability of Duroc sows could be genetically improved by direct selection for leg conformation.  相似文献   

8.
The objective of this study was to determine the relationship between individual sire estimated breeding values (EBV) for litters/sow/year (LSY) and sire progeny means for farrowing rate (FR), removal parity and lifetime born alive (LTBA). Genetic parameters and breeding values were estimated using ASREML. The heritability estimate for LSY was 0.11. When all sires with 10 or more daughters with records were included in the analysis, Spearman rank correlations between the sire's LSY EBV and the sires' daughter means for FR, removal parity and LTBA were 0.49, 0.23 and 0.25 (p < 0.01). The sire EBV for LSY was favourably correlated with sires' daughter means for all three traits. This provides evidence that selecting sires with high EBV for LSY could improve herd FR, removal parity and LTBA. By including LSY as part of the selection criterion, the LTBA may be indirectly improved. The positive genetic correlation between LTBA and LSY may be a result of the improved longevity of sows with greater LSY compared with sows with lower LSY. The relationships between LSY and FR, removal parity and LTBA are strongly supported by the correlations between the sire progeny means for each trait and the sire LSY EBV.  相似文献   

9.
Impact of dominance effects on sow longevity   总被引:1,自引:0,他引:1  
The purpose of the current study was to estimate variance components, especially dominance genetic variation, for overall leg action, length of productive life and sow stayability until third and fifth parity in the Finnish pig populations. The variance components were estimated in two purebred [Landrace (LR), n = 23 602 and Large White (LW), n =22 984] and crossbred (LR × LW, n = 17 440) data sets. Five different analyses were carried out for all the traits to compare the effect of sows’ inbreeding, common litter environment and parental dominance in the statistical model when determining the genetic correlations of the traits for the two purebred and crossbred populations. Estimated heritabilities for the traits ranged from 0.04 to 0.06. The estimates for the proportion of dominance variance of phenotypic variance (d2) varied between 0.01 and 0.17, and was highest in the crossbred dataset. The genetic correlations of the same traits in purebred and crossbred were all high (>0.75). Based on current results, the effect of dominance should be accounted for in the breeding value estimation of sow longevity, especially when data from crossbred animals are included in the analyses. Because dominance genetic variation for sow longevity exists that variation should be utilized through planned matings in producing sows for commercial production.  相似文献   

10.
Data from the National Pork Producers Council Maternal Line National Genetic Evaluation Program were used to compare longevity of sows from 6 commercial genetic lines and to estimate the phenotypic associations of sow longevity with gilt backfat thickness, ADG, age at first farrowing, litter size at first farrowing, litter weight at first farrowing, average feed intake during lactation, and average backfat loss during lactation. The lines evaluated were American Diamond Genetics, Danbred North America, Dekalb-Monsanto DK44, Dekalb-Monsanto GPK347, Newsham Hybrids, and National Swine Registry. The data set contained information from 3,251 gilts, of which 17% had censored longevity records (sows lived longer than 6 parities). The line comparison was carried out by analyzing all lines simultaneously. Because the survival distribution functions differed among genetic lines, later analyses were carried out separately for each genetic line. All analyses were based on the non-parametric proportional hazard (Cox model). Dekalb-Monsanto GPK347 sows had a lower risk of being culled than sows from the other lines. Moreover, the shape of the survival distribution function of the Delkab-Monsanto GPK347 line was different from the other 5 lines. The Dekalb-Monsanto 347 line had lower culling rates because they had lower gilt reproductive failure before the first parity than gilts from the other lines. Within line, sows with lower feed intake and greater backfat loss during lactation had a shorter productive lifetime. Thus, producers should implement management practices having positive effects on sow lactation feed intake. Additionally, the swine genetics industry is challenged to simultaneously improve efficiency of gain of their terminal market pigs and to obtain high feed intake during lactation of their maternal lines for future improvement of sow longevity. Recording sow feed intake and backfat loss during lactation in nucleus and multiplication breeding herds should be considered. Between-line differences in this study indicate that it is possible to select for sow longevity, but more research is needed to determine the most efficient selection methods to improve sow longevity.  相似文献   

11.
Sow production indicators, including litter size, litter weight, and the length of time that sows remained in the herd (sow longevity), were used to characterize sow performance and profitability. Sow longevity and production records from 148,568 sows in 32 commercial herds from Central Illinois from January 1995 to May 2001 were analyzed using survival and repeatability models, respectively. The factors studied included sow genetics (32 genetic lines), with eight major lines present in multiple herds, and the combination of herd and year of entry in the herd. The largest difference in longevity between the major genetic lines was approximately one parity. There were differences (P < 0.05) in the instantaneous sow removal rate or hazard from the major lines. These differences constitute evidence that sow longevity could be improved by using replacements from specific genetic lines. The net present value per sow (present value of future cash flows and the present value of the sow) was used to evaluate the effect of sow longevity and production traits on economic returns. Assuming a zero discount rate per parity, genetic lines with longer herd life resulted in greater profit than genetic lines with shorter herd life. This difference was reduced with increasing discount rates and was reversed with high discount rates and low net income per litter. These results suggest that the magnitude of the economic improvement attained through the use of sow genetic lines with longer longevity depends on the economic context under which the evaluation is made.  相似文献   

12.
We tested the role of several spatial variables on the risk of a sow herd being Aujeszky's disease virus (ADV) seropositive in certain areas of North Eastern Spain and during different periods of the eradication programme. Distance to the nearest slaughterhouse, distance to the nearest conventional road and number of ADV serologically positive sows and ADV serologically positive fattening pigs within different distances (1000, 1500 and 2000 m) of each sow herd, were included in a hierarchical Bayesian binomial model. A variable without spatial characteristics, type of herd (farrow to weaning and farrow to finish), was also included. Presence of positive fattening pigs or positive sows up to a distance of 1500 m of a sow herd increased its risk of being seropositive, although this variable had no effect on the risk when located at distances up to 1000 or 2000 m. The number of seropositive sows increased the risk of a sow herd being ADV seropositive only in the first period of study, when the proportion of serologically positive sow herds was nearly 60%. The spatial pattern of the residuals of the hierarchical Bayesian binomial model (observed versus predicted) was very similar to the observed infection in sow herds in all of the eradication periods, showing that spatial factors might not be the main factors related to the eradication of Aujeszky's disease from sow herds. Other herd-specific risk factors might be much more strongly related to the risk of a sow herd being ADV seropositive.  相似文献   

13.
Records of length of productive life, from first farrowing to culling, of 16,464 Large White purebred sows from SUISAG were studied using survival analysis. The major aims of the study were to model the risk of culling within parity and to assess the influence of exterior traits, such as the number of teats or feet and leg scores, on culling. Culling was concentrated at the first day after each farrowing or at the first day after weaning. Weaning itself was mostly between 21 and 49 d after farrowing, with an average weaning age of 35 d. Because of the definition of culling date used, there was practically no risk of culling from these periods. The culling rates at different periods suggested a modeling of the baseline hazard function within parity instead of over the entire productive life of the animals. A piecewise Weibull function and a simple graphical method to validate its adequacy were proposed for sow longevity analysis. The risk of culling increased with older parities (P < 0.001) and with decreasing litter size at weaning (P < 0.001). The exterior traits analyzed (number of teats, and feet and leg scores, on a scale from 1 to 7) had a moderate effect on the risk of culling compared with other factors but were still influential on survival, productive life expectancy, and annual replacement rate. Sows with less than 13 good teats had 1.35 times greater risk of being culled than sows with more good teats (P < 0.05). Sows with an X-O rear leg score of 2 had 1.4 times greater risk of being culled than sows with an intermediate score of 4 (P < 0.05). Sows at the optimum score of 4 for the size of inner claws of the rear leg had 0.83 times less risk of being culled (P < 0.01) than sows with scores of 2 and 3. Furthermore, when a phenotypic index for feet and legs was used to group these variables, the effect was highly significant (P < 0.001). Therefore, a means to improve longevity is through phenotypic selection of replacement gilts based on exterior traits: gilts with 13 or less good teats or with extreme feet and leg scores should be culled. From a genetic point of view, sows with the best value in the current index for exterior traits had a lower risk of culling (P < 0.01), and therefore, it is possible to obtain a response for sow longevity via indirect selection for exterior traits. From 1999 to 2003, the trend has been to eliminate extreme animals on exterior traits. This may partly explain the improvement of sow length of productive life longevity from 560 d in 2000 to nearly 710 d in 2003 observed in the data set.  相似文献   

14.
15.
Variance components for production traits were estimated using different models to evaluate maternal effects. Data analysed were records from the South African pig performance testing scheme on 22 224 pigs from 18 herds, tested between 1990 and 2008. The traits analysed were backfat thickness (BFAT), test period weight gain (TPG), lifetime weight gain (LTG), test period feed conversion ratio (FCR) and age at slaughter (AGES). Data analyses were performed by REML procedures in ASREML, where random effects were successively fitted into animal and sire models to produce different models. The first animal model had one random effect, the direct genetic effects, while the additional random effects were maternal genetic and maternal permanent environmental effects. In the sire model, the random effects fitted were sire and maternal grand sire effects. The best model considered the covariance between direct and maternal genetic effects or between sire and maternal grand sire effects. Fitting maternal genetic effects into the animal model reduced total additive variance, while the total additive variance increased when maternal grand sire effects were fitted into the sire model. The correlations between direct and maternal genetic effects were all negative, indicating antagonism between these effects, hence the need to consider both effects in selection programmes. Direct genetic correlations were higher than other correlations, except for maternal genetic correlations of FCR with TPG, LTG and AGES. There has been direct genetic improvement and almost constant maternal ability in production traits as shown by trends for estimated (EBVs) and maternal breeding values (MBVs), while phenotypic trends were similar to those for EBVs. These results suggest that maternal genetic effects should be included in selection programmes for these production traits. Therefore, the animal–maternal model may be the most appropriate model to use when estimating genetic parameters for production traits in this population.  相似文献   

16.
Genetic parameters for sow stayability were estimated from farrowing records of 10,295 Landrace sows and 8192 Large White sows. The record for sow stayability from parity k to parity k + 1 (k = 1, …, 6) was 0 when a sow had a farrowing record at parity k but not at parity k + 1, and 1 when a sow had both records. Heritability was estimated by using single-trait linear and threshold animal models. Genetic correlations among parities were estimated by using two-trait linear–linear and single-trait random regression linear animal models. Genetic correlations with litter traits at birth were estimated by using a two-trait linear–linear animal model. Heritability estimates by linear model analysis were low (0.065–0.119 in Landrace & 0.061–0.157 in Large White); those by threshold model analysis were higher (0.136–0.200 & 0.110–0.283). Genetic correlations among parities differed between breeds and models. Genetic correlation between sow stayability and number born alive was positive in many cases, implying that selection for number born alive does not reduce sow stayability. The results seem to be affected by decisions on culling made by farmers.  相似文献   

17.
The objective of this study was to estimate genetic associations of prolificacy traits with other traits under selection in the Finnish Landrace and Large White populations. The prolificacy traits evaluated were total number of piglets born, number of stillborn piglets, piglet mortality during suckling, age at first farrowing, and first farrowing interval. Genetic correlations were estimated with two performance traits (ADG and feed:gain ratio), with two carcass traits (lean percent and fat percent), with four meat quality traits (pH and L* values in longissimus dorsi and semimembranosus muscles), and with two leg conformation traits (overall leg action and buck-kneed forelegs). The data contained prolificacy information on 12,525 and 10,511 sows in the Finnish litter recording scheme and station testing records on 10,372 and 9,838 pigs in Landrace and Large White breeds, respectively. The genetic correlations were estimated by the restricted maximum likelihood method. The most substantial correlations were found between age at first farrowing and lean percent (0.19 in Landrace and 0.27 in Large White), and fat percent (-0.26 in Landrace and -0.18 in Large White), and between number of stillborn piglets and ADG (-0.38 in Landrace and -0.25 in Large White) and feed:gain (0.27 in Landrace and 0.12 in Large White). The correlations are indicative of the benefits of superior growth for piglets already at birth. Similarly, the correlations indicate that age at first farrowing is increasing owing to selection for carcass lean content. There was also clear favorable correlation between performance traits and piglet mortality from birth to weaning in Large White (r(g) was -0.43 between piglet mortality and ADG, and 0.42 between piglet mortality and feed:gain), but not in Landrace (corresponding correlations were 0.26 and -0.22). There was a general tendency that prolificacy traits were favorably correlated with performance traits, and unfavorably with carcass lean and fat percents, whereas there were no clear associations between prolificacy and meat quality or leg conformation. In conclusion, accuracy of estimated breeding values may be improved by accounting for genetic associations between prolificacy, carcass, and performance traits in a multitrait analysis.  相似文献   

18.
SUMMARY: Heritabilities, genetic and phenotypic correlations among lifetime yields of milk, fat and protein, herdlife, productive life and number of lactations initiated in the herd were estimated from records of 44,933 progeny of 427 young and 119 proven Holstein sires in 1949 herds using a multivariate Reml technique to fit a sire model with relationships among young sires. Proven sires were fitted as fixed effects. Heritabilities of lifetime traits ranged from 0.005 to 0.030, suggesting little scope for direct selection for lifetime performance traits. Productive life had highest genetic correlation with lifetime fat yield (0.934), but correlations with lifetime milk and protein yields were smaller and similar (0.773 and 0.772). The number of lactations also had highest genetic correlation with lifetime fat yield. ZUSAMMENFASSUNG: Genetische Parameter von Lebensleistungsmerkmalen bei Holsteinkühen Heritabilit?tswerte, genetische und ph?notypische Korrelationen zwischen Lebensleistungsmerkmalen für Milch, Fett und Protein, Lebensdauer, produktive Zeit und Zahl Laktationen wurden won 44933 Nachkommen von 427 jungen und 119 nachkommenschaftsgeprüften Holsteinstieren in 1949 Herden mittels einer multivariablen REML-Technik gesch?tzt, die auf einem Vatertiermodell mit Verwandtschaft zwischen den jungen Stieren beruhte. Geprüfte Stiere wurden als fixe Effekte im Modell berücksichtigt. Heritabilit?tswerte dieser Merkmale rangieren von 0.005 bis 0.03, so da? wenig Aussichten für Erfolg direkter Selektion auf Lebensleistungsmerkmale besteht. Die L?nge des produktiven Lebens hatte die h?chste genetische Korrelation mit Lebensfettmenge (0.934), aber die Korrelationen mit Milch- und Protein-Lebensleistung waren kleiner und ?hnlich (0.773 und 0.772). Die Zahl der Laktationen hatte die h?chste genetische Korrelation mit der Lebensfettmenge.  相似文献   

19.
The aim of this study was to estimate genetic parameters of seven traits related to sow reproductive performance. Data on all Norwegian Landrace pigs (NL) born in nucleus herds and raised in nucleus or multiplying herds from 1990 to 2000 were extracted from the Norwegian national recording scheme. Reproductive traits investigated were age at first service (AFS), return rate in gilts (RRg), age at first farrowing (AFF), live-born piglets in the first litter (NBA1), interval from weaning to first service after first litter (WTS1), return rate after first litter (RR1), live-born piglets in the second litter (NBA2), and interval from weaning to first service after second litter (WTS2). After editing, the data set comprised 12,583 to 56,042 records, depending on the trait. A mixed linear and a joint linear threshold animal model were used to estimate (co)variance components. A full Bayesian approach via Gibbs sampling was adopted. The statistical model used for analysis included contemporary groups of herd-year (-season), purebred or crossbred litter, single or double insemination, mating type, parity in which the animal was born, a regression on lactation length, and an additive genetic effect. Neither the estimated heritabilities nor the genetic correlations differed much between the two approaches, but there was a tendency for higher genetic correlations using the joint linear threshold model approach. Average heritabilities were as follows: AFS = 0.31; RRg = 0.03; RR1 = 0.02; NBA1 = 0.12; NBA2 = 0.14; WTS1 = 0.08; and WTS2 = 0.03. The highest genetic correlations were estimated between NBA1 and NBA2 (r(g) = 0.95), RR1 and WTS1 (r(g) = 0.93), and between WTS1 and WTS2 (r(g) = 0.78). The estimated genetic correlation between NBA and WTS were close to zero. Selection for increased NBA will slightly increase AFS and reduce the probability of a return. Selection for decreased AFS will have a favorable effect on WTS intervals; however, selection for decreased AFS seems to have an unfavorable effect on return rate both on gilts and sows. Conversely, selection for decreased WTS intervals will reduce the probability of a return. Potential selection candidates to include in a multivariate fertility index are AFS, NBA, and WTS1. Due to the low heritability and low, but favorable, genetic correlations to NBA and WTS, RR is not recommended as a selection candidate.  相似文献   

20.
The objective was to estimate genetic correlations between body weight (BW), scrotal circumference and visual evaluation scores of body conformation measured at standard ages in Guzerat cattle. All measurements were performed at 205 (weaning age), 365, 450 and 550 days of age; for BW, two additional measurements (at birth and 120 days of age) were realized. The data utilized in this study were retrieved from a database of the Brazilian Association of Zebu Breeders that contained information of registered Guzerat animals born between 1970 and 2013. Genetic parameters were estimated in bi‐trait analyses by using Bayesian inference. Genetic correlations between BW at 205 and 450 days of age with other traits were high and positive, whereas the correlations between visual evaluation scores with other traits were moderate. Based on correlations herein obtained, we conclude that selection based on BW results in increased visual scores and scrotal circumference, leading to improvements in productive performance and animals with best body conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号