首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In 2 experiments, 48 weanling (initial BW: 13.5 ± 2.4 kg, Exp. 1) and 24 growing pigs (initial BW: 36.2 ± 4.0 kg, Exp. 2) were used to determine effects of a novel bacterial 6-phytase expressed in Aspergillus oryzae on the apparent total tract digestibility (ATTD) of phosphorus and calcium in corn-soybean meal diets fed to weanling and growing pigs. In Exp. 1 and 2, pigs were randomly allotted to 6 dietary treatments using a randomized complete block design and a balanced 2 period changeover design, respectively. In both experiments, 6 diets were formulated. The positive control diet was a corn-soybean meal diet with added inorganic phosphorus (Exp. 1: 0.42 and 0.86% standardized total tract digestible phosphorus and total calcium, respectively; Exp. 2: 0.32 and 0.79% standardized total tract digestible phosphorus and total calcium, respectively). A negative control diet and 4 diets with the novel phytase (Ronozyme HiPhos, DSM Nutritional Products Inc., Parsippany, NJ) added to the negative control diet at levels of 500, 1,000, 2,000, and 4,000 phytase units (FYT)/kg were also formulated. In Exp. 1, the ATTD of phosphorus was greater (P < 0.01) for the positive control diet (60.5%) than for the negative control diet (40.5%), but increased (linear and quadratic, P < 0.01) as phytase was added to the negative control diet (40.5% vs. 61.6%, 65.1%, 68.7%, and 68.0%). The breakpoint for the ATTD of phosphorus (68.4%) was reached at a phytase inclusion level of 1,016 FYT/kg. In Exp. 2, the ATTD of phosphorus was greater (P < 0.01) for the positive control diet (59.4%) than for the negative control diet (39.8%) and increased (linear and quadratic, P < 0.01) as phytase was added to the negative control diet (39.8% vs. 58.1%, 65.4%, 69.1%, and 72.8%). The breakpoint for the ATTD of phosphorus (69.1%) was reached at a phytase inclusion level of 801 FYT/kg. In conclusion, the novel bacterial 6-phytase improved the ATTD of phosphorus and calcium in both weanling and growing pigs. The optimum level of inclusion for this phytase is 800 to 1,000 FYT/kg of complete feed to maximize ATTD of phosphorus and calcium in weanling and growing pigs.  相似文献   

2.
An experiment was conducted to test the hypothesis that inclusion of hybrid rye in diets containing corn and soybean meal (SBM) without or with microbial phytase improves the apparent total tract digestibility (ATTD) and the standardized total tract digestibility (STTD) of P because of the intrinsic phytase activity in hybrid rye. Forty-eight growing barrows (initial body weight: 39.5 ± 7.7 kg) were allotted to six diets. A basal diet containing corn and SBM; a rye-based diet; and a diet containing corn, SBM, and rye were formulated. Each diet was formulated without and with microbial phytase (500 units/kg of diet) for a total of six diets. Fecal samples were collected for 4 d following a 5-d adaptation period according to the marker-to-marker procedure. Results indicated that no interactions between diets and concentration of phytase were observed for any of the response criteria measured. The ATTD and STTD of P and the ATTD of Ca differed (P < 0.05) among diets, but regardless of diet, the concentration of P in feces was reduced (P < 0.05) by adding microbial phytase to the diets. As a consequence, microbial phytase increased (P < 0.05) ATTD and STTD of P, and the ATTD of Ca was also increased (P < 0.05) by the use of microbial phytase. Measured values for the ATTD and STTD of P in the diets containing corn, SBM, and hybrid rye without or with phytase were greater (P < 0.05) than values that were predicted based on the ATTD and STTD of P for the corn–SBM and the hybrid rye diet. The observation that STTD predicted from the individual ingredients underestimated the STTD of P in the mixed diet indicates that the intrinsic phytase in hybrid rye resulted in increased digestibility of the P in the corn and SBM included in the corn–SBM–hybrid rye diet. In conclusion, microbial phytase increased the ATTD and STTD of P and the ATTD of Ca regardless of feed ingredients used in diets fed to pigs. In addition, the intrinsic phytase from hybrid rye increased the ATTD and STTD of P in corn and SBM.  相似文献   

3.
Fermentation of cereal grains may degrade myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) (InsP6) thereby increasing nutrient digestibility. Effects of chemical acidification or fermentation with Limosilactobacillus (L.) reuteri with or without phytase of high β-glucan hull-less barley grain on apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients and gross energy (GE), standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AAs), and standardized total tract digestibility (STTD) of P were assessed in growing pigs. Pigs were fed four mash barley-based diets balanced for water content: 1) unfermented barley (Control); 2) chemically acidified barley (ACD) with lactic acid and acidic acid (0.019 L/kg barley grain at a ratio of 4:1 [vol/vol]); 3) barley fermented with L. reuteri TMW 1.656 (Fermented without phytase); and 4) barley fermented with L. reuteri TMW 1.656 and phytase (Fermented with phytase; 500 FYT/kg barley grain). The acidification and fermentation treatments occurred for 24 h at 37 °C in a water bath. The four diets were fed to eight ileal-cannulated barrows (initial body weight [BW], 17.4 kg) for four 11-d periods in a double 4 × 4 Latin square. Barley grain InsP6 content of Control, ACD, Fermented without phytase, or Fermented with phytase was 1.12%, 0.59%, 0.52% dry matter (DM), or not detectable, respectively. Diet ATTD of DM, CP, Ca, and GE, digestible energy (DE), predicted net energy (NE) value, and urinary excretion of P were greater (P < 0.05) for ACD than Control. Diet ATTD of DM, CP, Ca, GE, DE and predicted NE value, urinary excretion of P was greater (P < 0.05), and diet AID of Ca and ATTD and STTD of P tended to be greater (P < 0.10) for Fermented without phytase than Control. Diet ATTD of GE was lower (P < 0.05) and diet ATTD and STTD of P, AID and ATTD of Ca was greater (P < 0.05) for Fermented with phytase than Fermented without phytase. Acidification or fermentation with/without phytase did not affect diet SID of CP and AA. In conclusion, ACD or Fermented without phytase partially degraded InsP6 in barley grain and increased diet ATTD of DM, CP, and GE, but not SID of CP and most AA in growing pigs. Fermentation with phytase entirely degraded InsP6 in barley grain and maximized P and Ca digestibility, thereby reducing the need to provide inorganic dietary P to meet P requirements of growing pigs.  相似文献   

4.
The purpose of the study was to find out if the supplementation of phytase to a diet of gestating and lactating sows has any effects on performance and bone parameters of the animals. Forty primiparous gilts were assigned into four groups: group A with phytase [4.2 g total phosphorus (P)/kg (gestation) and 4.5 g total P/kg (lactation)], group B without phytase (with phytase supplementation in diet for rearing) and same P content as group A, group C without phytase and higher P contents [5.0 g total P/kg (gestation) and 5.5 g total P/kg (lactation)] and group D with the same diet as group B (no phytase during the rearing). A 6-phytase was used in this trial (750 FTU/kg diet). The four diets were fed during gestation and lactation. Faeces were collected to determine apparent digestibility of minerals. Blood samples were taken to analyse minerals and bone markers. After weaning the sows were slaughtered and the bones of one hind leg were prepared to measure bone mineral density (BMD) and bone mineral content (BMC) of the tibia. Bone ash and mineral content of the phalanx III were determined. Mean P concentrations in serum decreased during gestation and lactation. But there were no significant differences between the groups. Bone formation marker bone-specific alkaline phosphatase decreased at the beginning of lactation whereas bone resorption marker serum crosslaps increased. The BMD and BMC of the tibia were slightly higher in the groups fed higher concentrations of P and phytase. The ash and mineral contents of the phalanx were the highest for the group fed the highest concentration of P. The apparent digestibility of P increased during gestation mostly in group A (57%--> 69%). In conclusion, high P content and addition of phytase to the diet induced a slightly higher ash content of the bones. It is of high importance, that sows during gestation absorb enough P, to avoid lamenesses and sudden fractures. As not many studies with phytase have been performed during gestation and lactation in sows yet, we can recommend, that phytase as supplement can be used to keep P in the diet at a lower level without negative consequences for bone health.  相似文献   

5.
An experiment was conducted to test the hypothesis that the apparent total tract digestibility (ATTD) and the standardized total tract digestibility (STTD) of P in fermented soybean meal (FSBM) are greater than in conventional soybean meal (SBM-CV) when fed to growing pigs. Four diets were formulated to contain FSBM or SBM-CV and either 0 or 800 units/kg of microbial phytase. The only sources of P in these diets were FSBM and SBM-CV. A P-free diet to estimate basal endogenous losses of P was also formulated. Thirty barrows (initial BW: 14.0 ± 2.3 kg) were placed in metabolism cages and allotted to 5 diets in a randomized complete block design with 6 pigs per diet. Feces were collected for 5 d after a 5-d adaptation period. All samples of ingredients, diets, and feces were analyzed for P, and values for ATTD and STTD of P were calculated. Results indicated that the basal endogenous P losses were 187 mg/kg of DMI. As phytase was added to the diet, the ATTD and STTD of P increased (P < 0.01) from 60.9 to 67.5% and from 65.5 to 71.9%, respectively, in pigs fed FSMB. Likewise, addition of phytase to SBM-CV increased (P < 0.01) the ATTD and STTD of P from 41.6 to 66.2% and from 46.1 to 71.4%, respectively. The ATTD and STTD of P were greater (P < 0.01) in FSBM than in SBM-CV when no phytase was used, but that was not observed when phytase was added to the diet (soybean meal × phytase interaction, P < 0.01). In conclusion, the ATTD and STTD of P in FSBM was greater than SBM-CV when no microbial phytase was added, but when phytase was added to the diets, no differences between FSBM and SBM-CV were observed in the ATTD and STTD of P.  相似文献   

6.
Supplementation of microbial phytase usually improves the digestibility and utilization of phosphorus in feedstuffs of plant origin. The effect of phytase supplementation on the digestibilities of AA also has been examined, but the results have been inconsistent. This study was carried out to determine the effect of phytase (Natuphos) supplementation, at a rate of 2,000 phytase units/kg, to two basal diets on the apparent ileal digestibilities (AID) of GE, CP, and AA, and on the apparent total-tract digestibilities (ATTD) of CP and GE. The basal diets contained 18% CP and were formulated (as-fed basis) to contain either a low (0.22%) or high content (0.48%) of phytate P. The high-phytate diet contained 20% rice bran, which is a rich source of phytate and has low intrinsic phytase activity. Eight barrows (average initial BW = 40.6 kg), fitted with a simple T-cannula at the distal ileum, were fed the four diets according to a replicated 4 x 4 Latin square design. The pigs were fed twice daily at 0800 and 2000, equal amounts each meal, at a rate of 2.4 times the daily maintenance requirement for ME. Each experimental period comprised 14 d. Ileal digesta were collected from 0800 to 2000 on d 12, 13, and 14. Feces were collected from 0800 on d 8 until 0800 on d 12. Chromic oxide was used as the digestibility marker. The AID of GE, CP, and AA and the ATTD of CP and GE were less in the high- than in the low-phytate diet (P < 0.01). With the exception of glutamic acid, phytase supplementation did not affect (P > 0.10) the AID of CP and AA. There was no effect (P > 0.05) of phytase on the ATTD of CP and GE. These results show that if a response occurs to phytase supplementation, it is independent of the dietary phytate content.  相似文献   

7.
A study was conducted to evaluate the effects of phytase supplementation on growth performance, phosphorus availability, and bone mineralization in broilers. Three hundred fifty Cobb × Cobb 500 slow-feathering male broilers were placed in steel battery cages into 7 treatments with 10 replications of 5 chicks each. The treatments were: a positive control (PC) diet [0.42% nonphytate phosphorus (nPP)], 4 diets containing increases in nPP from dicalcium phosphate (0.14, 0.20, 0.26, and 0.32%), and 2 phytase supplemental levels [500 and 1,000 phytase units ( FYT)/kg] on the diet having 0.14% nPP. All diets contained 0.8% calcium. Growth performance and bone data were regressed against the 4 diets having increased nPP. The equations generated were replaced by the corresponding performance obtained with 2 phytase levels to estimate their nPP bioequivalence. An overall reduction in performance and bone mineralization was observed associated with a reduction in nPP. Linear fits provided the best adjustments for all responses with the exceptions of BW gain (BWG) and feed intake (FI). Adding phytase to the 0.14% nPP diet improved growth performance and bone mineralization (P < 0.001). Average bioequivalence nPP for each phytase level was dependent on the evaluated response with lowest and highest values at 500 FYT supplementation of 0.077 and 0.145 for toe P and femur Ca, respectively, whereas lowest and highest values at 1,000 FYT of 0.143 and 0.194 for BWG and toe ash. Averaging all values for 500 and 1,000 FYT provided estimations of 0.100 and 0.166 nPP, respectively.  相似文献   

8.
Phytases catalyse the hydrolysis of phytate rendering phosphorus (P) available for absorption. Endogenous plant phytases are to some extent present in cereals (depending on species and varieties) while microbial phytases are added to cereal based diets to increase the digestibility of phytate bound P. The present study compared two different microbial phytases. The basal diet was composed of wheat, barley, soybean and rapeseed meal without feed phosphate. The diet was initially expanded, pelleted at 90 °C and crumbled. Phytases were added at 250, 500 and 750 FTU kg− 1 diet (Aspergillus niger; Phytase 1) and 375 and 750 FYT kg− 1 diet (Peniophora lycii; Phytase 2). The experiment comprised 6 treatment groups of 6 pigs each kept in metabolism crates and fed one of the 5 test diets or a diet with no added microbial phytase. The diets were fed for 12 days, 5 days for adaptation and 7 days for total collection of faeces and urine. Phosphorus digestibility of the basal diet averaged 43% and increased to 55, 61 and 66% following addition of 250, 500 and 750 FTU/kg of Phytase 1 and 54 and 60% following addition of 375 and 750 FYT/kg of Phytase 2, respectively. In conclusion, equivalent effects were obtained when Phytase 2 was given at 1.5 times the doses of Phytase 1.  相似文献   

9.
Three experiments were conducted to evaluate the effect of supplementing phytase and xylanase on nutrient digestibility and performance of growing pigs fed wheat-based diets. In Exp. 1, 10 diets were fed to 60 pigs from 20 to 60 kg of BW to determine the effect of combining phytase and xylanase on apparent total tract digestibility (ATTD) of nutrients and growth performance. The 10 diets included a positive control diet (PC; 0.23% available P; 0.60% Ca) and a negative control diet (NC; 0.16% available P; 0.50% Ca) supplemented with phytase at 0, 250, and 500 fytase units (FTU)/kg and xylanase at 0, 2,000, and 4,000 xylanase units (XU)/kg in a 3 x 3 factorial arrangement. In Exp. 2, 6 ileally cannulated barrows (initial BW = 35.1 kg) were fed 4 wheat-based diets in a 4 x 4 Latin square design, with 2 added columns to determine the effect of combining phytase and xylanase on apparent ileal digestibility (AID) of nutrients. The 4 diets were NC (same as that used in Exp. 1) or NC supplemented with phytase at 500 FTU/kg, xylanase at 4,000 XU/kg, or phytase at 500 FTU/kg plus xylanase at 4,000 XU/kg. In Exp. 3, 36 barrows (initial BW = 55.5 kg) were fed 4 diets based on prepelleted (at 80 degrees C) and crumpled wheat for 2 wk to determine the effect of phytase supplementation on ATTD of nutrients. The 4 diets fed were a PC (0.22% available P; 0.54% Ca) and a NC (0.13% available P; 0.43% Ca) alone or with phytase at 500 or 1,000 FTU/kg. All diets in the 3 experiments contained Cr(2)O(3) as an indigestible marker. No synergistic interactions were detected between phytase and xylanase on any of the response criteria measured in Exp. 1 or 2. There were no dietary effects on growth performance in Exp. 1. In Exp. 1, phytase at 250 FTU/kg increased the ATTD of P and Ca by 51 and 11% at 20 kg of BW or by 54 and 10% at 60 kg of BW, respectively, but increasing the level of phytase to 500 FTU/kg only increased (P < 0.05) ATTD of P at 20 kg of BW. In Exp. 2, phytase at 500 FTU/kg increased (P < 0.05) the AID of P and Ca by 21 and 12%, respectively. In Exp. 3, phytase at 500 FTU/kg improved (P < 0.05) ATTD of P by 36%, but had no further effect at 1,000 FTU/kg. Xylanase at 4,000 XU/kg improved (P < 0.05) AID of Lys, Leu, Phe, Thr, Gly, and Ser in Exp. 2. In conclusion, phytase and xylanase improved P and AA digestibilities, respectively, but no interaction between the 2 enzymes was noted.  相似文献   

10.
An experiment with 224 weaner pigs (initial BW of 7.8 kg) was conducted to determine the effect of dose of dietary phytase supplementation on apparent fecal digestibility of minerals (P, Ca, Mg, Na, K, and Cu) and on performance. Four blocks, each with 8 pens of 7 pigs, were formed. Eight dietary treatments were applied to each block in the 43-d experiment: supplementation of 0 (basal diet), 100, 250, 500, 750, 1,500, or 15,000 phytase units (FTU) or of 1.5 g of digestible P (dP; monocalcium phosphate; positive control) per kilogram of feed. The basal diet, with corn, barley, soybean meal, and sunflower seed meal as the main components, contained 1.2 g of dP per kilogram of feed. Fresh fecal grab samples were collected in wk 4 and 5 of the experiment. Average daily feed intake, ADG, G:F, and digestibility of all of the minerals increased (P < 0.001) with increasing phytase dose. Digestibility of P increased from 34% in the basal diet to a maximum of 84% in the diet supplemented with 15,000 FTU, generating 1.76 g of dP per kilogram of feed. At this level, 85% of the phytate phosphorus was digested, compared with 15% in the basal diet. Compared with the basal diet, digestibility of the monovalent minerals increased maximally at 15,000 FTU, from 81 to 92% (Na) and from 76 to 86% (K). In conclusion, phytase supplementation up to a level of 15,000 FTU/kg of a dP-deficient diet improved performance of weaner pigs and digestibility of minerals, including monovalent minerals. Up to 85% of the phytate-P was digested. Thus, dietary phytase supplementation beyond present day standards (500 FTU/kg) could further improve mineral use and consequently reduce mineral output to the environment.  相似文献   

11.
Two experiments were completed to determine the potential for using distillers dried grains with solubles (DDGS) in diets with or without phytase to provide available P, energy, and protein to highly productive lactating sows without increasing their fecal P. In Exp. 1, the dietary treatments were as follows: (1) corn and soybean meal with 5% beet pulp (BP) or (2) corn and soybean meal with 15% DDGS (DDGS). Besides containing similar amounts of fiber, diets were isonitrogenous (21% CP, 1.2% Lys) and isophosphorus (0.8% P). Sixty-one sows were allotted to dietary treatments at approximately 110 d of gestation (when they were placed in farrowing crates) based on genetics, parity, and date of farrowing. Sows were gradually transitioned to their lactation diet. On d 2 of lactation, litters were cross-fostered to achieve 11 pigs/litter. Sows and litters were weighed on d 2 and 18. Fecal grab samples were collected on d 7, 14, and 18 of lactation. Dietary treatment did not affect the number of pigs weaned (10.9 vs. 10.8) or litter weaning weight. On d 14, DDGS sows had less fecal P concentration than BP sows (28.3 vs. 32.8 mg/g; P = 0.04). Fecal Ca of sows fed DDGS decreased for d 7, 14, and 18 (55.6, 51.4, and 47.1 mg/g of DM, respectively; P = 0.05) but not for BP sows. In Exp. 2, the dietary treatments were as follows: (1) corn and soybean meal (CON), (2) CON + 500 phytase units of Natuphos/kg diet, as fed (CON + PHY), (3) corn and soybean meal with 15% DDGS and no phytase (DDGS), or (4) DDGS + 500 FTU of Natuphos/kg of diet, as fed (DDGS + PHY). Sows (n = 87) were managed as described for Exp 1. Litter BW gain (46.0, 46.3, 42.1, and 42.2 kg; P = 0.25) and sow BW loss (8.1, 7.2, 7.4, and 6.3 kg for CON, CON + PHY, DDGS, and DDGS + PHY, respectively; P = 0.97) were not affected by dietary treatment. Fecal P concentration did not differ among dietary treatments but was reduced at d 14 and 18 compared with d 7 (P = 0.001). However, fecal phytate P concentration was decreased by the addition of DDGS when DDGS and DDGS + PHY were compared with the CON sows except on d 7 (P < 0.05). Sows fed CON diet had greater fecal phytate P than sows fed DDGS, and sows fed DDGS + PHY had less fecal phytate P than sows fed DDGS with no phytase (P = 0.001). Although these experiments were only carried out for 1 lactation, these results indicate that highly productive sows can sustain lactation performance with reduced fecal phytate P when fed DDGS and phytase in lactation diets.  相似文献   

12.
A total of 104 sows of different parities were studied. They were fed four diets with different phosphorus (P) levels during gestation for two reproductive cycles, while the same diet was fed during lactation. The aim was to decrease the total P level in the diet during gestation and to evaluate the effect on sow performance. The gestation treatments were low P (LP-; 3.7 g P/kg feed), low P with phytase (LP+, Ronozyme P; 765 FTU/kg feed), medium P (MP; 4.5 g P/kg feed) and high P (HP; 6.0 g P/kg feed). Daily feed allowances were 2.6 kg during gestation and 9.2 kg during lactation. Number of born piglets and piglet mortality were higher (p < 0.05) in the LP treatments than in the MP and HP treatments. No difference (p > 0.05) in the numbers of live-born piglets, piglet birthweights, sow weights or piglet weight gains was found between the treatments. Phosphorus level in sow milk was the highest (p < 0.05) in the MP treatment, while no effects (p > 0.05) of treatment were found on milk Ca levels, P and Ca levels in serum of sows and piglets, nor on the analysed mineral, fat and protein contents of piglets. The estimated average requirement of P for the entire gestation period was 4.4-4.5 g/day. In conclusion, a reduction of dietary total P content during gestation did not result in negative effects on sow or piglet performance. This suggests that it should be possible to lower the dietary P content for gestating sows, compared with earlier recommendations, and thereby reduce the environmental P pollution.  相似文献   

13.
Availability of phytate-bound P as influenced by supplemental phytase was studied in eight horses consuming four diets in a 4 x 4 Latin square design experiment. The treatments were a control (containing a low P level, 18.4 g/d) and three high-P diets. These diets contained P as monocalcium phosphate (MCP; 43.7 g/d), myoinositol hexakisphosphate in the form of wheat and rice bran (MIHP; 41.8 g/d), or MIHP with microbial phytase (MIHPP; 42.5 g/d). The proportions of phytate-bound P were 3, 1, 55, and 56% for the control, MCP, MIHP, and MIHPP, respectively. The MIHPP diet was supplemented with 300 phytase units (FTU)/kg (as-fed basis). Feces and urine were collected quantitatively and analyzed for P, Ca, and Mg. Urinary P excretion was lower (P < 0.05) with the control diet (0 g of P/d) than with the MCP diet (1.0 g of P/d). The low urinary P excretion (0.3 g of P/d) for the MIHP diet suggested low P availability compared with the MCP diet, but apparent digestibility of P expressed as a percentage of intake did not differ (P = 0.065) between these diets. Apparent Ca digestibility was lower (P < 0.05) for the MIHP diet than for the MCP diet (26.4 vs. 42.4%). This difference may have been caused by the origin of the Ca in these diets. Phytase supplementation increased apparent Ca digestibility from 26.4 to 31.5% (P < 0.05). Magnesium was not influenced by the level of phytate in the diet. Our data indicate that phytase supplementation had more influence on Ca digestibility than on P digestibility and suggest that phytase supplementation may be beneficial for improving Ca digestibility for horses receiving a phytate-rich diet.  相似文献   

14.
An experiment was conducted to test the hypothesis that formulating diets for pigs based on a ratio between standardized total tract digestible (STTD) Ca and STTD P instead of total Ca and STTD P does not decrease Ca retention, but increases P utilization. Forty barrows (59.4 ± 3.8 kg) were individually housed in metabolism crates and allotted to four corn-soybean meal-based diets in a randomized complete block design with two blocks and five pigs per diet in each block. Diets were formulated using a 2 × 2 factorial design with two diet formulation principles (total Ca or STTD Ca) and two inclusion levels of microbial phytase (0 or 500 units per kg of feed). Phytase was assumed to release 0.11% STTD P and 0.16% total Ca. Diets were formulated based on requirements for total Ca and STTD P or a ratio between STTD Ca and STTD P of 1.25:1. Diets were fed for 11 d and fecal and urine samples were collected from feed provided from day 6 to day 10. Interactions (P < 0.05) between diet formulation principle and phytase level were observed for Ca intake, Ca in feces, Ca absorbed, Ca retained, P digestibility, P absorbed, and P in urine. Phytase increased (P < 0.05) the digestibility of Ca in both total Ca and STTD Ca diets. Without phytase, Ca intake, Ca in feces, and Ca absorbed was greater (P < 0.05) from pigs fed total Ca diets than from pigs fed STTD Ca diets, but P absorbed, P digestibility, and P in urine was greater (P < 0.05) from pigs fed STTD Ca diets than from pigs fed total Ca diets. However, in the presence of phytase, no differences between diet formulation principles were observed in these variables. Regardless of phytase, Ca in urine was lower (P < 0.05) from pigs fed STTD Ca diets than from pigs fed total Ca diets. There were no differences in Ca retention between pigs fed STTD Ca diets and total Ca diets, but pigs fed total Ca diets retained less (P < 0.05) Ca if diets contained phytase. No differences in P retention were observed between diet formulation principles, but pigs fed non-phytase diets retained more (P < 0.05) P than pigs fed diets with phytase. In conclusion, because diets formulated based on STTD Ca contain less Ca than total Ca diets, pigs fed STTD Ca diets excreted less Ca in urine, but retention of Ca was not affected. Formulating non-phytase diets based on STTD Ca instead of total Ca increased P absorption, which confirms the detrimental effect of excess Ca on P digestibility. However, P retention was not improved if pigs were fed STTD Ca diets.  相似文献   

15.
We conduct this study to investigate the effects of corn-wheat-soybean meal (SBM)-based diet supplemented with high-dosing Trichoderma reesei phytase on the growth performance, nutrient digestibility, carcass traits, faecal gas emission and meat quality in growing-finishing pigs (29.71–110.58 kg live weight; 70-day-old to 166-day-old). A total of 56 crossbred pigs [(Landrace × Yorkshire) × Duroc] were used in 96-day experiment with a completely randomized block design. The growing period was from day 0 to 42, and the finishing period was from day 43 to 96. Pigs were randomly allocated to one of two treatments with seven replicate pens and four pigs (two barrows and two gilts) per pen and fed corn-wheat-SBM-based nutrient adequate basal diet or the basal diet supplemented with 1500 FTU/kg diet Trichoderma reesei phytase. One phytase unit (FTU) was defined as the amount of enzyme that catalyses the release of one micromole phosphate from phytate per minute at 37°C and pH 5.5. Dietary supplement with Trichoderma reesei phytase had increased body weight on day 96 and average daily gain in days 0–96. Moreover, high apparent total tract digestibility (ATTD) of phosphorus (P) was observed in pigs fed with Trichoderma reesei phytase. However, the carcass traits, faecal gas emission and meat quality of pigs were unaffected by Trichoderma reesei phytase supplementation. In conclusion, supplementation of high-dosing Trichoderma reesei phytase (1500 FTU/kg diet) in the corn-wheat-SBM-based nutrient adequate basal diet increased body weight and the ATTD of P, while no adverse effects were observed on the production characteristics.  相似文献   

16.
Experiments were conducted to determine the effect of the physiological condition of swine on standardized ileal digestibility coefficients (SID). The apparent ileal digestibility coefficients were determined for crude protein and amino acids in six feed ingredients (corn, barley, wheat, soybean meal, canola meal, and meat and bone meal) in growing pigs and in gestating and lactating sows. Growing pigs and lactating sows were given free access to their diets, whereas gestating sows were allowed to consume only 2 kg of feed daily. The nonspecific (basal) endogenous losses of protein and amino acids were determined under similar feeding regimens after feeding a protein-free diet. The SID for crude protein and amino acids were calculated by correcting the apparent ileal digestibility coefficients for the nonspecific endogenous losses of protein and amino acids. With a few exceptions, there were no differences (P > 0.05) in the SID for crude protein and amino acids between growing pigs and lactating sows. Overall, gestating sows had higher (P < 0.05) SID for crude protein and all amino acids, except for tryptophan and aspartate, compared with growing pigs. Likewise, the SID of most amino acids obtained by gestating sows were higher (P < 0.05) than those obtained by lactating sows. Interactions (P < 0.05) between animals and diets were observed for gestating sows compared with growing pigs as well as gestating sows compared with lactating sows. As a consequence, it is not possible to extrapolate data from one feed ingredient to another. On most occasions, the lowest SID among the indispensable amino acids was calculated for threonine, valine, and lysine. It is concluded that gestating sows fed 2 kg of feed per day have higher standardized digestibility coefficients than do growing pigs and lactating sows given free access to their diets. This difference may be due to differences in daily feed intake rather than to the physiological status of the animals.  相似文献   

17.
Four experiments were conducted with weanling pigs fitted with a simple T-cannula at the distal ileum, to determine the effect of phytase supplementation to four diets on the apparent ileal digestibilities (AID) of CP and AA, and the apparent total-tract digestibilities (ATTD) of CP and DE. Phytase (Natuphos, DSM Food Specialties, Delft, The Netherlands) was supplemented at rates of 0, 500 or 1,000 FTU/kg to the four diets. A 20% CP (as-fed basis) corn-soybean meal diet was used in Exp. 1; a 20% CP wheat-soybean meal diet in Exp. 2; a 20% CP wheat-soybean meal-canola meal diet in Exp. 3; and a 19% CP barley-peas-canola meal diet in Exp. 4. In each experiment, six barrows, fitted with a simple T-cannula at the distal ileum, were fed the basal plus phytase-supplemented diets according to a repeated 3 x 3 Latin square design. Each experimental period comprised 14 d. The piglets were at fed 0800 and 2000 daily, equal amounts for each meal, at a daily rate of at least 2.4 times the maintenance requirement for ME. Feces were collected from 0800 on d 8 until 0800 on d 12 of each experimental period. Ileal digesta were collected from 0800 to 2000 on d 12, 13, and 14. Chromic oxide was used as the digestibility marker. The average initial and final BW (average of all experiments) were 7.9 and 16.5 kg, respectively. Phytase supplementation did not improve the AID of CP and AA in Exp. 1, 2, and 4; however, there were improvements (P < 0.05) or tendencies (P < 0.10) toward improvements in the AID of CP and AA or the ATTD of CP and the content of DE with phytase supplementation in Exp. 3. These results suggest that the AA response factor to microbial phytase supplementation depends on diet composition.  相似文献   

18.
Thirty primiparous sows were individually penned in a thermoneutral (20 degrees C) or hyperthermal (32 degrees C) environment and fed a high-starch (corn-soybean meal basal), high-fiber (48.5% wheat bran) or high-fat (10.6% choice white grease) diet from d 100 of gestation through a 22-d lactation to determine the effects of thermal environment and dietary energy source on energy and N digestibility in lactating sows. Voluntary feed intake and total feces and urine output were determined from d 12 through d 14 postpartum. Heat exposure (32 degrees C) depressed (P less than .05) voluntary feed, ME and N intake and lowered (P less than .05) apparent daily N retention. Heat exposure did not alter (P greater than .15) digestibility, expressed as percentage of intake, of dietary energy or N. Dietary additions of wheat bran depressed (P less than .05) the proportion of gross energy retained as ME by 12 and 14 percentage units and the apparent digestibility of N by 2.5 and 4.5 percentage units at 20 and 32 degrees C, respectively, compared with those of the basal diet. Dietary additions of choice white grease did not alter (P greater than .15) energy digestibility but increased (P less than .05) the proportion of N digested and retained in both environments. Apparent ME of the wheat bran, corn-soybean meal mix and choice white grease (determined by difference) was 2.72, 3.70 and 8.43 Mcal/kg DM and was independent of thermal environment. Digestibility of fibrous and starchy feedstuffs was similar in lactating sows and growing pigs allowed to consume feed ad libitum, whereas fat was more digestible in the sows.  相似文献   

19.
A cooperative experiment to evaluate biotin addition to sow diets was conducted at three research stations using 303 litters. Primiparous and multiparous sows (overall average parity 2.8) were fed a 14% CP corn-soybean meal diet (140 micrograms/kg biotin), with or without supplemental biotin (330 micrograms added biotin per kg feed), throughout gestation and lactation. As many sows as possible were fed their respective diets through three successive parities. During gestation, sows were given from 1.82 to 2.27 kg of feed per day, depending on environmental conditions; during lactation sows had ad libitum access to feed. Supplemental biotin had no effect (P greater than .35) on sow weights at breeding, at d 109 of gestation, at farrowing or at weaning. No differences were found in litter size at birth (P greater than .18), but at d 21 of lactation, sows fed the diet containing supplemental biotin had larger litters than sows fed the unsupplemented diet (9.4 vs 8.7 pigs, respectively; P = .01). Pig weights at birth and d 21 of lactation were not affected (P greater than .20) by dietary treatment. Biotin supplementation did not affect (P greater than .28) the length of the interval from weaning to estrus. No evidence was found that feet cracks or bruises were reduced by biotin supplementation. The results indicate that biotin supplementation of a corn-soybean meal diet during gestation and lactation increased the number of pigs at d 21 of lactation, but it did not decrease the incidence of foot lesions.  相似文献   

20.
Three experiments (exp.) were conducted to determine and compare the digestibility of nutrients and energy of corn distillers dried grains with solubles (DDGS) from the United States (USDDGS), a dried mixture of corn bran with solubles (CBS) from Brazil (BRCBS), and high protein corn distillers dried grains (HP-DDG) from the United States (USHPDG) and Brazil (BRHPDG) in growing pigs. The feed ingredients were evaluated for apparent total tract digestibility (ATTD) of gross energy (GE), dry matter (DM), crude protein (CP), ether extract, neutral and acid detergent fiber (NDF and ADF, respectively), and digestible and metabolizable energy (DE and ME, respectively) using the total collection and index methods in exp. 1; ATTD and standardized total tract digestibility (STTD) of phosphorus (P) in exp. 2; and apparent (AID) and standardized (SID) ileal digestibilities of CP and amino acids (AA) in exp. 3. Fifty crossbred barrows (32.4 ± 6.9, 38.3 ± 5.2, and 46.2 ± 5.3 kg body weight [BW], in exp. 1, 2, and 3, respectively) were fed a corn basal diet in exp. 1, a P-free diet in exp. 2, and an N-free diet in exp. 3 or diets with 40% inclusion of test ingredients to provide 10 replications per treatment. Pigs were housed individually in metabolism cages (exp. 1) or in pens (exp. 2 and 3) and fed at 2.8 times the maintenance DE requirement (110 kcal/kg BW0.75) based on their BW at the beginning of each experiment. Except for ATTD of NDF, which tended (P = 0.058) to be greater by the index method compared with the total collection method, no difference between the total collection and index methods was observed for ATTD of remaining nutrients and DE. The ATTD of DM, GE, NDF, and DE content of BRHPDG were greater (P < 0.001) than USHPDG, BRCBS, and USDDGS. The AID of CP, Arg, His, Ile, Leu, Lys, Thr, and Val and the SID of His, Leu, Lys, and Val of BRHPDG were 8% to 36% greater (P < 0.05) than those from USHPDG. Except for Trp, all AID and SID AA values were greater (P < 0.05) in BRHPDG than in USHPDG. The ATTD of DM, GE, NDF, and ADF; DE and ME content; AID of CP, Arg, Ile, Leu, Phe, Thr, and Trp; and SID of CP, Arg, Phe, and Thr of USDDGS were 9% to 45% greater (P < 0.05) than those in BRCBS. The ATTD and the STTD of P in USHPDG and USDDGS were 26% to 42% greater (P < 0.05) compared with BRHPDG and BRCBS. In conclusion, BRHPDG had a greater digestibility of energy and most of the AA than USHPDG, while the BRCBS evaluated had lower nutritional value than the USDDGS source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号