首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Present paper reports a method of preparing polymer composite electrolyte nanofiber mat using polyvinyl alcohol (PVA), ammonium thiocynate (NH4SCN) salt, and aluminium oxide (Al2O3) nano particles based on electrospinning technique. Two-stage process of preparation of nanofibers, namely, preparation of nano particles filled PVA electrolyte gel solution followed by its electrospinning has been used. The so obtained nanofibers have been characterized by XRD, DSC, SEM, and Conductivity measurements. XRD patterns affirm the formation of nanocomposite while SEM pictures reveal formation of fibers on a nano scale format (300–800 nm). Fibers of the electrolytes are seen to be thermally stable. Ionic conductivity of electrolyte fiber is seen to improve in the presence of nano filler at room temperature with a maximum at 5.31×10−3 Scm−1 for 4 wt% filler concentration, which is comparable to that for corresponding dried gel electrolyte films.  相似文献   

2.
GSP/gelatin composite nanofiber membranes containing silver nanoparticles were successfully fabricated as a novel biomaterial by electrospinning. The silver nanoparticles (AgNPs) were synthesized with the grape seed polyphenols (GSP) as reducing agent in aqueous solution of gelatin, and then the GSP/gelatin/AgNPs mixed solution was electrospun into nanofibers at 55 °C. The scanning electron microscopy (SEM) confirmed that the composite fibers were uniform and the average fiber diameter ranged between 150 nm and 230 nm with an increase in applied potentials from 14 kV to 22 kV. And the transmission electron microscopy (TEM) showed that silver nanoparticles distributed individually in the fibers with the average particle size of about 11 nm. Furthermore, the ultraviolet visible spectrophotometer (UV-vis spectroscopy) test demonstrated that all of Ag+ converted to Ag0 when the concentration of gelatin was 24 wt% and the mass ratio of GSP to AgNO3 was about 5:2. The antibacterial activities of the fiber membranes against E.coli and S.aureus were measured via a shake flank test and demonstrated good performance after the importation of silver nanopaticles. Cytotoxicity testing also revealed that fiber membranes contained silver nanoparticles had no cyto-toxic. All the results indicated that the GSP was effective for the formation and stabilization of silver nanoparticles in composite nanofibers mats which had the potential for applications in antimicrobial tissue engineering and wound dressing.  相似文献   

3.
Nanofibrous membranes are intensively applied to fabricate advanced intelligent devices like highly sensitive sensors due to their flexibility, high porosity, high surface area and good mechanical and chemical stability. In this work, fluorescent cadmium telluride (CdTe) quantum dots (Q.Ds) were synthesized and then uniformly embedded in poly vinyl alcohol (PVA) nanofibers by electrospinning technique to serve as reversible quenching fluorescence-based sensor to detect the traces of benzene, toluene and xylene vapors selectively at room temperature. Fluorescence analysis suggested that Q.Ds preserve their original fluorescent property in solid nanofiber as if they were in solution. Scanning electron microscopy images showed the uniform diameter of nanofibers. In addition, Fluorescence and transmission electron microscopy (TEM) measurements confirmed the uniform distribution of the Q.Ds into nanofibers structures. The main mechanism of quenching based sensor was designated as electron transfer from thiogalycolic acid (TGA) — capped Q.D surface to target volatile organic compounds (VOC’s) vapors. Fabricated sensor showed selectively sensing upon trace of different target vapors due to the difference in the electronegativity of various VOC’s molecules. For example exposure to more electron withdrawing toluene molecules induces severe quenching effect on fluorescence intensity of Q.D (about 25 %) over xylene exposure. Moreover, it was observed that reducing the diameter of nanofibers enhanced the sensitivity of sensor.  相似文献   

4.
This study investigated the incorporation of nanoscale germanium (Ge) and silicon dioxide (SiO2) particles into poly(vinyl alcohol) (PVA) nanofibers with the aim of developing nanostructures with far-infrared radiation effects and antimicrobial properties for biomedical applications. Composite fibers containing Ge and SiO2 were fabricated at various concentrations of Ge and/or SiO2 using electrospinning and layered on polypropylene nonwoven. The morphological properties of the nanocomposite fibers were characterized using a field-emission scanning electron microscope and a transmission electron microscope. The far-infrared emissivity and emissive power of the nanocomposite fibers were examined in the wavelength range of 5-20 μm at 37 °C. The antibacterial properties were quantitatively assessed by measuring the bacterial reductions of Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli. Multi-component composite fibers electrospun from 11 wt% PVA solutions containing 0.5 wt% Ge and 1 wt% SiO2 nanoparticles exhibited a far-infrared emissivity of 0.891 and an emissive power of 3.44·102 W m?2 with a web area density of 5.55 g m?2. The same system exhibited a 99.9 % bacterial reduction against both Staphylococcus aureus and Escherichia coli, and showed a 34.8 % reduction of Klebsiella pneumoniae. These results demonstrate that PVA nanofibrous membranes containing Ge and SiO2 have potential in medical and healthcare applications such as wound healing dressings, skin care masks, and medical textile products.  相似文献   

5.
The nanofiber membrane prepared by electrospinning has been widely applied in lithium-ion batteries. A powerful strategy for designing, fabricating and evaluating Poly-m-phenylene isophthalamide (PMIA) nanofiber membrane with SiO2 nanoparticles was developed by electrospinning in this paper. The morphology, crystallinity, thermal shrinkage, porosity and electrolyte uptake, and electrochemical performance of the SiO2/PMIA nanofiber membranes were investigated. It was demonstrated that the nanofiber membrane with 6 wt% SiO2 possessed notable properties, such as better thermal stability, higher porosity and electrolyte uptake, resulting in higher ionic conductivity (3.23×10-3 S·cm-1) when compared with pure PMIA nanofiber membrane. Significantly, the SiO2/PMIA nanofiber membrane based Li/LiCoO2 cell exhibited more excellent cycling stability with capacity retention of 95 % after 50 cycles. The results indicated that the SiO2-doped PMIA nanofiber membranes had a potential application as separator in high temperature resistance lithium-ion batteries.  相似文献   

6.
Biocompatible polyvinyl alcohol (PVA)-styrylpyridinium (SbQ)/β-cyclodextrin (β-CD) composite nanofibers were obtained by electrospinning in this study. PVA-SbQ was used as the foundation polymer as well as crosslinking agent, β-CD was incorporated to achieve expected properties such as improved mechanical properties and thermal stability. The Fourier transform infrared spectroscopy (FTIR) spectra confirmed the existence of β-CD, and the morphologies and average fiber diameters of the electrospun composite nanofibers were also analyzed by SEM. X-ray diffraction patterns (XRD) of PVA-SbQ/β-CD composite nanofibers revealed that the inclusion of β-CD in the nanofibers affected the ordered phase of PVA. Besides, the thermal analyses revealed the improvement in the thermal properties for PVA-SbQ/β-CD composite nanofibers. It was found that the crosslinked composite nanofibers showed a clear higher tensile strength (TS) as well as a greater elongation at break (EB). Eventually, antifungal drug griseofulvin (GSV) has been loaded into the composite nanofibers by formation of its inclusion complex with β-CD in aqueous solution, ultraviolet light (UV-Vis) spectral analysis showed that the drug-loading nanofibers had certain sustained release effect.  相似文献   

7.
Polystyrene (PS) composites with nanofibrous structure consisting of multi-walled carbon nanotubes (MWCNTs) with 0-10 wt.% of nanofiller have been fabricated via electrospinning technique. The surface morphology and thermal properties of the composites were evaluated by scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA). The SEM analysis of the composite nanofibers samples revealed that the average diameter of the nanofibers increases with increasing MWCNTs content. The resultant MWCNTs/PS composite nanofibers diameters were in the range of 391±63 to 586±132 nm. The thermal stability of composites was increased after addition of MWCNTs to PS matrix. The electrical conductivity of the composites with different weight percentage of MWCNTs was investigated at room temperature. Electrical conductivity of MWCNTs/PS composite nanofiber followed percolation theory having a percolation threshold V c= 0.45 vol% (~0.75 wt. %) and critical exponent q=1.21. The electrical conductivity and thermal properties confirmed the presence of good dispersion and alignment MWCNTs encapsulated within the electrospun nanofibers. The electromagnetic interference (EMI) shielding effectiveness of the MWCNTs/PS composites was examined in the measurement frequency range of 8.2-12.4 GHz (X-band). The total EMI shielding efficiency of MWCNTs/PS composite nanofibers increased up to 32 dB. The EMI shielding results for MWCNTs/PS composite nanofibers showed that absorption loss was the major shielding mechanism and reflection was the secondary mechanism. The present study has shown the possibility of utilizing MWCNTs/PS composite nanofibers as EMI shielding/absorption materials.  相似文献   

8.
In this study, two biodegradable polymers, polycaprolactone (PCL) and polyvinyl alcohol (PVA) were used to fabricate nanofiber nonwovens (NFNs). Also, the silver nanoparticles (AgNPs) successfully reduced by using tea polyphenols (TP) and incorporated in the NFNs via electrospinning. The morphologies of the NFNs and AgNPs were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. The PCL nanofibers and PVA nanofibers interweaved each other, and AgNPs with average diameter 1.53±0.15 nm were embedded in the PVA nanofibers. The properties of electrospun NFNs were characterized by pore property, swelling/weight loss, water contact angle, mechanical property, and antibacterial activity. The nanofibers cross-linked to each other forming the 3Dnetwork porous structure with diameter about 1-1.5 μm. Although the hydrophobic PCL was added in the hybrid NFNs, the NFNs still showed hydrophilic propriety, high swelling degree (i.e. swelling degree is 330 % for 48 h), and low weight loss (i.e. weight loss is 22.4 % for 48 h). Also, the hybrid PCL/PVA/AgNPs NFNs exhibited a suitable mechanical property for wound dressings (i.e. tensile strength is 4.27 MPa, and breaking elongation is 88 %). Moreover, the hybrid NFNs effectively inhibited growth of Escherichia coli and Staphylococcus aureus. In summary, this PCL/PVA/AgNPs NFNs may provide a promising candidate for accelerating wound healing.  相似文献   

9.
Synthesis of biocompatible polymer nanofibers is valuable, due to their use as a cover for burns and as a replacement for bandage because of their antimicrobial properties. In this study, electrospinning of chitosan(Ch) and nanofibers synthesis with antibacterial properties was investigated. Nanofibers with antibacterial properties were synthesized by electrospun of Ch/poly(L-lactide)(PLA)/Imipenem(Imi) polymer solution. The results showed that the optimized ratio of Ch/PLA polymer solution was ratio of 50:50 and Ch 2 wt% and PLA 10 wt% polymer solution was the best weight percentage for nanofiber preparation. Also, the average diameter of Ch/PLA/Imi nanofibers was 143 nm and measured with ImageJ software. Afterwards, the antibacterial properties of Imi as additives (with different percentages) was studied in the polymer solution. The scanning electron microscopy (SEM) images and antibacterial tests were showed that the electrospun of Ch/PLA/Imi polymeric nanofibers were effective against Gram negative bacteria Escherichia coli (E. coli) and inhibited growth of E. coli. The growth and viability percentage of fibroblast cells with nanofibers in αMEM culture are at desirable levels after 6 days.  相似文献   

10.
Porous nanocomposites are prepared by electrospinning blended polyacrylonitrile, copper acetate and mutiwalled carbon nanotube in N, N-dimethylformamide. The electrospun nanofiber webs are oxidatively stabilized and then carbonized resulting in composite carbon nanofibers. The study reveals that composite nanofibers with relatively smooth surface morphology are successfully prepared. X-ray diffraction is used to confirm the presence of Cu in carbon nanofibers. The carbon nanofibers with CNTs have better thermal stability and higher electrical conductivity. The Brunauer-Emmett-Teller analysis reveals that C/Cu/CNTs nanocomposites with mesopores possess larger specific surface area and narrower pore size distribution than that of C/Cu nanofibers. The electrochemical properties are investigated by cyclic voltammetry and galvanostatic charge-discharge tests. The nanocomposite with 0.5 wt.% CNT loading exhibits an energy density of 2 Whkg?1, power density of 1916 Wkg?1, a specific capacitance of about 225 Fg?1 at a current density of 2 Ag?1 and its capacitance decreased to 78 % of its initial value after 3,000 cycles.  相似文献   

11.
We reported the preparation and characterization of the poly(vinyl alcohol) (PVA)/BaSO4 hybrid nanofibers prepared by normal and ultrasonic electrospinning, respectively. Compared to normal electrospinning, BaSO4 particles in the resultant PVA/BaSO4 hybrid nanofibers prepared by ultrasonic electrospinning were well-dispersed without severe agglomerations, as confirmed by scanning electron microscopy (SEM) analysis. X-ray diffraction (XRD) analysis indicated that typical crystalline peaks of PVA and BaSO4 particles were dramatically decreased by ultrasonication during electrospinning. Moreover, the size of BaSO4 aggregates became smaller.  相似文献   

12.
Antheraea pernyi silk fibroin (ASF) nanofibers, with good biocompatibility and biodegradability, have promising potential for biomaterial applications. However, the concentration processing of ASF solution for improving spinnability to achieve aqueous-based electrospinning remains a challenge. In this study, to avoid complicated concentration processing we demonstrated that lyophilized ASF possesses good water-solubility to generate highly concentrated ASF solution. The lyophilized ASF can be stored for a long time without structural changes and was able to re-dissolve to form reconstituted solution, providing a facile approach for the preparation of high concentration ASF solution. To avoid the gelation, refrigeration at 4 ºC can keep reconstituted ASF solution stable for long-term storage before electrospinning. It was found that the reconstituted ASF solution from lyophilized ASF solid exhibited good spinnability for uniform nanofiber formation when the concentration reached to 28.6 wt%, and a lower environmental temperature is preferential for prolonged electrospinning. Although a low concentration ASF aqueous solution was not electrospun into nanofibers, the solution could be fabricated into microspheres by electrospraying in a liquid nitrogen bath. The simple aqueous-based electrospining of ASF provides useful options for the fabrication of ASF biomaterials.  相似文献   

13.
Poly(vinyl alcohol) (PVA)/Ag-zeolite nanofiber webs were prepared with different concentrations of Ag-zeolite nanoparticles by the electrospinning technique. Scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), transmission electron microscopy (TEM), Fourier transform-infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Instron, and antibacterial activities analysis were utilized to characterize the morphology and properties of the PVA/Ag-zeolite nanofiber webs. The study results showed that the polymer concentration, applied voltages and tip-to-collector distances were the main factors influencing the morphology of the electrospun nanofiber webs. The introduction of Ag-zeolite nanoparticles improved the mechanical properties and thermal stability of the PVA nanofiber webs. TEM data demonstrated that the Ag-zeolite nanoparticles were well distributed within the nanofiber. FTIR revealed a possible interaction between the PVA matrix and the Ag-zeolite nanoparticles. These fibers showed an antibacterial efficacy of 99.8 % and over against Staphylococcus aureus and Klebsiella pneumoniae at Ag-zeolite concentrations of 1 % and over, because of the presence of the silver nanoparticles in the zeolite.  相似文献   

14.
As a kind of high-performance fibers, PTFE fiber has been widely used in many fields because of its unique characteristics. In this study, the poly(tetrafloroethylene) (PTFE) nanofibers manufactured by electrospinning method was reported. The gel-spinning solution of poly(tetrafluoroethylene)/poly(vinyl alcohol)/boric acid (PTFE/PVA/BA), which was prepared by the gel process of the mixture of PTFE, PVA, BA and redistilled water, was electrospun to form PTFE/PVA/BA composite nanofibers. After calcinating, the PTFE nanofibers with diameters of 200 nm to 1000 nm were obtained. The fibers before and after calcinating were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), FT-IR spectrum analysis and X-ray photoelectron spectroscopy (XPS), respectively, and the mechanical and hydrophobic properties of the fibers were also investigated. The results showed that the PTFE nanofiber membranes could be electrospun effectively used the gel-spinning solution of PTFE/PVA/BA, and may realize the applications in the fields of high-temperature filtration, catalyst supports, battery separator and so on.  相似文献   

15.
Phthorimaea operculella (Zeller) is one of the most common insect pests of cultivated potato in tropical and subtropical regions. In this research, a potential strategy to improve the insecticidal activity of plant essential oils for the effective management of P. operculella was studied. The insecticidal and residual effects of nanofiber oil (NFO) and pure essential oil (PEO) of Cinnamomum zeylanicum were assessed on PTM under laboratory conditions. The nanofibers were made by the electrospinning method using polyvinyl alcohol (PVA) polymer. The morphological characteristics of the nanofibers were evaluated by scanning electron microscopy and Fourier transform infrared spectroscopy. The chemical constituents of cinnamon essential oil (EO) were detected by GC/MS. Fumigant toxicity of NFO and PEO were evaluated on different growth stages (egg, male and female adults) of P. operculella. SEM and FTIR analyses confirmed the presence of EO on the nanofiber structure. The yield of the EO from C. zelanicum on the nanofibers was 1.86%. GC/MS analysis showed that cinnamaldehyde was the primary constituent (69.88%) of cinnamon EO. LC50 values of C. zelanicum EO and NFO were 4.92 and 1.76 μl/l air for eggs, 0.444 and 0.212 μl/l air for female adults, and 0.424 and 0.192 μl/l air for male adults, respectively. Fumigant bioassays revealed that NFO was more toxic than C. zeylanicum oil against at all stages of P. operculella. The residual effect of PEO and NFO was evaluated against the egg stage of the P. operculella. NFO lost insecticidal effectiveness 47 days after application, while the efficacy of PEO decreased 15 days after application. Our results suggest that NFO of C. zeylanicum can be used as an effective new tool for the management of P. operculella.  相似文献   

16.
Nylon 4/6 copolymer has desirable properties, such as high affinity to water and good tensile strength. These properties originate from the characteristics of nylon 4 and nylon 6. Zeolite is a good adsorptive material that has many pores in its structure and the ability to capture metallic ions. As a multifunctional additive, silver-ion-loaded zeolite nanoparticles were used to increase the moisture regain and impart antimicrobial properties to the nylon 4/6 copolymer. A nylon 4/6 nanofiber web was prepared by electrospinning from a polymer solution containing silver zeolite nanoparticles. The moisture regain of the nylon 4/6 nanofiber web increased with increasing amount of silver zeolite added. The web showed excellent antimicrobial activity against Klebsiella pneumoniae and Staphylococcus aureus. Overall, the nylon 4/6 nanofiber web could be a good material for wound healing dressings and high functional medical filters.  相似文献   

17.
Silk fibroin (SF) nanofibers were prepared by electrospinning and their application as an enzyme immobilization support was attempted. By varying the concentration of SF dope solution the diameter of SF nanofiber was controlled. The SF nanofiber web had high capacity of enzyme loading, which reached to 5.6 wt%. The activity of immobilizedα-chymotrypsin (CT) on SF nanofiber was 8 times higher than that on silk fiber and it increased as the fiber diameter decreased. Sample SF8 (ca. 205 nm fiber diameter) has excellent stability at 25°C by retaining more than 90 % of initial activity after 24 hours, while sample SF11 (ca. 320 nm fiber diameter) shows higher stability in ethanol, retaining more than 45% of initial activity. The formation of multipoint attachment between enzyme and support might increase the stability of enzyme. From these results, it is expected that the electrospun SF nanofibers can be used as an excellent support for enzyme immobilization.  相似文献   

18.
Nanospider technology as a modified electrospinning technique was used for the fabrication of electrospun nanofibers based on poly(vinyl alcohol) (PVA)/poly(ethylene oxide) (PEO) blend as drug delivery system (DDS) for metronidazole (MTZ) as an antimicrobial drug. Electrospun PVA/PEO/MTZ composite nanofibers were stabilized against disintegration in water by heating in oven at 110°C, or by soaking in isopropyl alcohol for 6 hrs. Incorporation of MTZ into electrospun nanofibers was confirmed by SEM, FT-IR spectra and TGA. The drug release results showed that the burst release was suppressed with stabilized electrospun nanofibers compared with non-stabilized ones. Electrospun PVA/PEO/MTZ composite nanofibers exhibited remarkable antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger, Penicillium notatum and Aspergillus flavus which varies with the species of the tested organisms.  相似文献   

19.
The core-sheath nanofibers consisting of polyurethane (PU) core and PU composites sheath with multi-walled carbon nanotubes (MWNTs) were prepared by electrospinning. At low MWNT concentration, MWNTs appeared highly aligned along the fiber axis with some curving in nanotubes, whereas in case of high concentration, some aggregation of MWNTs appeared due to difficulty in full dispersion of nanotubes. In comparison of the single component nanofiber webs, the core-sheath nanofiber webs showed much better mechanical properties of modulus and breaking stress, including an exceptional elongation-at-break. It indicates that the CNT-incorporated core-sheath structure is very effective for enhancing the mechanical properties of nanofiber webs. In addition, the core-sheath nanofibers demonstrated the fast shape recovery, compared with one component fibers of pure shape memory PU and PU/MWNTs, which provides the possibility of fabricating more sensitive intelligent materials.  相似文献   

20.
Well-aligned PMIA nanofiber mats were fabricated by electrospinning and then hot-stretching along the fiber axis was used to improve the mechanical properties of nanofibers in this paper. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) were used to characterize the morphology and properties of nanofibers. The results showed that the nanofibers became thinner and better alignment than the as-spun nanofibers after hotstretching, and the average diameter of the nanofibers decreased with the increasing of the tensile force. In the same time, hotstretching improved the crystallinity and T g of the as-spun PMIA nanofibers. The tensile strength and modulus of the hotstretched nanofiber mats peaked at ca.50 % and ca.196 % respectively at the tensile force of 12 N compared with the as-spun nanofiber mats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号