首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
针对传统模型预测控制(Model Predictive Control, MPC)无法适应拖拉机田间作业工况复杂性的问题,提出了一种基于自适应时域MPC的路径跟踪控制算法。首先,基于拖拉机运动学建立线性时变车辆误差模型;然后,根据拖拉机实时速度和参考路径曲率,利用模糊控制算法确定当前最优预测时域和控制时域;最后,结合MPC算法控制拖拉机跟踪预先设置好的参考路径。实车试验表明:拖拉机路径跟踪横向误差绝对值均值<0.03m,直线段横向误差绝对值<0.07m,曲线段横向误差绝对值<0.15m,且路径跟踪控制器能够保证拖拉机在5s以内准确、快速地跟踪预先设置的参考路径。  相似文献   

3.
基于跟踪误差模型的无人驾驶车辆预测控制方法   总被引:1,自引:0,他引:1  
针对无人驾驶车辆的轨迹跟踪问题,在分析车辆运动学模型的基础上,设计了一种基于模型预测控制理论的轨迹跟踪控制方法。首先,将车辆运动学模型进行线性化处理,得到车辆运动学线性跟踪误差模型,该模型可以用来预测车辆的未来行为。其次,利用此跟踪误差模型作为预测模型,应用线性模型预测控制方法,通过优化得到使性能指标最小的控制序列,将控制序列的第一步作用于系统。最后,建立了3种典型的道路试验曲线,并且在基于实时多体动力学软件Vortex搭建的虚拟仿真平台中对轨迹跟踪控制器进行了仿真。仿真结果表明,该控制器可以保证无人驾驶车辆快速且稳定地跟踪参考轨迹,距离偏差和方位偏差都在合理的范围内,且实时性可以达到要求。  相似文献   

4.
为了提高无人驾驶车辆路径跟踪的精确性和稳定性,基于可拓控制原理设计了2种控制策略可切换的路径跟踪控制器。其中,初始偏差较大和低速时采用滑模控制策略,在充分保证跟踪精度时提高跟踪的实时性,高速时则采用带有约束控制的模型预测控制策略以提高车辆行驶的稳定性。最后通过搭建CarSim与Simulink联合仿真平台,在目标路径为双移线工况下进行不同车速的仿真。结果表明,所设计的可拓控制器能有效提高无人驾驶车辆的路径跟踪精度和稳定性。  相似文献   

5.
李进  陈无畏 《农业机械学报》2012,43(6):19-24,152
为提高导航路径识别的鲁棒性和实时性,采用了分区阈值二值化、噪声点搜索及滤波等图像处理方法,并对导航路径进行分区逐段识别;在路径跟踪方面,在获取的导航路径图像中选取远端路径和近端路径,以远端路径和近端路径的方位偏差量作为确定目标路径的依据,使提取的导航参数能适应导航路径的变化。根据四轮智能车辆模型进行路径跟踪仿真计算。在此基础上,采用两块数字信号处理器,对基于路径导航的视觉智能车辆进行了设计和试验验证。试验结果表明采用该方法设计的智能车辆具有较好的路径识别和跟踪控制效果。  相似文献   

6.
路径跟踪是无人驾驶技术的重要组成部分,是实现铰接转向车辆准确平稳自主行驶的关键,对提高铰接转向车辆在农业、林业、矿山及建筑等行业的作业效率和安全性具有重要意义。车辆模型构建、控制算法设计和算法验证评估是路径跟踪控制研究的基础,围绕这3方面阐述了铰接转向车辆路径跟踪控制研究的进展。首先回顾了铰接转向车辆的几何学模型、运动学模型和动力学模型,并讨论了各类模型在路径跟踪控制研究中的适用场景及局限性;在此基础上,阐述了铰接转向车辆路径跟踪控制算法的研究现状,对比并总结了每种算法的优缺点及适用范围,并进一步归纳了算法的验证与评估手段;最后展望了铰接转向车辆路径跟踪技术未来的研究重点及方向:考虑车辆动力学因素及模型参数动态时变特性的车辆建模研究;融合各类算法适应性并结合智能算法的多工况自适应控制算法设计;标准化、流程化的高保真仿真场景开发及集成准确性、稳定性、安全性等多性能的评估方法研究。  相似文献   

7.
为提高同步转向高地隙喷雾机轨迹跟踪的稳定性与鲁棒性,提出一种基于模型预测控制理论的模糊自适应轨迹跟踪方法。首先,基于刚体运动学以及几何约束推导出喷雾机的非线性运动学模型,并对该运动学模型进行简化;然后,基于简化的运动学模型建立喷雾机的状态预测模型;最后,结合实际工况设计了模糊自适应预测控制器。仿真试验表明:与传统的预测控制器相比,模糊自适应预测控制器的跟踪速度更快、稳定性更好。场地试验表明:在进行初始误差2.5、5m的直线轨迹跟踪以及无初始误差的圆形轨迹跟踪时,其平均误差分别为0.0442、0.0602、0.0901m。本文建立的喷雾机运动学模型可以很好地体现同步转向高地隙喷雾机的运动特点,设计的模糊自适应预测控制器可以保证喷雾机路径跟踪的准确性和鲁棒性。  相似文献   

8.
针对丘陵山区单边制动农用履带车辆路径跟踪精度低、控制次数多、转向偏差大等问题,本文开展不同负载条件下履带车辆路径跟踪控制研究。首先,对履带车辆的转向运动学进行理论分析,并建立履带车辆运动学模型;其次,根据履带车辆单边制动转向特性,提出一种基于瞬时旋转中心(Instantaneous center of rotation,ICR)的大角度转向控制算法,该算法能够根据规划路径的转向点位置与履带车辆转向瞬心,规划出最优的转向目标点,并控制履带车辆在该转向目标点一次性转向到所需航向,与此同时,完成转向控制器设计;最后,开展履带车辆在3种不同负载条件下的仿真试验与田间试验。仿真结果表明,大角度转向控制算法产生的跟踪路径平均误差面积与平均转向控制次数分别降低68.95%、68.77%;田间试验结果表明,大角度转向控制算法产生的跟踪路径平均横向偏差均值、平均转向控制次数与转向点处平均最小偏差分别减少57.27%、33.93%、62.29%,且路径跟踪效果更优,验证了大角度转向控制算法的有效性。试验结果满足履带车辆路径跟踪的要求,为实现农用履带车辆的路径跟踪提供理论基础与参考。  相似文献   

9.
基于神经网络的农用车辆自动跟踪控制   总被引:2,自引:0,他引:2  
跟踪控制器是农用车辆自动行驶控制的重要组成部分。将神经网络控制技术应用于车辆的自动行驶控制中,使得控制器具有良好的自学习功能,提高了控制器的环境适应能力和现场处理能力。在牧草地上的实车实验结果表明:车辆沿直线路径自动行驶时,95%的偏差绝对值小于5cm。  相似文献   

10.
针对移动机器人路径跟踪模型预测控制中,存在线性化预测模型削弱控制器对参考路径曲率突变和航向突变响应能力的问题,从非线性模型预测控制出发,提出了两种实时性优化方案,即减少控制步数或降低控制频率。仿真与实验结果表明,采用减少控制步数或降低控制频率方案优化后,非线性模型预测控制器在每一控制周期内的解算时间小于控制周期;减少控制步数相比降低控制频率或线性化预测模型具有更小的横向误差和航向误差,可以更好地保证控制器在跟踪曲率、航向变化较快的参考路径时的控制精度。因此,相比其他实时性优化方案,减少控制步数更加适用于农用机器人等对灵活性要求较高的移动装备。  相似文献   

11.
针对智能车辆的横向控制问题,采用3自由度车辆模型,设计了一种基于模型预测算法的车辆横向控制策略。将非线性的3自由度车辆模型进行线性化和离散化,得到线性离散的车辆模型。以前轮转角为控制量,横摆角偏差和横向位移偏差为输出量推导出车辆预测模型,并且建立目标函数和约束条件。最后通过驾驶员在环仿真实验验证,所提出的控制策略能有效实现智能车辆的横向控制。  相似文献   

12.
车辆主动悬架路面自适应控制系统   总被引:2,自引:0,他引:2  
针对不同的路面状况,采用增加高低通非线性滤波器的方法,对控制目标进行优化处理,并利用逆向递推(Backstepping)技术,设计了一种主动悬架的路面自适应控制器。仿真结果表明,在不同的路面激励信号作用下,都能取得较好的控制效果,与被动悬架相比,大大改善了乘座的舒适性。  相似文献   

13.
为改善车辆操纵稳定性,用二自由度车辆动力学状态方程建立了车辆横摆角速度跟踪控制模型。用横摆角速度与其期望值的差值确立了性能指标并求出了反馈控制增益,用该模型计算了车辆在急速转向操纵时的侧向加速度、横摆角速度以及车辆质心的侧偏角响应,计算结果表明了方法的有效性。  相似文献   

14.
基于模糊自适应纯追踪模型的农业机械路径跟踪方法   总被引:20,自引:0,他引:20  
为了提高农业机械自动导航控制系统的精度,提出了一种基于模糊自适应纯追踪模型的农业机械路径跟踪方法.该方法基于纯追踪模型进行农业机械路径跟踪控制,结合农业机械运动学模型来确定车轮期望转向角;采用模糊自适应控制在线自适应地确定纯追踪模型中的前视距离,提高了路径跟踪的精度.农业机械的路径跟踪实验结果表明,路径跟踪的最大误差不超过10 cm,平均误差小于5 cm,完全满足农业机械的作业要求,验证了提出方法的可行性和有效性.  相似文献   

15.
基于模型预测的插秧机路径跟踪控制算法   总被引:2,自引:0,他引:2  
为了提高自动驾驶插秧机路径跟踪更高频的控制,本文提出一种基于模型预测的路径跟踪控制方法。以模型预测算法为基础设计自动驾驶控制器,通过简化农机车辆模型、线性化运动学方程、制定约束量,实现以当前状态量p=(x,y,θ)预测下一时刻的车辆状态,控制自动驾驶插秧机沿参考路径行走。通过在Matlab中建立仿真模型验证控制器的可行性,结果表明:直线路径跟踪横向偏差小于0.02m,航向偏差小于0.08°,曲线路径横向偏差平均值为0.022m、航向偏差平均值为0.699°,可用于实车试验。另外,以水稻插秧机为试验平台,通过设置不同车速验证算法的鲁棒性,直线路径跟踪平均横向、航向偏差分别为0.021m、6.187°,曲线路径跟踪平均横向、航向偏差分别为0.450m、10.107°,可满足自动驾驶插秧机路径跟踪精度及实时性需求,为农机路径跟踪控制研究提供了参考。  相似文献   

16.
蒋桂源 《南方农机》2022,(23):56-59
农业机械自动化是当前农业机械智能化的热点问题,而自动控制是其中必不可少的环节。为了解决目前农业机械路径跟踪的计算机软件结构比较烦琐,难以实现多个功能的问题,笔者利用模糊自适应的纯追踪模型,建立了一种新的基于模糊自适应的轨迹跟踪模型。仿真结果表明,该方法对各种初始误差都有一定的鲁棒性和自适应能力,从而使农业机械系统的轨迹跟踪精度得到改善,证明了基于模糊自适应纯追踪模型的农业机械路径跟踪方法的正确性和有效性。  相似文献   

17.
基于非线性模型的农用车路径跟踪控制器设计与试验   总被引:1,自引:0,他引:1  
为提高农用车辆路径跟踪性能,提出一种基于非线性模型预测的路径跟踪控制方法。该方法将路径跟踪问题转换为求解满足速度、转角约束的最优值问题。首先将农用车的非线性运动学模型进行离散化推出递推模型,作为控制器的预测方程;然后建立以农用车运动学模型控制量为状态量的目标函数,设计各个变量的约束条件,把预测方程代入目标函数将其转化为基于递推序列的二次规划法响应问题,在此基础上进行梯度计算解决非线性的约束优化;最后,利用实时反馈与滚动优化实现控制器的闭环校正;重复以上过程,完成预测控制。Matlab仿真结果表明:非线性模型预测控制器能够实现对所设计路径的有效跟踪。相对应的场地试验结果表明:试验小车以2 m/s的速度跟踪参考路径时,最大横向偏差为-4.28 cm;3 m/s跟踪参考路径时,最大纵向偏差为-6.61 cm,可以满足农用车辆对于路径跟踪的精度要求。与线性模型预测控制器的对比试验表明:以3 m/s的速度跟踪圆形路径时,设计的控制器跟踪横向偏差降低了36.8%,纵向偏差降低了32.98%。  相似文献   

18.
人类驾驶员具有优秀的自适应转向能力,但转向过程涉及到复杂的人车交互,难以运用传统的动力学系统理论对其进行分析.通过对驾驶员转向行为的人-车闭环稳定性研究,发现驾驶员不仅能从汽车的线性动力学特性中学习控制汽车行驶方向的技能,还可结合自身的生理限制形成内部参考模型,用于适应汽车动力学变化.据此形成一种建立驾驶员自适应转向控制的方法.汽车变道仿真结果表明:该方法能有效地实现驾驶员的转向任务,并对汽车动力学参数的变化具有良好的适应性.  相似文献   

19.
针对部分地区横向斜坡农田地形导致路径跟踪控制算法精度下降的问题,提出了一种包含路面坡度扰动的动力学模型与跟踪误差模型结合的轮式拖拉机行驶动态过程的控制模型,并基于此模型通过线性模型预测控制方法得到控制律,由于预测模型包含了坡度的影响,使得反馈校正能够提前补偿,有效改善了农机在坡地上的路径跟踪性能。考虑到农机在不同行驶阶段对于误差和稳定程度需求的不同,提出了自适应的模型预测方法,令Q、R值随动变化以应对不同的需求(随动变化指的是两者相对大小的变化而非绝对数值)。进行了预测区间与控制区间选择的试验,而后基于简单运动学模型的模型预测控制进行了有无自适应Q、R的对比试验,最后分别在固定斜坡角的横向斜坡路面上和在斜坡角连续变化的横向斜坡路面上进行了本文方法与基于简单运动学的模型预测控制方法对比试验。试验结果表明:自适应能显著提升控制效果;本文方法在横向斜坡路面上的路径跟踪表现明显优于基于简单运动学模型的方法,此外稳态时的稳定程度也有较大的提升。  相似文献   

20.
引入分层控制概念设计了横摆力矩控制和滑移率控制相结合的车辆稳定性控制系统.建立了侧偏角和横摆角速度具有最佳输出响应的车辆理想模型,采用前馈与反馈控制相结合跟踪理想模型的控制策略,基于最优控制理论设计横摆力矩控制器.通过设计理想滑移率分配模块确定下层滑移率控制器理想值,基于模糊控制理论设计滑移率控制器.在Matlab/Simulink平台上建立8自由度非线性车辆模型,分别在低附着和高附着路面条件下进行了仿真分析.结果表明:采用分层控制可以很好地实现车辆所需横摆力矩,有效地控制车辆质心侧偏角和横摆角速度跟踪理想模型,瞬态及稳态响应良好,改善了车辆操纵稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号