共查询到20条相似文献,搜索用时 0 毫秒
1.
In a 2-year assessment carried out on tomato crops of Central and Southern Italy, a high incidence of Rhizoctonia solani and Sclerotium rolfsii was found. These fungal pathogens attack horticultural crops and are responsible for severe crown and stem rot. Because of technical, economical and environmental issues their chemical control is an arduous task. To find alternative and eco-compatible control methods, the effectiveness of two new antagonistic bacterial isolates (Burkholderia cepacia, T1A-2B, and Pseudomonas sp., T4B-2A), previously selected from suppressive organic amendments, were tested on tomato plants grown under both growth chamber and field conditions. The potential antagonists were compared with two commercial biofungicides, based on Bacillus subtilis (BSF4) and Trichoderma asperellum (TV1), and four synthetic fungicides (tolclofos-methyl, azoxystrobin, fosetyl-Al and fosetyl-Al + propamocarb). In 2-year field experiments carried out on tomato plants, the biocontrol bacteria as well as the other treatments were applied to the soil, proximal to the plant crowns and main roots, by means of an effective and specific system of drip irrigation. In all the experiments the novel selected biocontrol bacteria significantly reduced both incidence and severity of the diseases caused by S. rolfsii or R. solani, with results demonstrating effectiveness equal to TV1, better than BSF4 and comparable with the synthetic fungicides, except for tolclofos-methyl which was the most effective treatment. In field experiments, carried out for two consecutive years, isolate T1A-2B reduced up to 58.33% and up to 63.8% the severity of the diseases caused by S. rolfsii and R. solani respectively; whereas isolate T4B-2A gave reduction of S. rolfsii and R. solani diseases severity up to 73.2% and up to 62.7%, respectively. 相似文献
2.
The characteristically clustered occurrence and low level of mobility of Heterodera schachtii and Rhizoctonia solani in the soil and the induction of stress symptoms in the sugar beet canopy make them ideal targets for site-specific arrangements with precision agriculture tools. A field site infested with H. schachtii and R. solani was investigated in 2009 with near-range and aerial hyperspectral sensors during the growing season. At 31 sample points ground truth data for incidence and severity of the two organisms were collected and geo-referenced. Spectral vegetation indices computed from reflectance measurements obtained from two flight campaigns (AISA, 17th of June; HyMap, 28th of August) and the near-range spectroradiometers were significantly correlated (P < 0.01) with symptoms caused by the nematode or Rhizoctonia crown and root rot. A supervised classification with Spectral Angle Mapper of leaf symptoms induced by the organisms resulted in a classification accuracy of 72 and 64% for the AISA and HyMap data, respectively. The results demonstrated that remote sensing in combination with geographic information system technologies can be used effectively for the detection and mapping of symptoms caused by beet cyst nematode and Rhizoctonia crown and root rot. 相似文献
3.
Elicitors of systemic acquired resistance are well known to reduce severity of several plant pathogenic diseases caused by fungi, bacteria and viruses. Their field applications for management of plant diseases are, however, limited because of yield penalties. Our studies on affect of Benzo (1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), an elicitor of systemic acquired resistance, on chickpea blight caused by a fungal pathogen Didymella rabiei showed that multiple foliar applications of the chemical were effective in management of the disease under economic threshold levels. Multiple applications, however, affected chickpea grain yield adversely. The BTH induced yield penalties could be prevented by foliar spray schedule comprised of BTH and a contact fungicide mancozeb. One spray of BTH (50 ppm) followed by another of mancozeb (0.2%) was less effective (8.3% severity) than three sprays of BTH (4.2% severity) in blight control, however, this treatment enhanced grain yield significantly (1.241 t ha−1) over three sprays of BTH (0.922 t ha−1). 相似文献
4.
Y.M. Yan Y. Jiang X.L. An Y.H. Pei X.H. Li Y.Z. Zhang A.L. Wang Z. He X. Xia F. Bekes W. Ma 《Journal of Cereal Science》2009
Cloning and functional analysis of high molecular weight wheat glutenin subunit (HMW-GS) 1By8 from Italy durum cultivar Simeto was carried out in this study. All HMW-GS from Simeto were separated and characterized by appropriate electrophoresis methods, reversed-phased high performance liquid chromatography (RP-HPLC) and mass spectrometry (MS). The complete gene encoding 1By8 subunit was amplified by allele-specific PCR primers, including an upstream sequence of 857 bp and an open reading frame (ORF) of 2166 bp encoding a mature protein of 720 amino acid residues. The promoter sequence, containing -300 element (cereal glutenin gene control element) and enhancer was highly conserved among HMW-GS genes. Comparison with the sequence of subunit 1By9 from bread wheat demonstrated 99% identity with the main difference being that the 1By8 subunit possesses an additional insertion of 15 amino acid residues (QYPASQQQPA QGQQG) at position 342 and two residue substitutions at position 78 (leucine/proline) and 442 (arginine/glutamine). The molecular weight differences between MALDI-TOF-MS and deduced amino acid sequence of the coding gene revealed the possibility of some kinds of post-translational modifications present in 1By8 subunit. The protein subunit expressed in Escherichia coli showed a very similar mobility to the endogenous 1By8 of Simeto on SDS-PAGE. The function of the isolated protein on wheat processing quality was determined by 10 g Mixgraph analysis. Results demonstrated that addition of y-type HMW glutenin subunits into the base flour had significant positive effects on main mixing parameters and significant difference in effects were observed among different y-type subunits. 相似文献
5.
Yong-Li ZhouVeronica N.E. Uzokwe Cong-He ZhangLi-Rui Cheng Lei WangKai Chen Xiao-Qing GaoYong Sun Jin-Jie ChenLing-Hua Zhu Qi ZhangJauhar Ali Jian-Long Xu Zhi-Kang Li 《Crop Protection》2011,30(6):637-644
A novel bacterial blight (BB) resistance gene, Xa23, identified from Oryza rufipogon was introgressed into three popular restorer lines (Minghui63, YR293 and Y1671) for wild abortive cytoplasmic male sterility by marker-assisted backcross breeding approach in combination with artificial inoculation and stringent phenotypic selections. The three derived BB resistant restorer lines (Minghui63-Xa23, YR293-Xa23 and Y1671-Xa23) and their hybrid combinations with Zhenshan97A (Shanyou63-Xa23), NongfengA (Fengyou293-Xa23) and Zhong9A (Zhongyou1671-Xa23) demonstrated similar BB resistance spectrum as the donor parent, CBB23 (B). The newly developed BB resistant restorers and their derived hybrids were identical to their respective original versions for agronomic traits especially under disease free condition. However, under severe disease condition, the three BB resistant restorer lines exhibited significantly higher grain weight and spikelet fertility as compared to the respective original restorer lines thus further resulting in BB resistant hybrids with significantly higher grain yields than their respective popular original hybrids. The results indicated that the Xa23 gene could completely express its dominant broad spectrum resistance in different backgrounds of both restorer and male sterile lines across different growth stages, suggesting its immense breeding value in BB resistance improvement for hybrid rice. Moreover, a reasonable utilization and deployment of Xa23 gene for efficient control of BB disease in hybrid rice production was recommended. 相似文献
6.
The population dynamics of Xanthomonas campestris pv. vitians (Xcv) was studied both externally and internally in lettuce, tomato and pepper plants. In addition, the application of bactericides during transplant production period was carried out for the management of bacterial leaf spot of lettuce under greenhouse conditions. Epiphytic populations of Xcv were recovered on leaves of lettuce plants (105 CFU/g) 5 weeks after sprayed than the other plant species when inoculated with 108 CFU/ml of Xcv. When plants of each crop species infiltrated with the bacterium at 105 CFU/ml, the highest populations were developed in lettuce (108 CFU/cm2) followed by pepper with 106 CFU/cm2 and tomato with 105 CFU/cm2 10-days after infiltration. Application of a mixture of Maneb and Kocide or Kocide alone as a foliar spray on lettuce significantly reduced the incidence and disease severity of bacterial leaf spot by 29 and 27% respectively. Spread of the bacterium and development of the disease may partly be managed by avoiding intercropping of these plants commonly grown in close proximity to lettuce. For the management of leaf-associated populations of Xcv in lettuce, use of a mixture of Maneb and Kocide is advocated to minimize the effect of attacks. 相似文献
7.
A.M. Villegas-Fernández J.C. Sillero A.A. Emeran J. Winkler B. Raffiot J. Tay F. Flores D. Rubiales 《Field Crops Research》2009
The aim of this work was to find new sources of resistance to chocolate spot disease, and to validate their stability across different environments. In order to do so, a collection of 307 accessions of Vicia faba was screened for resistance to Botrytis fabae under field conditions; stability of resistance of the 40 most-resistant accessions was tested in a multi-location experiment in Austria, Chile, Egypt, France and Spain over two field seasons. Although complete resistance was not found, nine accessions showed interesting levels of incomplete resistance (ranging from 10 to 20% of average severity across environments, maximum average severity being 47.9%). Genotype × environment interaction accounted for 22% of the sum of squares of the multi-environment evaluation, revealing instability of the phenotypic expression across environments. This usually hampers the efficiency of selection and reduces the adaptability of the plant material. Three accessions stand out for their consistent resistance, both in terms of reduced disease severity and high stability, which make them good candidates for breeding programs. As for environments, those with the highest total severity mean were the most discriminant between accessions. In contrast, those with lower severity means were the most representative of the whole range of environments. It can be concluded that validation of resistance to chocolate spot in different environments is an essential step when screening for material of interest and should be taken into account for further works. 相似文献
8.
The efficacy of Hanseniaspora uvarum against gray mold by adding ammonium molybdate (NH4–Mo) and the mode of actions were evaluated. The results showed that H. uvarum at 1 × 106 CFU ml−1 plus 1 mmol l−1 NH4–Mo greatly reduced gray mold in grape fruits. NH4–Mo at concentrations of 1, 5, 10 and 15 mmol l−1 significantly inhibited spore germination and mycelium growth of Botrytis cinerea. Population growth of H. uvarum was markedly inhibited by NH4–Mo at 5 mmol l−1in vitro and not affected by addition of NH4–Mo at 1 and 5 mmol l−1 in wounds combination of NH4–Mo and H. uvarum induced higher activities of peroxidase (POD), polyphenoloxidase (PPO), phenylalanine ammonialyase (PAL), superoxide dismutase (SOD), catalase (CAT) and β-1,3-Glucanase than individual application of H. uvarum or NH4–Mo. The enhancement of disease control may be directly because of the inhibitory effects of NH4–Mo on spore germination and mycelial growth of B. cinerea in vitro, and indirectly because of the induced defense reactions by NH4–Mo in grape berries. 相似文献
9.
Rojan P. John R.D. Tyagi D. Prévost Satinder K. Brar Stéphan Pouleur R.Y. Surampalli 《Crop Protection》2010
Trichoderma viride was proved as an effective biocontrol agent against two fungal pathogens, Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes, infecting soybean. During an in vitro biocontrol test, Trichoderma showed mycoparasitism and destructive control against the tested fungal pathogens. Both the pathogens significantly influence the germination and P. arrhenomanes had a severe effect (only 5% germination). The root system of the soybean plant was poorly developed due to the infection and it exerted a negative influence on the nodulation and further growth phases of the plant. During pot assay along with biocontrol activity, Trichoderma showed growth promoting action on the soybean plant. Trichoderma enhanced growth of shoot and root systems and fruit yield after 12 weeks of growth. Pythium and Fusarium infected plants treated with Trichoderma had ∼194% and 141% more height than pathogens alone. The fruit yield treated with Trichoderma was ∼66 per plant whereas the yield was only 41 for a control plant. The plants infected with Pythium and Fusarium and treated with Trichoderma had fruit yields of 43 and 53 respectively and those were 5 and 1.6 times higher than plants infected with pathogens. 相似文献
10.
Pratibha Srivastava Sheeja GeorgeJames J. Marois David L. WrightDavid R. Walker 《Crop Protection》2011,30(6):726-732
We examined the effect of saccharin on the systemic acquired resistance (SAR) response of soybean to the fungus Phakopsora pachyrhizi, the causal agent of soybean rust. Plants were grown hydroponically in half-strength Hoagland’s solution and were challenged with the pathogen 1, 5, 10 and 15 d after treatment with 3 mM saccharin applied either as a foliar spray or a root drench at the 2nd trifoliate (V3) and early reproductive (R1) stages. Plants were destructively harvested and assessed for visible rust symptoms 2 wk after inoculation. Mode of saccharin application was a significant factor influencing the severity of rust infection. Saccharin applied as a root drench was more effective than the foliar spray treatment at inducing SAR, with increased resistance observed 1 d after application. Systemic protection against rust infection was still apparent 15 d after application of saccharin as a root drench. In contrast, foliar treatment with saccharin did not increase systemic protection until 15 d after treatment. When systemic protection was induced by the application of saccharin in either manner, there was no significant reduction of plant growth, except when plants were inoculated 15 d after the saccharin application as a root drench at the R1 stage of development. 相似文献
11.
Five bacterial strains (TR1 to TR5) isolated from root nodules of fenugreek (Trigonella foenum-graecum) were tested for their plant growth promotory traits and biocontrol potential against Fusarium oxysporum. On the basis of morphological, physiological, biochemical and molecular characteristics, strains TR1 and TR3 - TR5 were identified as Ensifer meliloti, and TR2 as Rhizobium leguminosarum. All bacterial isolates utilized phosphate in vitro. Except TR5, all isolates produced IAA and none of them showed volatile cyanogens production. Except TR3, all isolates produced in vitro siderophore. Isolate TR1 and TR4 showed chitinase production while only TR2 showed β-1,3-glucanase activity. Isolates TR1, TR2 and TR5 exhibited ACC deaminase activity. Isolates TR1, TR2 and TR4 inhibited the growth of F. oxysporum, causing loss of structural integrity of the mycelium, hyphal perforation, lysis, fragmentation and degradation. The potential for nodulation and nitrogen fixation of the strains were confirmed by amplification of 500 bp nodC and 781 bp nifH fragments. The application of the TR1 + TR2 combination resulted in increased grain yield by 35% and 36% of fenugreek in two consecutive field trials, respectively as compared to control. Maximum increments in vigour index, nodule number and root and shoot biomass were recorded with seed inoculated with consortium (TR1 + TR2) followed by single inoculation as compared to control. The antibiotic resistant marker strain of E. meliloti TR1strep+ and R. leguminosarum TR2tet+ confirmed the efficient colonization of fenugreek roots. This study showed that these rhizobial isolates have properties of biocontrol agents and may be applied to promote the growth of fenugreek. 相似文献
12.
Jun-hai Niu Quan-xin Guo Heng Jian Chang-long ChenDan Yang Qian LiuYang-dong Guo 《Crop Protection》2011,30(8):1063-1069
Loop-mediated isothermal amplification (LAMP), a novel DNA amplification technique, has been used to detect a variety of pathogens including viruses, fungi, bacteria and parasites. However, diagnosis of sedentary plant-parasitic nematode (PPN) species has not yet been attempted. In this study, we developed a universal LAMP set (RKN-LAMP) for the diagnosis of four common Meloidogyne species (Meloidogyne incognita, M. arenaria, M. javanica and M. hapla), and M. incognita-specific LAMP set (Mi-LAMP). In both assays, a typical ladder-like pattern on gel electrophoresis was observed in all positive samples but not in the negative controls. Amplification products were further confirmed using restriction analysis of the Hpa II enzyme, detection by visual inspection using SYBR Green I and the lateral flow dipstick (LFD) assay. The two LAMP sets were specifically able to detect four common Meloidogyne species and M. incognita populations having several different geographical origins and pathotypes. No cross reaction with DNA of other PPNs was observed. Sensitivity of the RKN- and Mi-LAMP was 10 and 100 fg of pure genome DNA respectively. Both LAMP sets could also amplified crude DNA isolated from the galled root tissue and from soil containing juveniles of M. incognita. The RKN- and Mi-LAMP sets offer the advantages of simplicity, rapidity and cost effectiveness. Both LAMP sets will be instrumental for the diagnosis of Meloidogyne spp. by local extension and regulatory personnel. 相似文献
13.
分别采用甘蔗表达谱芯片和Solexa技术,对甘蔗热带种和割手密种基因表达谱进行分析.结果表明:基因芯片技术筛选得到1 245个差异表达基因;Solexa技术分别在热带种和割手密种中得到42 913 194个和39 363 668个初始tag,从中获得143 121和112 281个高质量测序标签(clean tags),对应的标签种数(distinctclean tags)分别为25 164和20 349,未知序列(unknown clean tags)分别为117 957和91 932,其中差异表达基因有l 432个.基因芯片和Solexa技术得到的差异基因中有823个是相同的,主要涉及非生物刺激响应、磷代谢、转录调控等功能. 相似文献
14.
The legume pod borer Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) has developed high levels of resistance to conventional insecticides, and therefore, efforts are being made to develop transgenic chickpea expressing toxin genes from the bacterium Bacillus thuringiensis (Bt) for controlling this pest. However, there is an apprehension that acid exudates in chickpea might interfere with the biological activity of Bt. Therefore, we studied the biological activity of Bt (BiolepR) on four chickpea genotypes with different levels of resistance to H. armigera under field conditions, and by incorporating lyophilized leaf and pod tissue into the artificial diet with and without Bt. The pH of the acid exudates varied from 2.1 to 2.9, and malic and oxalic acids were the major components of the acid exudates in different chickpea genotypes. There was no survival of H. armigera larvae in chickpea plants sprayed with 0.1, 0.2 and 0.5% Bt. There was a significant reduction in larval survival, larval and pupal weights and fecundity, and prolongation of larval and pupal periods in chickpea plots sprayed with Bt (0.05%) as compared to the unsprayed plots. Biological activity of Bt was lower on artificial diets with leaf or pod powder of chickpea genotypes, which might be because of a low intake of Bt toxins due to the antifeedant effects of acid exudates in the chickpea or reduction in biological activity of Bt due to the interaction of biochemical constituents in chickpea with the Bt toxins. Larval survival, larval and pupal weights, pupation and adult emergence were significantly lower on diets with leaf or pod powder of the H. armigera-resistant genotypes than on the susceptible check. Chickpea genotypes with resistance to H. armigera acted in concert with Bt to cause adverse effects on the survival and development of this insect. The results suggested that development of transgenic chickpeas expressing toxin genes form Bt will be quite effective for controlling of the pod borer, H. armigera. 相似文献
15.
Application of Trichoderma harzianum Rifai aggr. after soil fumigation with methyl bromide improved the control of Sclerotium rolfsii Sacc. and Rhizoctonia solani Kühn in a peanut field. Although soil fumigation controlled the diseases caused by these pathogens, it was followed by rapid reinfestation by S. rolfsii and R. solani. The biological control agent T. harzianum prevented reinfestation of the fumigated soil by the pathogens (88% reduction) both in a controlled environment and in field conditions. In soil treated with T. harzianum, survival of sclerotia was considerably less than in the untreated control. The combined treatment, of fumigation and T. harzianum applications, caused almost total mortality of sclerotia in soil in the laboratory and in the field. Application of T. harzianum to the root zone of tomatoes effectively controlled S. rolfsii in a field naturally infested with S. rolfsii and R. solani. Transplanting plants treated with T. harzianum into soil fumigated with methyl bromide reduced disease incidence by 93% and increased yield by 160%. 相似文献
16.
Jose Pablo Soto-AriasGary P. Munkvold 《Crop Protection》2011,30(5):577-580
Fungicides pyraclostrobin (strobilurin) and tebuconazole (triazole) were applied to soybean [Glycine max (L.) Merr.] at growth stages R3, R5 or R3 + R5, in 2008 and 2009 at two locations in Iowa. Incidence of infection of stems and seeds by Phomopsis spp. was evaluated, along with yield and seed quality. Stem infection by Phomopsis spp. was reduced in both years by pyraclostrobin applied at R3 + R5, and in 2008 by pyraclostrobin at R5, by approximately three-fold compared to the untreated control. In 2009, treatments including applications of tebuconazole at R3 and pyraclostrobin at R5 significantly reduced infection of seed by Phomopsis spp., by approximately two-fold compared to the untreated control. Only the application of pyraclostrobin at R3 + R5 reduced both stem and seed infection by Phomopsis spp. in 2009. None of the treatments had a significant effect on yield, or seed quality, evaluated by warm and cold germination tests. Seed infection by Phomopsis spp. was negatively correlated with seed quality. Fungicides applied at these growth stages can have an impact on infection by Phomopsis spp., but their effectiveness varies with environment and disease intensity. 相似文献
17.
Bacterial wilt caused by Ralstonia solanacearum is a devastating plant disease affecting several economically important crops. To trigger plant-mediated systemic resistance against the pathogen, silicon and the rhizobacteria strain Bacillus pumilis were applied as elicitors. The impact of each elicitor in the induction of systemic resistance was evaluated by individual or dual application in pathogen inoculated tomato genotypes. Application of silicon and B. pumilis significantly reduced bacterial wilt incidence by 50.7 and 26.7%, respectively, in the King Kong 2 genotype (moderately resistant) and by 31.1 and 22.2%, respectively, in the L390 genotype (susceptible) but the dual application of the elicitors did not. The pathogen responsive lipoxygenase (LOX) activity was decreased in the silicon-treated tomato plants and no significant difference was detected in B. pumilis treated-pathogen inoculated plants compared to the control. In addition, a non-significant increases of peroxidase (PO) activity and phenylalanine ammonia lyase (PAL) activity were observed in either silicon/B. pumilis treated and pathogen inoculated plants. However, the PO, PAL and LOX activities declined during the dual application due to antagonistic effect of the two pathways triggered by the two elicitors. Therefore, separate application of each elicitor is recommended as the best strategy for induction of systemic resistance against bacterial wilt in tomato with silicon being a stronger inducer than B. pumilis. 相似文献
18.
Laboratory and field/pot experiments were conducted to determine the effect of two insecticides, fipronil and pyriproxyfen, on growth, symbiotic properties (nodulation and leghaemoglobin content), amount of N and P nutrients in plant organs, seed yield and seed protein of pea plants. In addition, the role of the most promising fipronil and pyriproxyfen tolerant Rhizobium leguminosarum strain MRP1 having plant growth promoting traits such as, production of phytohormones and siderophores, was also assessed in the presence and absence of both insecticides. Generally, fipronil and pyriproxyfen at the tested rates (recommended and higher doses) decreased the growth of both R. leguminosarum inoculated or uninoculated pea plants. Of the various concentrations of the two insecticides, pyriproxyfen at all concentrations in general, showed comparatively more severe toxicity to pea plants by decreasing plant biomass, symbiotic attributes, nutrients (nitrogen and phosphorus) uptake, seed yield and grain protein over the uninoculated control. The sole application of 3900 μg pyriproxyfen kg−1 soil (three times the recommended dose) showed the highest toxicity and decreased the root nitrogen, shoot nitrogen, root phosphorus, shoot phosphorus, seed yield and grain protein by 20%, 27%, 25%, 29%, 15% and 2% respectively, compared to the control. Interestingly, when the inoculant strain MRP1 was used with any concentration of the two insecticides, it significantly (P ≤ 0.05) increased the measured variables (plant dry weight, nodule numbers, dry nodule biomass, leghaemoglobin, nitrogen and phosphorus uptake, seed yield and grain protein) when compared to the plants grown in sandy clay loam soils treated solely (without inoculant) with the same individual treatment of each insecticide. For instance, three times the recommended dose of pyriproxyfen with strain MRP1 showed a highest stimulatory effect and increased the root nitrogen, shoot nitrogen, root phosphorus, shoot phosphorus, seed yield and grain protein by 108%, 124%, 119%, 153%, 112% and 6% respectively, compared to the plants grown in soil treated solely with three times the recommended dose of pyriproxyfen. 相似文献
19.
Leaf removal reduces the epiphytic populations of several filamentous fungi found on grapevine (Vitis vinifera). Consequently this practice is used to prevent foliar diseases of grapevines and rots of grapes. In this study, the effects of leaf removal on Cladosporium rot (Cladosporium cladosporioides and Cladosporium herbarum), which often affects ‘Cabernet Sauvignon’ in Chile, were characterized. The effects of leaf removal on epiphytic populations of Cladosporium spp. on grape berry surfaces and on Cladosporium rot development were investigated. Three leaf removal treatments were compared: (i) severe leaf removal, where leaves from two to three nodes above, opposite and from all nodes below clusters were removed; (ii) mild leaf removal, where leaves opposite each cluster were removed; and (iii) no leaf removal. Regardless of the leaf removal treatment, low population levels of Cladosporium spp. were detected early in the ontogenic development of grape berries which increased as the berries matured, reaching maximum populations on overripe berries. Based on our results, severe leaf removal favors the growth of Cladosporium spp. on grape berries and increases the prevalence of Cladosporium rot at harvest. This increase in Cladosporium spp. was correlated with an increase in lenticel damage in ‘Cabernet Sauvignon’ and ‘Sauvignon blanc’ vines subjected to severe leaf removal. Considering that Cladosporium rot significantly reduces yield and wine quality, farmers should avoid continuous exposure of grape clusters to sunlight in order to prevent severe outbreaks of Cladosporium rot. 相似文献
20.
J. SudishaArun Kumar Kestur N. AmrutheshSiddapura R. Niranjana Hunthrike Shekar Shetty 《Crop Protection》2011,30(7):794-801
Modulation of physiological and biochemical defensive responses against downy mildew (DM) of pearl millet induced by raw cow milk (RCM) and five amino acids is reported in this paper. In vitro conditions, none of the inducer treatments showed inhibitory action on DM pathogen. Significant enhancement of seed germination and seedling vigor was observed in RCM and amino acids treated seeds. Under greenhouse conditions, significant protection against DM was provided by l-phenylalanine (68.6%), l-isoleucine (66.5%) and l-proline (55.7%) treatments. Among the RCM treatments, the 10% dilution proved to be the best by offering disease protection of 35%. Spatio-temporal time gap studies indicated that seed treatment with l-phenylalanine increased disease resistance four days after inoculation. Seed treatments with RCM and amino acids also enhanced the vegetative and reproductive growth parameters of pearl millet when compared to the control. A similar trend in protection against DM was evident in the field trials. At the biochemical level, defense related enzymes such as phenylalanine ammonia lyase (PAL), peroxidase (POX) and β-1,3-glucanase showed an increased activity in RCM and amino acids treated seedlings than in sterile distilled water control seedlings. The highest PAL activity was recorded in RCM (10 and 20%) whereas in case of amino acids, the highest activity was observed in l-proline and l-phenylalanine treatments. The highest activity of β-1,3-glucanase was recorded in RCM (20%) and l-phenylalanine. 相似文献