首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
About 30% of detected extrasolar planets exist in multiple-star systems. The standard model of planet formation cannot easily accommodate such systems and has difficulty explaining the odd orbital characteristics of most extrasolar giant planets. We demonstrate that the formation of terrestrial-size planets may be insulated from these problems, enabling much of the framework of the standard model to be salvaged for use in complex systems. A type of runaway growth is identified that allows planetary embryos to form by a combination of nebular gas drag and perturbations from massive companions-be they giant planets, brown dwarfs, or other stars.  相似文献   

2.
Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of approximately 0.71 and approximately 0.27 times the mass of Jupiter and orbital separations of approximately 2.3 and approximately 4.6 astronomical units orbiting a primary star of mass approximately 0.50 solar mass at a distance of approximately 1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.  相似文献   

3.
Future surveys for transiting extrasolar planets are expected to detect hundreds of jovian-mass planets and tens of terrestrial-mass planets. For many of these newly discovered planets, the intervals between successive transits will be measured with an accuracy of 0.1 to 100 minutes. We show that these timing measurements will allow for the detection of additional planets in the system (not necessarily transiting) by their gravitational interaction with the transiting planet. The transit-time variations depend on the mass of the additional planet, and in some cases terrestrial-mass planets will produce a measurable effect. In systems where two planets are seen to transit, the density of both planets can be determined without radial-velocity observations.  相似文献   

4.
Last week at the International Astronomical Union 24th General Assembly, astronomers announced nine newly discovered planets orbiting other stars. The roster of extrasolar planets, now nearing 50, suggests that stars are fecund breeding grounds for worlds but that young planets must battle hordes of rivals for a handful of stable orbits.  相似文献   

5.
Boss AP 《Science (New York, N.Y.)》1995,267(5196):360-362
The sensitivities of astrometric and radial velocity searches for extrasolar planets are strongly dependent on planetary masses and orbits. Because most nearby stars are less massive than the sun, the first detection is likely to be of a Jupiter-mass planet orbiting a low-mass star, with a possible theoretical expectation being that Jupiter-like planets will be found much closer [inside the Earth-sun separation of 1 astronomical unit (AU)] to these low-luminosity stars than Jupiter is to the sun (5.2 AU). However, radiative hydrodynamic models of protoplanetary disks around low-mass stars (of 0.1 to 1 solar mass) show that Jupiter-like planets should form at distances (approximately 4 to 5 AU) that are only weakly dependent on the stellar mass.  相似文献   

6.
The ensemble of now more than 250 discovered planetary systems displays a wide range of masses, orbits and, in multiple systems, dynamical interactions. These represent the end point of a complex sequence of events, wherein an entire protostellar disk converts itself into a small number of planetary bodies. Here, we present self-consistent numerical simulations of this process, which produce results in agreement with some of the key trends observed in the properties of the exoplanets. Analogs to our own solar system do not appear to be common, originating from disks near the boundary between barren and (giant) planet-forming.  相似文献   

7.
Present theories of terrestrial planet formation predict the rapid ;;runaway formation' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then merge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to ;;Jupiter' does not form, an Earth-sized planet is almost always found near Earth's heliocentric distance. These results suggest that occurrence of Earth-like planets may be a common feature of planetary systems.  相似文献   

8.
In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar properties (such as mass, radius, and age) and to test theories of stellar evolution. We find that the distribution of observed masses of these stars shows intriguing differences to predictions from models of synthetic stellar populations in the Galaxy.  相似文献   

9.
Observations of the gravitational microlensing event MOA 2003-BLG-32/OGLE 2003-BLG-219 are presented, for which the peak magnification was over 500, the highest yet reported. Continuous observations around the peak enabled a sensitive search for planets orbiting the lens star. No planets were detected. Planets 1.3 times heavier than Earth were excluded from more than 50% of the projected annular region from approximately 2.3 to 3.6 astronomical units surrounding the lens star, Uranus-mass planets were excluded from 0.9 to 8.7 astronomical units, and planets 1.3 times heavier than Saturn were excluded from 0.2 to 60 astronomical units. These are the largest regions of sensitivity yet achieved in searches for extrasolar planets orbiting any star.  相似文献   

10.
The Kepler mission is monitoring the brightness of ~150,000 stars, searching for evidence of planetary transits. As part of the Hunt for Exomoons with Kepler (HEK) project, we report a planetary system with two confirmed planets and one candidate planet discovered with the publicly available data for KOI-872. Planet b transits the host star with a period P(b) = 33.6 days and exhibits large transit timing variations indicative of a perturber. Dynamical modeling uniquely detects an outer nontransiting planet c near the 5:3 resonance (P(c) = 57.0 days) with a mass 0.37 times that of Jupiter. Transits of a third planetary candidate are also found: a 1.7-Earth radius super-Earth with a 6.8-day period. Our analysis indicates a system with nearly coplanar and circular orbits, reminiscent of the orderly arrangement within the solar system.  相似文献   

11.
Our planetary system is embedded in a small-body disk of asteroids and comets, vestigial remnants of the original planetesimal population that formed the planets. Once formed, those planets dispersed most of the remaining small bodies. Outside of Neptune, this process has left our Kuiper belt and built the Oort cloud, as well as emplacing comets into several other identifiable structures. The orbits in these structures indicate that our outer solar system's comet disk was shaped by a variety of different physical processes, which teach us about how the giant planets formed. Recent work has shown that the scattered disk is the most likely source of short-period comets. Moreover, a growing body of evidence indicates that the sculpting of the Kuiper belt region may have involved large-scale planetary migration, the presence of other rogue planetary objects in the disk, and/or the close passage of other stars in the Sun's birth cluster.  相似文献   

12.
Irion R 《Science (New York, N.Y.)》2000,288(5474):2121-2124
About 900 astronomers gathered 2 weeks ago near the birthplace of Eastman Kodak Co. to share their latest pictures of the sky at the American Astronomical Society's 196th Meeting. Notable findings pointed to a cold origin for comet Hale-Bopp, a nasty environment for extrasolar planets, and a maximum size for the biggest structures in the universe.  相似文献   

13.
Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.  相似文献   

14.
The existence of a dominant massive planet, Jupiter, in our solar system, although perhaps essential for long-term dynamical stability and the development of life, may not be typical of planetary systems that form around other stars. In a system containing two Jupiter-like planets, the possibility exists that a dynamical instability will develop. Computer simulations suggest that in many cases this instability leads to the ejection of one planet while the other is left in a smaller, eccentric orbit. In extreme cases, the eccentric orbit has a small enough periastron distance that it may circularize at an orbital period as short as a few days through tidal dissipation. This may explain the recently detected Jupiter-mass planets in very tight circular orbits and wider eccentric orbits around nearby stars.  相似文献   

15.
Tectonic evolution of the terrestrial planets   总被引:4,自引:0,他引:4  
The style and evolution of tectonics on the terrestrial planets differ substantially. The style is related to the thickness of the lithosphere and to whether the lithosphere is divided into distinct, mobile plates that can be recycled into the mantle, as on Earth, or is a single spherical shell, as on the moon, Mars, and Mercury. The evolution of a planetary lithosphere and the development of plate tectonics appear to be influenced by several factors, including planetary size, chemistry, and external and internal heat sources. Vertical tectonic movement due to lithospheric loading or uplift is similar on all of the terrestrial planets and is controlled by the local thickness and rheology of the lithosphere. The surface of Venus, although known only at low resolution, displays features both similar to those on Earth (mountain belts, high plateaus) and similar to those on the smaller planets (possible impact basins). Improved understanding of the tectonic evolution of Venus will permit an evaluation of the relative roles of planetary size and chemistry in determining evolutionary style.  相似文献   

16.
The evolution of gravitationally unstable protoplanetary gaseous disks has been studied with the use of three-dimensional smoothed particle hydrodynamics simulations with unprecedented resolution. We have considered disks with initial masses and temperature profiles consistent with those inferred for the protosolar nebula and for other protoplanetary disks. We show that long-lasting, self-gravitating protoplanets arise after a few disk orbital periods if cooling is efficient enough to maintain the temperature close to 50 K. The resulting bodies have masses and orbital eccentricities similar to those of detected extrasolar planets.  相似文献   

17.
Star dust     
Ney EP 《Science (New York, N.Y.)》1977,195(4278):541-546
Infrared astronomy has shown that certain classes of stars are abundant producers of refractory grains, which condense in their atmospheres and are blown into interstellar space by the radiation pressure of these stars. Metallic silicates of the kind that produce terrestrial planets are injected by the oxygen-rich stars and carbon and its refractories by carbon stars. Much of the interstellar dust may be produced by this mechanism. A number of "infrared stars" are completely surrounded by their own dust, and a few of these exhibit a unique morphology that suggests the formation of a planetary system or a stage in the evolution of a planetary nebula. Certain novae also condense grains, which are blown out in their shells. In our own solar system, comets are found to contain the same silicates that are present elsewhere in the galaxy, suggesting that these constituents were present in the primeval solar nebula.  相似文献   

18.
We have identified a companion to the young planetary-mass brown dwarf Oph 162225-240515. This pair forms a resolved binary consisting of two objects with masses comparable to those of extrasolar giant planets. Several lines of evidence confirm the coevality and youth of the two objects, suggesting that they form a physical binary. Models yield masses of approximately 14 and approximately 7 times the mass of Jupiter for the primary and the secondary object, respectively, at an age of approximately 1 million years. A wide ( approximately 240-astronomical unit) binary in the ultra-low-mass regime poses a challenge to some popular models of brown dwarf formation.  相似文献   

19.
Despite major differences in the solar and internal energy inputs, the atmospheres of the four Jovian planets all exhibit latitudinal banding and high-speed jet streams. Neptune and Saturn are the windiest planets, Jupiter is the most active, and Uranus is a tipped-over version of the others. Large oval storm systems exhibit complicated time-dependent behavior that can be simulated in numerical models and laboratory experiments. The largest storm system, the Great Red Spot of Jupiter, has survived for more than 300 years in a chaotic shear zone where smaller structures appear and dissipate every few days. Future space missions will add to our understanding of small-scale processes, chemical composition, and vertical structure. Theoretical hypotheses about the interiors provide input for fluid dynamical models that reproduce many observed features of the winds, temperatures, and cloud patterns. In one set of models the winds are confined to the thin layer where clouds form. In other models, the winds extend deep into the planetary fluid interiors. Hypotheses will be tested further as observations and theories become more exact and detailed comparisons are made.  相似文献   

20.
Icy bodies may have delivered the oceans to the early Earth, yet little is known about water in the ice-dominated regions of extrasolar planet-forming disks. The Heterodyne Instrument for the Far-Infrared on board the Herschel Space Observatory has detected emission lines from both spin isomers of cold water vapor from the disk around the young star TW Hydrae. This water vapor likely originates from ice-coated solids near the disk surface, hinting at a water ice reservoir equivalent to several thousand Earth oceans in mass. The water's ortho-to-para ratio falls well below that of solar system comets, suggesting that comets contain heterogeneous ice mixtures collected across the entire solar nebula during the early stages of planetary birth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号