首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in copper, zinc superoxide dismutase (SOD) have been implicated in the selective death of motor neurons in 2 percent of amyotrophic lateral sclerosis (ALS) patients. The loss of zinc from either wild-type or ALS-mutant SODs was sufficient to induce apoptosis in cultured motor neurons. Toxicity required that copper be bound to SOD and depended on endogenous production of nitric oxide. When replete with zinc, neither ALS-mutant nor wild-type copper, zinc SODs were toxic, and both protected motor neurons from trophic factor withdrawal. Thus, zinc-deficient SOD may participate in both sporadic and familial ALS by an oxidative mechanism involving nitric oxide.  相似文献   

2.
Dominant mutations in superoxide dismutase cause amyotrophic lateral sclerosis (ALS), a progressive paralytic disease characterized by loss of motor neurons. With the use of mice carrying a deletable mutant gene, expression within motor neurons was shown to be a primary determinant of disease onset and of an early phase of disease progression. Diminishing the mutant levels in microglia had little effect on the early disease phase but sharply slowed later disease progression. Onset and progression thus represent distinct disease phases defined by mutant action within different cell types to generate non-cell-autonomous killing of motor neurons; these findings validate therapies, including cell replacement, targeted to the non-neuronal cells.  相似文献   

3.
Amyotrophic lateral sclerosis (ALS) is a progressive, lethal neuromuscular disease that is associated with the degeneration of spinal and brainstem motor neurons, leading to atrophy of limb, axial, and respiratory muscles. The cause of ALS is unknown, and there is no effective therapy. Neurotrophic factors are candidates for therapeutic evaluation in ALS. Although chronic delivery of molecules to the central nervous system has proven difficult, we recently discovered that adeno-associated virus can be retrogradely transported efficiently from muscle to motor neurons of the spinal cord. We report that insulin-like growth factor 1 prolongs life and delays disease progression, even when delivered at the time of overt disease symptoms.  相似文献   

4.
Mutations in the copper/zinc superoxide dismutase (SOD1) gene produce an animal model of familial amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. To test a new therapeutic strategy for ALS, we examined the effect of caspase inhibition in transgenic mice expressing mutant human SOD1 with a substitution of glycine to alanine in position 93 (mSOD1(G93A)). Intracerebroventricular administration of zVAD-fmk, a broad caspase inhibitor, delays disease onset and mortality. Moreover, zVAD-fmk inhibits caspase-1 activity as well as caspase-1 and caspase-3 mRNA up-regulation, providing evidence for a non-cell-autonomous pathway regulating caspase expression. Caspases play an instrumental role in neurodegeneration in transgenic mSOD1(G93A) mice, which suggests that caspase inhibition may have a protective role in ALS.  相似文献   

5.
The generation of pluripotent stem cells from an individual patient would enable the large-scale production of the cell types affected by that patient's disease. These cells could in turn be used for disease modeling, drug discovery, and eventually autologous cell replacement therapies. Although recent studies have demonstrated the reprogramming of human fibroblasts to a pluripotent state, it remains unclear whether these induced pluripotent stem (iPS) cells can be produced directly from elderly patients with chronic disease. We have generated iPS cells from an 82-year-old woman diagnosed with a familial form of amyotrophic lateral sclerosis (ALS). These patient-specific iPS cells possess properties of embryonic stem cells and were successfully directed to differentiate into motor neurons, the cell type destroyed in ALS.  相似文献   

6.
A protein of molecular size 180 kilodaltons is associated with 10-nanometer filaments in neurons and is immunologically distinct from smaller putative neurofilament subunits and from 10-nanometer filament proteins in nonneuronal cells, such as myotubes and fibroblasts. Neurons do not contain vimentin, the major filament protein in many other cells, including the nonneuronal cells in cultures of neural tissue.  相似文献   

7.
SynCAM,a synaptic adhesion molecule that drives synapse assembly   总被引:1,自引:0,他引:1  
Synapses, the junctions between nerve cells through which they communicate, are formed by the coordinated assembly and tight attachment of pre- and postsynaptic specializations. We now show that SynCAM is a brain-specific, immunoglobulin domain-containing protein that binds to intracellular PDZ-domain proteins and functions as a homophilic cell adhesion molecule at the synapse. Expression of the isolated cytoplasmic tail of SynCAM in neurons inhibited synapse assembly. Conversely, expression of full-length SynCAM in nonneuronal cells induced synapse formation by cocultured hippocampal neurons with normal release properties. Glutamatergic synaptic transmission was reconstituted in these nonneuronal cells by coexpressing glutamate receptors with SynCAM, which suggests that a single type of adhesion molecule and glutamate receptor are sufficient for a functional postsynaptic response.  相似文献   

8.
Degenerative disorders of motor neurons include a range of progressive fatal diseases such as amyotrophic lateral sclerosis (ALS), spinal-bulbar muscular atrophy (SBMA), and spinal muscular atrophy (SMA). Although the causative genetic alterations are known for some cases, the molecular basis of many SMA and SBMA-like syndromes and most ALS cases is unknown. Here we show that missense point mutations in the cytoplasmic dynein heavy chain result in progressive motor neuron degeneration in heterozygous mice, and in homozygotes this is accompanied by the formation of Lewy-like inclusion bodies, thus resembling key features of human pathology. These mutations exclusively perturb neuron-specific functions of dynein.  相似文献   

9.
Control of synapse number by glia   总被引:1,自引:0,他引:1  
Although astrocytes constitute nearly half of the cells in our brain, their function is a long-standing neurobiological mystery. Here we show by quantal analyses, FM1-43 imaging, immunostaining, and electron microscopy that few synapses form in the absence of glial cells and that the few synapses that do form are functionally immature. Astrocytes increase the number of mature, functional synapses on central nervous system (CNS) neurons by sevenfold and are required for synaptic maintenance in vitro. We also show that most synapses are generated concurrently with the development of glia in vivo. These data demonstrate a previously unknown function for glia in inducing and stabilizing CNS synapses, show that CNS synapse number can be profoundly regulated by nonneuronal signals, and raise the possibility that glia may actively participate in synaptic plasticity.  相似文献   

10.
低叶绿素b水稻突变体的抗氧化酶系统研究(英文)   总被引:9,自引:2,他引:7  
[Objective] The mitigative effect of antioxidase system of a rice mutant with low chlorophyll b on photooxidative damage was studied.[Method] A rice mutant with low chlorophyll b and its wild type were taken as experimental materials to comparatively research their peroxide (H2O2) contents, the activity and isozymes of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in chloroplast.[Result] Compared with the wild type, there were many kinds of SOD, POD and CAT isozymes in leaf cells and chloroplast cell of mutant, and the activity of SOD, POD and CAT isozymes in leaf cells and chloroplast cell of mutant was also correspondingly higher. Under intense light condition, the H2O2 content of chloroplast in mutant was less than that in the wild type. [Conclusion] The higher activity of scavenging active oxygen can relieve the photooxidative damage made by excessive light energy of intense light on photosynthetic membrane, which is an important reason for higher photosystem Ⅱ (PS II) stability of this mutant.  相似文献   

11.
[目的]研究低叶绿素b水稻突变体抗氧化酶系统在缓解光氧化伤害中的作用。[方法]以低叶绿素b水稻突变体和野生型为材料,对其叶绿体中过氧化氢(H2O2)含量以及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)的活性和同工酶谱进行了比较。[结果]与野生型相比,突变体叶片细胞及叶绿体中抗氧化酶SOD、POD和CAT的同工酶种类相对较多,酶活性相对较高;强光条件下,突变体叶绿体H2O2的含量低于野生型叶绿体。[结论]较强的内源活性氧清除系统减轻了强光下过剩光能对光合膜的光氧化伤害,是该突变体PSII具有较高稳定性的重要原因。  相似文献   

12.
The classical recessive mouse mutant, Purkinje cell degeneration (pcd), exhibits adult-onset degeneration of cerebellar Purkinje neurons, retinal photoreceptors, olfactory bulb mitral neurons, and selected thalamic neurons, and has defective spermatogenesis. Here we identify Nna1 as the gene mutated in the original pcd and two additional pcd alleles (pcd2J and pcd3J). Nna1 encodes a putative nuclear protein containing a zinc carboxypeptidase domain initially identified by its induction in spinal motor neurons during axonal regeneration. The present study suggests an unexpected molecular link between neuronal degeneration and regeneration, and its results have potential implications for neurodegenerative diseases and male infertility.  相似文献   

13.
TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis   总被引:1,自引:0,他引:1  
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder characterized pathologically by ubiquitinated TAR DNA binding protein (TDP-43) inclusions. The function of TDP-43 in the nervous system is uncertain, and a mechanistic role in neurodegeneration remains speculative. We identified neighboring mutations in a highly conserved region of TARDBP in sporadic and familial ALS cases. TARDBPM337V segregated with disease within one kindred and a genome-wide scan confirmed that linkage was restricted to chromosome 1p36, which contains the TARDBP locus. Mutant forms of TDP-43 fragmented in vitro more readily than wild type and, in vivo, caused neural apoptosis and developmental delay in the chick embryo. Our evidence suggests a pathophysiological link between TDP-43 and ALS.  相似文献   

14.
Duane's retraction syndrome (DRS) is a complex congenital eye movement disorder caused by aberrant innervation of the extraocular muscles by axons of brainstem motor neurons. Studying families with a variant form of the disorder (DURS2-DRS), we have identified causative heterozygous missense mutations in CHN1, a gene on chromosome 2q31 that encodes alpha2-chimaerin, a Rac guanosine triphosphatase-activating protein (RacGAP) signaling protein previously implicated in the pathfinding of corticospinal axons in mice. We found that these are gain-of-function mutations that increase alpha2-chimaerin RacGAP activity in vitro. Several of the mutations appeared to enhance alpha2-chimaerin translocation to the cell membrane or enhance its ability to self-associate. Expression of mutant alpha2-chimaerin constructs in chick embryos resulted in failure of oculomotor axons to innervate their target extraocular muscles. We conclude that alpha2-chimaerin has a critical developmental function in ocular motor axon pathfinding.  相似文献   

15.
A large body of evidence indicates that metazoan innate immunity is regulated by the nervous system, but the mechanisms involved in the process and the biological importance of such control remain unclear. We show that a neural circuit involving npr-1, which encodes a G protein-coupled receptor (GPCR) related to mammalian neuropeptide Y receptors, functions to suppress innate immune responses. The immune inhibitory function requires a guanosine 3',5'-monophosphate-gated ion channel encoded by tax-2 and tax-4 as well as the soluble guanylate cyclase GCY-35. Furthermore, we show that npr-1- and gcy-35-expressing sensory neurons actively suppress immune responses of nonneuronal tissues. A full-genome microarray analysis on animals with altered neural function due to mutation in npr-1 shows an enrichment in genes that are markers of innate immune responses, including those regulated by a conserved PMK-1/p38 mitogen-activated protein kinase signaling pathway. These results present evidence that neurons directly control innate immunity in C. elegans, suggesting that GPCRs may participate in neural circuits that receive inputs from either pathogens or infected sites and integrate them to coordinate appropriate immune responses.  相似文献   

16.
17.
18.
Axonal transport of proteins in experimental neuropathies   总被引:5,自引:0,他引:5  
Axoplasmic flow of proteins is interrlupted in cats with neuropatlhy induced by acrylamide, but it is niot initerrupted in nzormlal cats and in those with neuropathy induced by tri-orthocresyl phiospliate. The proteins move from lumbosacral motor neurons along the ventral roots and from ganglion cells toward the spinal cord along the dorsal roots at about 1(1/2) millimeters per day.  相似文献   

19.
Abnormally high spiking activity can damage neurons. Signaling systems to protect neurons from the consequences of abnormal discharge activity have been postulated. We generated conditional mutant mice that lack expression of the cannabinoid receptor type 1 in principal forebrain neurons but not in adjacent inhibitory interneurons. In mutant mice,the excitotoxin kainic acid (KA) induced excessive seizures in vivo. The threshold to KA-induced neuronal excitation in vitro was severely reduced in hippocampal pyramidal neurons of mutants. KA administration rapidly raised hippocampal levels of anandamide and induced protective mechanisms in wild-type principal hippocampal neurons. These protective mechanisms could not be triggered in mutant mice. The endogenous cannabinoid system thus provides on-demand protection against acute excitotoxicity in central nervous system neurons.  相似文献   

20.
【目的】分离和鉴定自然突变的油菜乙酰乳酸合成酶抑制剂类除草剂抗性突变体M9抗性基因,阐明抗性产生的分子基础。【方法】通过配置杂交组合研究其遗传规律,应用同源序列法克隆油菜ALS家族基因,采用杂交转育和小孢子培养技术将抗性基因转育到陆奥-五十铃细胞质雄性不育(MICMS)恢复系中,进行PCR鉴定。【结果】该突变体抗性由1个显性核基因控制。克隆获得BnALS1-BnALS3,核酸序列比对发现,M9抗性是由BnALS1的点突变使蛋白序列的第638位丝氨酸(AGT)残基被天冬酰胺酸(AAT)替代所致,将此抗性基因命名为BnALS1R。抗性基因BnALS1R转育到MICMS恢复系中的PCR检测表明,所有抗除草剂的恢复系都携带有BnALS1R。【结论】突变体M9抗性由1个显性核基因控制,BnALS1第638位丝氨酸突变成天冬酰胺酸是抗性产生的分子基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号