首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study compared changes in prevalence and antimicrobial susceptibility of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni in feedlot calves derived from the auction market (AUCT; n = 299) and from a single-ranch source (RANCH; n = 300). In the AUCT calves, the prevalence of Mannheimia haemolytica decreased, whereas Histophilus somni increased over the feeding period. The AUCT calves showed an increase in isolates not susceptible to tulathromycin for all bovine respiratory disease (BRD) pathogens, an increase in Pasteurella multocida and Histophilus somni isolates not susceptible to oxytetracycline, and an increase in Pasteurella multocida isolates not susceptible to florfenicol. In the RANCH calves, the prevalence of all 3 BRD pathogens was high at feedlot entry and decreased significantly during the study period. In RANCH calves, there was a significant increase in Pasteurella multocida isolates not susceptible to oxytetracycline, tulathromycin, and florfenicol. Surprisingly, there was a significant decrease in Mannheimia haemolytica isolates that were not susceptible to oxytetracycline, tilmicosin, and tulathromycin.  相似文献   

2.
This study aimed to investigate the prevalence at both farm-level and calf-level and to identify the risk factors of respiratory bacterial pathogens in dairy calves in Taiwan. The status of bovine respiratory disease (BRD) was evaluated by using the Wisconsin scoring system from a total of 400 pre-weaned calves from 32 different farms in Taiwan, then the nasopharyngeal swabs were collected. The prevalence of respiratory pathogens was 84.37% at farm-level and 45.50% at calf-level, and Pasteurella multocida (P. multocida) was the most prevalent pathogen. The presence of Mycoplasma bovis (M. bovis), P. multocida, Mannheimia haemolytica (M. haemolytica) and Histophilus somni (H. somni) were all higher in BRD positive calves than BRD negative calves, but only in H. somni was significant (P<0.001). Then nine farm management risk factors were analyzed by using multivariate logistic regression models to determine the risk factors of respiratory bacterial pathogens (farm and calf-level). In the result at farm-level, only unheated colostrum was significantly associated with pathogen positive farms (Odds Ratio (OR)=11.43). At calf-level, the predominant risk factor for each pathogen, M. bovis, P. multocida, M. haemolytica and H. somni, was late first colostrum feeding (OR=272.82), unheated colostrum (OR=3.41), waste milk feeding (OR=6.59) and high pneumonia treatment cost (OR=2.52), respectively. For effective preventive measures, farmer education on milk and colostrum feeding are urgently warranted.  相似文献   

3.
The etiological agents involved in a bovine respiratory disease (BRD) outbreak were investigated in a dairy heifer calf rearing unit from southern Brazil. A battery of PCR assays was performed to detect the most common viruses and bacteria associated with BRD, such as bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), bovine alphaherpesvirus 1 (BoHV-1), bovine coronavirus (BCoV), bovine parainfluenza virus 3 (BPIV-3), Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. Bronchoalveolar lavage fluid (BALF) samples were taken from 21 heifer calves (symptomatic n = 15; asymptomatic n = 6) that, during the occurrence of the BDR outbreak, were aged between 6 and 90 days. At least one microorganism was detected in 85.7 % (18/21) of the BALF samples. Mixed infections were more frequent (72.2 %) than single infections (27.7 %). The interactions between viruses and bacteria were the most common in coinfections (55.5 %). The frequencies of BRD agents were 38.1 % for BRSV, 28.6 % for BVDV, 33.3 % for BCoV, 42.85 % for P. multocida, 33.3 % for M. bovis, and 19 % for H. somni. BoHV-1, BPIV-3, and M. haemolytica were not identified in any of the 21 BALF samples. Considering that BALF and not nasal swabs were analyzed, these results demonstrate the etiological multiplicity that may be involved in BRD outbreaks in dairy calves.  相似文献   

4.
A study was conducted to isolate bacterial species/pathogens from the nasal cavity of apparently healthy and pneumonic sheep. Nasal swabs were collected aseptically, transported in tryptose soya broth and incubated for 24 h. Then, each swab was streaked onto chocolate and blood agar for culture. Bacterial species were identified following standard bacteriological procedures. Accordingly, a total of 1,556 bacteria were isolated from 960 nasal swabs collected from three different highland areas of Ethiopia, namely Debre Berhan, Asella, and Gimba. In Debre Berhan, 140 Mannheimia haemolytica, 81 Histophilus somni, 57 Staphylococcus species, and 52 Bibersteinia trehalosi were isolated. While from Gimba M. haemolytica, Staphylococcus, Streptococcus, and H. somni were isolated at rates of 25.2, 15.9, 11.4, and 5.9 %, respectively, of the total 647 bacterial species. In Asella from 352 bacterial species isolated, 93 (26.4 %) were M. haemolytica, 48 (13.6 %) were Staphylococcus species, 26 (7.4 %) were B. trehalosi, and 17 (4.8 %) H. somni were recognized. Further identification and characterization using BIOLOG identification system Enterococcus avium and Sphingomonas sanguinis were identified at 100 % probability, while, H. somni and Actinobacillus lignerisii were suggested by the system. The study showed that a variety of bacterial species colonize the nasal cavity of the Ethiopian highland sheep with variable proportion between healthy and pneumonic ones. To our knowledge, this is the first report on isolation of H. somni, an important pathogen in cattle, from the respiratory tract of a ruminant species in the country.  相似文献   

5.
Mannheimia haemolytica is the principal bacterial pathogen associated with bovine respiratory disease (BRD). As an opportunistic pathogen, M. haemolytica is also frequently isolated from the respiratory tract of healthy cattle. This study examined the characteristics of M. haemolytica collected using deep nasal swabs from healthy cattle (n = 49) and cattle diagnosed with BRD (n = 41). Isolates were analyzed by pulsed-field gel electrophoresis (PFGE), serotyped, and tested for antimicrobial susceptibility. Polymerase chain reaction (PCR) was used to screen isolates for virulence [leukotoxin C (lktC), putative adhesin (ahs), outer-membrane lipoprotein (gs60), O-sialoglycoprotease (gcp), transferring-binding protein B (tbpB) and UDP-N-acetyl-D-glucosamine-2-epimerase (nmaA)] and antimicrobial resistance [tet(H), blaROB-1, erm(X), erm(42), msr(E)-mph(E) and aphA-1] genes. Isolates were genetically diverse but in three instances, M. haemolytica with the same pulsotype, resistance phenotype, and genotype were collected from cattle with BRD. This occurred once between cattle located in two different feedlots, once between cattle in the same feedlot, but in different pens, and once among cattle from the same feedlot in the same pen. Isolates from healthy cattle were primarily serotype 2 (75.5%) while those from individuals with BRD were serotype 1 (70.7%) or 6 (19.5%). Resistance to at least one antibiotic occurred more frequently (P < 0.001) in M. haemolytica collected from cattle with BRD (37%) compared with those that were healthy (2%). Overall, tetracycline resistance (18%) was the most prevalent resistant phenotype. All tetracycline-resistant M. haemolytica encoded tet(H). Ampicillin resistance (6%) and neomycin resistance (15%) were detected and corresponded to the presence of the blaROB-1 and aphA-1 genes, respectively. Tilmicosin resistance (6%) was also detected, but the resistance genes responsible were not identified. The virulence genes lktC, ahs, gs60, and gcp were present in all isolates examined, while tbpB and nmaA were only detected in serotype 1 and serotype 6 isolates indicating they may be potential targets for serotype-specific identification or vaccine development. These results provide the first reported evidence of transmission and spread of antimicrobial-resistant M. haemolytica that have contributed to bovine respiratory disease in western Canadian feedlots.  相似文献   

6.
The efficacy of a Pasteurella haemolytica vaccine (PhV) administered once to calves within 24 hours of arrival at a feedlot was tested for the ability to prevent morbidity and mortality from all bovine respiratory disease (BRD) and specifically from fibrinous pneumonia mortality. The PhV consisted of two immunizing ingredients: outer membrane proteins extracted from P. haemolytica, plus genetically attenuated leukotoxin produced by recombinant DNA technology. This double blind study was conducted at a large Saskatchewan feedlot using 2,324 high-risk calves purchased at auction markets and kept under typical commercial feedlot conditions. The trial design included four vaccine test groups: 1) PhV and a bovine herpesvirus type-1 (BHV-1) subunit vaccine comprised only of the virus glycoprotein IV (gIV); 2) PhV and a commercial modified live vaccine (MLV) containing BHV-1 and parainfluenza-3 viruses; 3) gIV alone; and 4) MLV alone. Calves were assigned to vaccine groups in a random systematic manner, individually identified, and monitored for 90 days after vaccination. The vaccines were given once, on arrival, to reflect common feedlot practice, although vaccination prior to expected risk would be more appropriate.

The PhV in combination with gIV reduced BRD morbidity by 20% (p < 0.05) compared to gIV alone and 24% (p < 0.05) compared to MLV alone, and reduced BRD mortality by 88% (p < 0.05) and fibrinous pneumonia mortality by 100% (p < 0.05) when compared to either gIV or MLV alone. Vaccination with PhV in combination with MLV significantly reduced the efficacy of the PhV in preventing BRD morbidity, BRD mortality, and fibrinous pneumonia mortality and also reduced the antibody response to P. haemolytica leukotoxin. These results suggest that the MLV interfered with the protective capacity of the PhV.

  相似文献   

7.
Bovine respiratory disease (BRD) has been identified as the most significant infectious disease of feedlot cattle in eastern Australia.1 Bovine respiratory disease causes economic loss due to medication costs, mortalities, excessive feed inputs associated with increased time on feed, reduced sale prices and associated labour costs. Bovine respiratory disease is a complex multifactorial condition with multiple animal, environmental and management risk factors predisposing cattle to illness. A range of microorganisms are implicated in BRD with at least four viral and five bacterial species commonly involved individually or in combination. The viruses most commonly associated with BRD in Australia are bovine herpesvirus 1 (BHV1), bovine viral diarrhoea virus (BVDV or bovine pestivirus), bovine parainfluenza 3 virus (PI3) and bovine respiratory syncytial virus (BRSV). More recently, bovine coronavirus has been identified as a potential viral contributor to BRD in Australia.2 A number of bacterial species have also been recognised as important to the BRD complex; these include Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, Trueperella pyogenes and Mycoplasma bovis. Although one or more of the pathogens listed above can be isolated from clinical cases of BRD, there is no evidence that infection alone causes serious illness. This indicates that, in addition to specific infectious agents, other factors are crucial for the development of BRD under field conditions. These can be categorised as environmental, animal and management risk factors. These risk factors are likely to exert their effects through multiple pathways including reductions in systemic and possibly local immunity. For example, stressors such as weaning, handling at saleyards, transport, dehydration, weather conditions, dietary changes, comingling and pen competition might reduce the effectiveness of the immune system. Reduced immunocompetence can allow opportunistic infection of the lower airways with potential pathogens leading to the development of BRD. The objective of this paper is to critically review the evidence for management practices aimed at reducing the incidence of BRD in Australian feedlot cattle. Predisposing factors (Table 1) largely beyond the control of most feedlots, such as weather and exposure to respiratory viruses, are discussed separately, but these factors can generate indirect prevention responses that are discussed under the preventative practices categories. The current practices are classified as either animal preparation practices (Table 2) or feedlot management practices (Table 3).  相似文献   

8.
9.
The primary objective of this study was to determine, at the lung level, whether single or multiple clones of Mannheimia haemolytica are present within a pen during a bovine respiratory disease (BRD) episode. A secondary objective was to assess whether M. haemolytica isolates obtained from nasal swabs (NS) are identical to those isolated deeper within the respiratory tract. Sixteen BRD episodes that naturally occurred in 12 pens of eight to 12 bulls (n = 112) newly-received at three fattening operations were investigated. One hundred and seventy five M. haemolytica isolates were collected from 239 pairs of trans-tracheal aspirations (TTA) and NS performed during these 16 BRD episodes. M. haemolytica isolates were characterized by pulsed-field gel electrophoresis (PFGE). PFGE types obtained from NS and TTA were then compared. M. haemolytica was isolated during 14 BRD episodes. Two to three different clones of M. haemolytica were recovered during 10 episodes whereas only one clone was recovered in four episodes. A moderate agreement (kappa = 0.50) between NS and TTA for M. haemolytica isolation was observed. Identical PFGE types were only observed in 77% of matched NS-TTA pairs. The significant within-pen diversity of M. haemolytica during BRD episodes indicates that the disease is not primarily due to the spread of a single virulent clone among cattle and highlights the importance of predisposing factors that enable the resident flora to overcome the cattle's immune system. The results also demonstrate that isolates recovered from NS are not always representative of the isolates present deeper within the respiratory tract.  相似文献   

10.
11.
Pneumonia is a leading cause of loss to ruminants throughout the world. Mannheimia (Pasteurella) haemolytica is one of the most important etiological agent of pneumonia in cattle, sheep, and goats. This study was carried out to determine the incidence of M.haemolytica antigens using immunohistochemistry labelling of formalin-fixed, paraffin-embedded tissues in pneumonic lungs of goats slaughtered at abattoir, and then to compare these immunohistochemistry results with the results of bacterial isolation. For these objectives, a total of 1505 goat lungs slaughtered in slaughterhouse were grossly examined and pneumonia was detected in 74 cases (4.91%). Of these, with the exception of verminous pneumonia observed in 32 cases, on 42 pneumonic lungs immunohistochemical examinations were performed. Formalin-fixed and paraffin-embedded lung tissue samples were immunohistochemically stained by the avidin-biotin-peroxidase complex (ABC) procedure using polyclonal antibodies to detect M.haemolytica antigens. Pneumonic lesions were more frequently encountered in cranioventral lobes than caudal lobes, and characterized by irregular lobular foci of atelectasis or lobar pneumonia. The presence of M.haemolytica antigens was detected in 19 (45%) out of 42 pneumonic lungs. Bacterial antigens were found most frequently in the cytoplasm of bronchial and bronchiolar epithelial cells, in the swirling degenerating leukocytes in the alveoli, and in the degenerating leukocytes in the area of coagulation necrosis, less frequently in the epithelial cells of bronchial glands, and lymphoid cells. Conclusionly, immunohistochemical detection of M.haemolytica antigens in pneumonic lungs appear to be more reliable compared to bacterial isolation.  相似文献   

12.
13.
The effect of route and dosage of administration on the serological response to a vaccine containing genetically attenuated leukotoxin of Pasteurella haemolytica combined with bacterial extracts of P. haemolytica and Haemophilus somnus (Somnu-Star Ph, Biostar Inc., Saskatoon, Saskatchewan) was evaluated in a controlled field trial in 301 feedlot calves. Vaccination of calves on arrival at the feedlot with Somnu-Star Ph significantly (p < 0.05) increased P. haemolytica and H. somnus serum antibody titers and reduced bovine respiratory disease (BRD) morbidity. A single subcutaneous vaccination with Somnu-Star Ph was as effective in stimulating a humoral antibody response and in reducing BRD morbidity as double vaccination by the intramuscular or the subcutaneous route. Furthermore, there were no swellings or adverse reactions observed with either subcutaneous or intramuscular administration of Somnu-Star Ph.

These results suggest that feedlot calves can be immunized subcutaneously once on arrival with Somnu-Star Ph. Double vaccination was of no added value in this trial, because the majority of BRD morbidity occurred prior to revaccination fourteen days postarrival. Additional larger-sized field trials are needed to monitor the duration of immunity following vaccination and to test the effect of route and dosage of vaccination on mortality.

  相似文献   

14.
Mannheimia haemolytica is a Gram negative bacterium that is part of the bovine respiratory disease, which causes important economic losses in the livestock industry. In the present work, the interaction between M. haemolytica A1 and bovine lactoferrin (BLf) was studied. This iron-chelating glycoprotein is part of the mammalian innate-immune system and is present in milk and mucosal secretions; Lf is also contained in neutrophils secondary granules, which release this glycoprotein at infection sites. It was evidenced that M. haemolytica was not able to use iron-charged BLf (BholoLf) as a sole iron source; nevertheless, iron-lacked BLf (BapoLf) showed a bactericidal effect against M. haemolytica with MIC of 4.88 ± 1.88 and 7.31 ± 1.62 μM for M. haemolytica strain F (field isolate) and M. haemolytica strain R (reference strain), respectively. Through overlay assays and 2-D electrophoresis, two OMP of 32.9 and 34.2 kDa with estimated IP of 8.18 and 9.35, respectively, were observed to bind both BapoLf and BholoLf; these OMP were identified by Maldi-Tof as OmpA (heat-modifiable OMP) and a membrane protein (porin). These M. haemolytica BLf binding proteins could be interacting in vivo with both forms of BLf depending on the iron state of the bovine.

Electronic supplementary material

The online version of this article (doi:10.1186/s13567-016-0378-1) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
17.
Histophilus somni is a Gram-negative bacterium and member of the Pasteurellaceae that is responsible for respiratory disease and other systemic infections in cattle. One of the bacterium’s virulence factors is antigenic phase variation of its lipooligosaccharide (LOS). LOS antigenic variation may occur through variation in composition or structure of glycoses or their substitutions, such as phosphorylcholine (ChoP). However, the role of ChoP in the pathogenesis of H. somni disease has not been established. In Haemophilus influenzae ChoP on the LOS binds to platelet activating factor on epithelial cells, promoting bacterial colonization of the host upper respiratory tract. However, ChoP is not expressed in the blood as it also binds C-reactive protein, resulting in complement activation and killing of the bacteria. In order to simulate the susceptibility of calves with suppressed immunity due to stress or previous infection, calves were challenged with bovine herpes virus-1 or dexamethazone 3 days prior to challenge with H. somni. Following challenge, expression of ChoP on the LOS of 2 different H. somni strains was associated with colonization of the upper respiratory tract. In contrast, lack of ChoP expression was associated with bacteria recovered from systemic sites. Histopathology of cardiac tissue from myocarditis revealed lesions containing bacterial clusters that appeared similar to a biofilm. Furthermore, some respiratory cultures contained substantial numbers of Pasteurella multocida, which were not present on preculture screens. Subsequent biofilm experiments have shown that H. somni and P. multocida grow equally well together in a biofilm, suggesting a commensal relationship may exist between the two species. Our results also showed that ChoP contributed to, but was not required for, adhesion to respiratory epithelial cells. In conclusion, expression of ChoP on H. somni LOS contributed to colonization of the bacteria to the host upper respiratory tract, but phase variable loss of ChoP expression may help the bacteria survive systemically.  相似文献   

18.
Growth-condition-dependent antigens play a role in the virulence or protective capacity of many organisms. Enhanced production of an approximately 54-kDa protein was detected in heat-shocked cultures of Pasteurella haemolytica. The heat-shock-inducible protein cross-reacted with antibodies to 60-kDa heat-shock proteins of Mycobacterium tuberculosis, Chlamydia, and Escherichia coli GroEL. A probe containing the E. coli groEL operon hybridized with fragments of P. haemolytica chromosomal DNA on Southern blots. Immunoblots of the 54-kDa protein using serum from 20 calves that were challenged experimentally with P. haemolytica resulted in band densities that were significantly different between calves with high and low lesion scores. Results of the study suggest that the 54-kDa heat-shock protein may be a growth-condition-dependent immunogen that is one component of resistance to pneumonic pasteurellosis.  相似文献   

19.
Objective To perform a comprehensive phenotypic characterisation of 35 isolates of bacteria previously identified as haemolytic Pasteurella‐Actinobacillus and obtained from cattle and sheep. Design The 35 isolates that had been obtained from Australian animals, 30 from cattle and five from sheep, were compared with reference strains of the five recognised species of the genus MannheimiaM haemolytica, M glucosida, M granulomatis, M ruminalis and M varigena. Results Thirty‐four of the isolates could be confidently assigned to three species of the genus Mannheimia. Twenty‐nine were M haemolytica, with 25 being isolated from cattle and four from sheep. All but three of the bovine M haemolytica were isolated from pneumonic lungs. Of the three remaining bovine M haemolytica isolates, one was obtained in pure culture from a bovine milk sample and the other two as part of a mixed flora associated with a middle ear infection of a calf suffering mucosal disease. Of the four ovine M haemolytica isolates, two were isolated in pure culture from milk and two, also in pure culture, from pneumonic lungs. Three bovine isolates were identified as M granulomatis ‐ one from a tongue abscess, one from a jaw abscess and one from a lung showing suppurative bronchopneumonia. Two bovine isolates were identified as M varigena‐ one coming from an udder and the other from a spleen. The available diagnostic records provided no information on whether these isolates were associated with a disease process. The remaining isolate was obtained from an ovine tongue abscess and could not be assigned to a recognised species within the genus Mannheimia. Conclusion The study represents the first time that M haemolytica, M granulomatis and M varigena have been recognised as being present in cattle and sheep in Australia. Veterinary laboratories that encounter Pasteurella‐Actinobacillus‐like organisms from cattle and sheep should attempt as complete a characterisation as possible to help improve our knowledge of the disease potential of these organsims.  相似文献   

20.
We describe the molecular analysis of a wild-type field strain of bovine viral diarrhea virus (BVDV) identified in a mummified fetus from a small Brazilian dairy cattle herd. Nucleic acids extracted from samples of the lung, liver, heart, spleen, and kidney were tested by PCR assays for bovine alphaherpesvirus 1, Neospora caninum, Leptospira spp., Histophilus somni, and Brucella abortus, a nested PCR assay for Mycoplasma bovigenitalium and Ureaplasma diversum, and a RT-PCR assay for BVDV. Amplicons were only obtained in the RT-PCR assay for the partial amplification of the BVDV 5′UTR (288 bp) in kidney and spleen samples and the Npro (438 bp) gene in the kidney sample. Nucleotide sequencing of the amplified products and phylogenetic analyses based on the 2 BVDV genomic regions enabled the BVDV strain to be classified as subgenotype 1a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号