首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Heat processing during canning is responsible for the change in flavor of black tea infusion. The quantitative change in the volatile components of the black tea infusion during heat processing is not sufficient for explaining the sensory evaluation. In this study, application of aroma extract dilution analysis using the volatile fraction before and after black tea (Darjeeling) samples were heat processed resulted in the detection of 10 odor-active peaks for which flavor dilution (FD) factors changed. Seven potent odorants were identified from these peaks by gas chromatography-mass spectrometry. Among these components, 3-methylbutanal (stimulus), methional (potato-like), beta-damascenone (sweet), dimethyl trisulfide (putrid), and 2-methoxy-4-vinylphenol (clove-like) showed the highest FD factors after heat processing of the black tea sample. Therefore, these odorants were the most important components involved in changing the black tea odor during heat processing. In addition, the precursor of beta-damascenone in black tea infusion was investigated, and 3-hydroxy-7,8-didehydro-beta-ionol was determined to be one of the beta-damascenone-generating compounds for the first time.  相似文献   

2.
By application of the aroma extract dilution analysis on the volatile fraction isolated from a black tea infusion (Darjeeling Gold Selection), vanillin (vanilla-like), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel), 2-phenylethanol (flowery), and (E,E,Z)-2,4,6-nonatrienal (oat-flake-like) were identified with the highest flavor dilution (FD) factors among the 24 odor-active compounds detected in the FD factor range of 4-128. Quantitative measurements performed by means of stable isotope dilution assays and a calculation of odor activity values (OAVs; ratio of concentration to odor threshold in water) revealed, in particular, the previously unknown tea constituent (E,E,Z)-2,4,6-nonatrienal as a key odorant in the infusion and confirmed the important role of linalool and geraniol for the tea aroma. An aroma recombinate performed by the 18 odorants for which OAVs > 1 were determined in their "natural" concentrations matched the overall aroma of the tea beverage. In the black tea leaves, a total of 42 odorants were identified, most of which were identical with those in the beverage prepared thereof. However, quantitative measurements indicated that, in particular, geraniol, but also eight further odorants were significantly increased in the infusion as compared to their concentration in the leaves.  相似文献   

3.
An investigation by aroma extract dilution analysis (AEDA) of the aroma concentrate of soy milk made from a major Japanese soybean cultivar, Fukuyutaka (FK), revealed 20 key aroma compounds having flavor dilution (FD) factors of not less than 64. Among them, 2-isopropyl-3-methoxypyrazine, cis-4,5-epoxy-(E)-2-decenal, trans-4,5-epoxy-(E)-2-decenal, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, and 2'-aminoacetophenone were identified as the key aroma compounds in soy milk for the first time. (E,E)-2,4-Decadienal exhibiting a fatty note and trans-4,5-epoxy-(E)-2-decenal exhibiting a metallic/sweet note were detected as having the highest FD factors of 4096, followed by hexanal (green), (E)-2-nonenal (fatty), and (E,E)-2,4-nonadienal (fatty) having FD factors of 1024. Although all of these compounds might be generated from lipids, various aroma components, which were thought to be generated from amino acids, sugars, and ferulic acid, were detected having FD factors of 64-256. Investigation by comparative AEDA experiments of the soy milk aroma concentrates of two cultivars for soybean curd and soy milk, FK and Vinton81 (VT), and one cultivar for boiled beans, Miyagishirome (MY), revealed that most of the key aroma compounds were common to all of them, but 2-isopropyl-3-methoxypyrazine, exhibiting a pea-like/earthy note, was detected only in FK and VT. In addition, a sensory experiment revealed that the pea-like/earthy notes in FK and VT were significantly stronger than that in MY. These results demonstrated that a pea-like/earthy note contributed by 2-isopropyl-3-methoxypyrazine might be one of the essential characteristics to describe soy milk aromas.  相似文献   

4.
By application of the aroma extract dilution analysis on an extract prepared from fresh grapefruit juice, 37 odor-active compounds were detected in the flavor dilution (FD) factor range of 4-256 and subsequently identified. Among them the highest odor activities (FD factors) were determined for ethyl butanoate, p-1-menthene-8-thiol, (Z)-3-hexenal, 4,5-epoxy-(E)-2-decenal, 4-mercapto-4-methylpentane-2-one, 1-heptene-3-one, and wine lactone. Besides the 5 last mentioned compounds, a total of 13 further odorants were identified for the first time as flavor constituents of grapefruit. The data confirmed results of the literature on the significant contribution of 1-p-menthene-8-thiol in grapefruit aroma but clearly showed that a certain number of further odorants are necessary to elicit the typical grapefruit flavor.  相似文献   

5.
Application of an aroma extract dilution analysis on an aroma distillate prepared from organically grown, raw West-African peanuts (Cameroon) revealed 36 odor-active areas in the flavor dilution (FD) factor range of 1 to 2048. The identification experiments, which were all performed by using the respective reference chemicals, revealed 2-isopropyl-3-methoxypyrazine (earthy, pea-like), 2-isobutyl-3-methoxypyrazine (bell pepper-like, earthy), and trans-4,5-epoxy-(E)-2-decenal (metallic) with the highest FD factors among the 36 aroma compounds identified. The two last mentioned odorants and another set of 22 further odorants were identified for the first time in raw peanuts. A comparative aroma extract dilution analysis applied on distillates prepared from either the raw peanuts or ground peanut meal roasted in a pan showed 52 odor-active areas in the FD factor range of 8 to 2048 in the roasted nut material. The identification experiments in combination with the FD factors revealed that among them, 2-acetyl-1-pyrroline and 4-hydroxy-2,5-dimethyl-3-(2H)-furanone showed the most significant contribution to the overall aroma, followed by 1-octen-3-one, 2-isopropyl-3-methoxypyrazine, (E, E)-2,4-decadienal, and trans-4,5-epoxy-(E)-2-decenal. As a further result, 20 aroma compounds were newly identified in roasted peanuts, such as 2-propionyl-1-pyrroline and 2-acetyltetrahydropyridine (both popcorn-like). In particular, 2-acetyl-1-pyrroline and 4-hydroxy-2,5-dimethyl-3(2 H)-furanone showed the most pronounced increase after roasting.  相似文献   

6.
Three tasty (BR-139, FA-624, and FA-612) and two less tasty (R-144 and R-175) fresh greenhouse tomato cultivars, which significantly differ in their flavor profiles, were screened for potent odorants using aroma extract dilution analysis (AEDA). On the basis of AEDA results, 19 volatiles were selected for quantification in those 5 cultivars using gas chromatography-mass spectrometry (GC-MS). Compounds such as 1-penten-3-one, ( E, E)- and ( E, Z)-2,4-decadienal, and 4-hydroxy-2,5-dimethyl-3(2 H)-furanone (Furaneol) had higher odor units in the more preferred cultivars, whereas methional, phenylacetaldehyde, 2-phenylethanol, or 2-isobutylthiazole had higher odor units in the less preferred cultivars. Simulation of the odor of the selected tomato cultivars by preparation of aroma models and comparison with the corresponding real samples confirmed that all important fresh tomato odorants were identified, that their concentrations were determined correctly in all five cultivars, and that differences in concentration, especially of the compounds mentioned above, make it possible to distinguish between them and are responsible for the differential preference. To help elucidate formation pathways of key odorants, labeled precursors were added to tomatoes. Biogenesis of cis- and trans-4,5-epoxy-( E)-2-decenals from linoleic acid and methional from methionine was confirmed.  相似文献   

7.
The potent odorants of standardized, enzymatically hydrolyzed, and deoiled soybean lecithins were characterized systematically by combined gas chromatography/mass spectrometry and olfactometry. Sixty-one odorants were identified; 53 of these odor-active compounds have not previously been reported as odorants of soybean lecithin flavor. By aroma extract dilution analysis and modified combined hedonic and response measurement the following odorants showed the highest flavor dilution factors and CHARM values: (E,E)-2, 4-decadienal (deep-fried), (E)-beta-damascenone (apple-like), 2, 3-diethyl-5-methylpyrazine (roasty, earthy), (E)-2-nonenal (cardboard-like), trans-4,5-epoxy-(E)-2-decenal (metallic), 1-nonen-3-one (mushroom-like), 2-ethyl-3,5-dimethylpyrazine (roasty, earthy), and 1-octen-3-one (mushroom-like). Enzymatic hydrolysis intensified especially the roasty sensation of 2, 3-diethyl-5-methylpyrazine, whereas deoiling effected a general significant decrease in olfactory perception on the nitrogen-containing compounds. In addition, sensory profiles of nasal and retronasal lecithin odor were performed.  相似文献   

8.
Application of aroma extract dilution analysis using the volatile fraction of a Japanese green tea (Sen-cha) sample resulted in the detection of 36 odor-active peaks with flavor dilution (FD) factors between 10 and 5000. Thirty-six potent odorants were identified from 36 odor-active peaks by gas chromatography/mass spectrometry (GC/MS) and/or the multidimensional GC/MS (MDGC/MS) system. Among these components, 4-methoxy-2-methyl-2-butanethiol (meaty), (Z)-1, 5-octadien-3-one (metallic), 4-mercapto-4-methyl-2-pentanone (meaty), (E,E)-2,4-decadienal (fatty), beta-damascone (honey-like), beta-damascenone (honey-like), (Z)-methyl jasmonate (floral), and indole (animal-like) showed the highest FD factors. Therefore, these odorants were the most important components of the Japanese green tea odor. In addition, 4-methoxy-2-methyl-2-butanethiol, 4-mercapto-4-methyl-2-pentanone, methional, 2-ethyl-3, 5-dimethylpyrazine, (Z)-4-decenal, beta-damascone, maltol, 5-octanolide, 2-methoxy-4-vinylphenol, and 2-aminoacetophenone were newly identified compounds in the green tea.  相似文献   

9.
Application of aroma extract dilution analysis on the volatiles obtained from dried cones of Spalter Select hops grown in the German hop-growing area of Hallertau revealed 23 odorants in the flavor dilution (FD) factor range of 16-4096, 20 of which could be identified. On the basis of high FD factors, trans-4, 5-epoxy-(E)-2-decenal, linalool, and myrcene were identified as the most potent odorants, followed by ethyl 2-methylpropanoate, methyl 2-methylbutanoate, (Z)-1,5-octadien-3-one, nonanal, (E,Z)-1,3, 5-undecatriene, 1,3(E),5(Z),9-undecatetraene, propyl 2-methylbutanoate, 4-ethenyl-2-methoxyphenol, and 1-octen-3-one. Ten of the high-impact hop aroma compounds had previously not been identified as hop constituents and, in particular, 1,3(E),5(Z), 9-undecatetraene has not yet been reported as a food odorant. In an extract obtained from fresh hops, in addition to the odorants found in dry hops, (Z)-3-hexenal was characterized as a further key odorant rendering an additional green aroma note to the fresh material.  相似文献   

10.
Application of aroma extract dilution analysis (AEDA) on the volatile components of low-, medium-, and high-heat-treated nonfat dry milks (NDM) revealed aroma-active compounds in the log(3) flavor dilution (log(3) FD) factor range of 1 to 6. The following compounds contributed the highest log(3) FD factors to overall NDM flavor: 2,5-dimethyl-4-hydroxy-3(2H)-furanone [(Furaneol), burnt sugar-like]; butanoic acid (rancid); 3-(methylthio)propanal [(methional), boiled potato-like]; o-aminoacetophenone (grape-like); delta-decalactone (sweet); (E)-4,5-epoxy-(E)-2-decenal (metallic); pentanoic acid (sweaty); 4,5-dimethyl-3-hydroxy-2(5H)-furanone [(sotolon), curry]; 3-methoxy-4-hydroxybenzaldehyde [(vanillin), vanilla]; 2-acetyl-1-pyrroline and 2-acetyl-2-thiazoline (popcorn-like); hexanoic acid (vinegar-like); phenylacetic acid (rose-like); octanoic acid (waxy); nonanal (fatty); and 1-octen-3-one (mushroom-like). The odor intensities of Furaneol, butanoic acid, methional, o-aminoacetophenone, sotolon, vanillin, (E)-4,5-epoxy-(E)-2-decenal, and phenylacetic acid were higher in high-heat-treated samples than others. However, the odor intensities of lactones, 2-acetyl-1-pyrroline, and 2-acetyl-2-thiazoline were not affected by heat treatment. Sensory evaluation results also revealed that heat-generated flavors have a major impact on the flavor profile of NDM.  相似文献   

11.
The volatiles present in fresh, pink-fleshed Colombian guavas ( Psidium guajava, L.), variety regional rojo, were carefully isolated by solvent extraction followed by solvent-assisted flavor evaporation, and the aroma-active areas in the gas chromatogram were screened by application of the aroma extract dilution analysis. The results of the identification experiments in combination with the FD factors revealed 4-methoxy-2,5-dimethyl-3(2 H)-furanone, 4-hydroxy-2,5-dimethyl-3(2 H)-furanone, 3-sulfanylhexyl acetate, and 3-sulfanyl-1-hexanol followed by 3-hydroxy-4,5-dimethyl-2(5 H)-furanone, ( Z)-3-hexenal, trans-4,5-epoxy-( E)-2-decenal, cinnamyl alcohol, ethyl butanoate, hexanal, methional, and cinnamyl acetate as important aroma contributors. Enantioselective gas chromatography revealed an enantiomeric distribution close to the racemate in 3-sulfanylhexyl acetate as well as in 3-sulfanyl-1-hexanol. In addition, two fruity smelling diastereomeric methyl 2-hydroxy-3-methylpentanoates were identified as the ( R,S)- and the ( S,S)-isomers, whereas the ( S,R)- and ( R,R)-isomers were absent. Seven odorants were identified for the first time in guavas, among them 3-sulfanylhexyl acetate, 3-sulfanyl-1-hexanol, 3-hydroxy-4,5-dimethyl-2(5 H)-furanone, trans-4,5-epoxy-( E)-2-decenal, and methional were the most odor-active.  相似文献   

12.
Two kinds of pan-fired green teas (Japanese Kamairi-cha and Chinese Longing tea) were compared with the common Japanese green tea (Sen-cha). Application of the aroma extract dilution analysis (AEDA) using the volatile fraction of the Sen-cha, Kamairi-cha and Longing tea infusions revealed 32, 51, and 52 odor-active peaks with flavor dilution factors between 16 and 1024, respectively. (Z)-1,5-Octadien-3-one (metallic, geranium-like), 4-mercapto-4-methyl-2-pentanone (meaty, black currant-like), methional (potato-like), (E,Z)-2,6-nonadienal (cucumber-like), and 3-methylnonane-2,4-dione (green, fruity, hay-like) showed high flavor dilution factors in all varieties. In addition, 2-acetyl-1-pyrroline (popcorn-like), 2-ethyl-3,5-dimethylpyrazine (nutty), 2,3-diethyl-5-methylpyrazine (nutty), and 2-acetyl-2-thiazoline (popcorn-like) belonged to the most potent odorants only in the pan-fired green teas. Among these odorants, 2-acetyl-1-pyrroline and 2-acetyl-2-thiazoline were identified for the first time among the tea volatiles.  相似文献   

13.
Application of the aroma extract dilution analysis (AEDA) on the volatile fraction carefully isolated from an American Bourbon whisky revealed 45 odor-active areas in the flavor dilution (FD) factor range of 32-4096 among which (E)-beta-damascenone and delta-nonalactone showed the highest FD factors of 4096 and 2048, respectively. With FD factors of 1024, (3S,4S)-cis-whiskylactone, gamma-decalactone, 4-allyl-2-methoxyphenol (eugenol), and 4-hydroxy-3-methoxy-benzaldehyde (vanillin) additionally contributed to the overall vanilla-like, fruity, and smoky aroma note of the spirit. Application of GC-Olfactometry on the headspace above the whisky revealed 23 aroma-active odorants among which 3-methylbutanal, ethanol, and 2-methylbutanal were identified as additional important aroma compounds. Compared to published data on volatile constituents in whisky, besides ranking the whisky odorants on the basis of their odor potency, 13 aroma compounds were newly identified in this study: ethyl (S)-2-methylbutanoate, (E)-2-heptenal, (E,E)-2,4-nonadienal, (E)-2-decenal, (E,E)-2,4-decadienal, 2-isopropyl-3-methoxypyrazine, ethyl phenylacetate, 4-methyl acetophenone, alpha-damascone, 2-phenylethyl propanoate, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, trans-ethyl cinnamate, and (Z)-6-dodeceno-gamma-lactone.  相似文献   

14.
By application of aroma extract dilution analysis (AEDA) on the volatile fraction isolated by solvent extraction and solvent-assisted flavor evaporation (SAFE) from unifloral rape honey harvested in July 2009, 28 odor-active areas could be detected within a flavor dilution factor (FD) range of 4-2048. The highest FD factors were found for (E)-β-damascenone (cooked apple-like), phenylacetic acid (honey-like), 4-methoxybenzaldehyde (aniseed-like), 3-phenylpropanoic acid (flowery, waxy), and 2-methoxy-4-vinylphenol (clove-like). Twenty-three odorants were then quantitated by application of stable isotope dilution assays, and their odor activity values (OAV, ratio of concentration to odor threshold) were calculated on the basis of newly determined odor thresholds in an aqueous fructose-glucose solution. The highest OAVs were calculated for (E)-β-damascenone, 3-phenylpropanoic acid, phenylacetic acid, dimethyl trisulfide, and phenylacetaldehyde. Quantitative measurements on a rape honey produced in 2011 confirmed the results. A model mixture containing the 12 odorants showing an OAV ≥ 1 at the same concentrations as they occurred in the rape honey was able to mimick the aroma impression of the original honey. The characterization of the key odorants in rape flowers from the same field suggested 3-phenylpropanoic acid, phenylacetic acid, and three further odorants to be transferred via the bees into the honey.  相似文献   

15.
Application of aroma extract dilution analysis on the volatiles isolated from a Bavarian Pilsner-type beer revealed 40 odor-active constituents in the flavor dilution (FD) factor range of 16-2048, among which ethyl octanoate, (E)-beta-damascenone, 2- and 3-methylbutanoic acid, and 4-hydroxy-2,5-dimethyl-3(2H)-furanone showed the highest FD factor of 2048. After quantitation of the 26 odorants showing FD factors > or =128 by stable isotope dilution analysis and determination of their odor thresholds in water, odor acitivity values (OAVs) were calculated. The results indicated ethanol, (E)-beta-damascenone, (R)-linalool, acetaldehyde, and ethyl butanoate with the highest OAVs, followed by ethyl 2-methylpropanoate and ethyl 4-methylpentanoate, which was previously unknown in beer. Finally, the overall aroma of the beer could be mimicked for the first time by recombining 22 reference odorants in the same concentrations as they occurred in the beer using ethanol/water as the matrix.  相似文献   

16.
Application of the aroma extract dilution analysis on a flavor distillate prepared from freshly ground rye flour (type 1150) revealed 1-octen-3-one (mushroom-like), methional (cooked potato), and (E)-2-nonenal (fatty, green) with the highest flavor dilution (FD) factors among the 26 odor-active volatiles identified. Quantitative measurements performed by stable isotope dilution assays and a comparison to the odor thresholds of selected odorants in starch suggested methional, (E)-2-nonenal, and hexanal as contributors to the flour aroma, because their concentrations exceeded their odor thresholds by factors >100. Application of the same approach on a rye sourdough prepared from the same batch of flour revealed 3-methylbutanal, vanillin, 3-methylbutanoic acid, methional, (E,E)-2,4-decadienal, 2,3-butanedione, and acetic acid as important odorants; their concentrations exceeded their odor thresholds in water and starch by factors >100. A comparison of the concentrations of 20 odorants in rye flour and the sourdough made therefrom indicated that flour, besides the fermentation process, is an important source of aroma compounds in dough. However, 3-methylbutanol, acetic acid, and 2,3-butanedione were much increased during fermentation, whereas (E,E)-2,4-decadienal and 2-methylbutanal were decreased. Similar results were obtained for five different flours and sourdoughs, respectively, although the amounts of some odorants in the flour and the sourdough differed significantly within batches.  相似文献   

17.
The aroma extract dilution analysis method was used to detect the impact odorants of Bordeaux Cabernet Sauvignon and Merlot wines extracts, as well as those of the extracts of the corresponding Cabernet Sauvignon juice and dry yeasts used for its fermentation. The wines and the yeasts were extracted using dichloromethane, and the juice was extracted using Amberlite XAD-2. Structural identification of the impact odorants using gas chromatography-mass spectrometry and atomic emission detection (sulfur acquisition) was achieved after enrichment of these extracts by silica gel and Affi-Gel 501 chromatography. The same odorants (with the exception of dimethyl sulfide among 48) were detected in both wine extracts, with about the same flavor dilution (FD) factors. The 18 impact odorants detected in the Cabernet Sauvignon juice and dry yeast extracts were also found in the wine extracts. The odorants with the highest FD factors were 3-(methylsulfanyl)propanal, (E,Z)-nona-2, 6-dienal, and decanal in the juice extract, 2-methyl-3-sulfanylfuran, 3-(methylsulfanyl)propanal, 2-/3-methylbutanoic acids, and phenylethanal in the dry yeast extract, and 2-/3-methylbutanols, 2-phenylethanol, 2-methyl-3-sulfanylfuran, acetic acid, 3-(methylsulfanyl)propanal, 2-/3-methylbutanoic acids, beta-damascenone, 3-sulfanylhexan-1-ol, Furaneol, and homofuraneol in the wine extracts. Determination of the odor thresholds of some of these impact odorants was carried out.  相似文献   

18.
The unique flavor of Oscypek, a Polish ewe's milk smoked cheese, is described as slightly sour, piquant, salted, and smoked. In this paper with the application of gas chromatography-olfactometry (GC-O) and combination of aroma extract dilution analysis (AEDA) 20 potent odorants of this cheese have been identified within the flavor dilution factor (FD) range of 4-2048. Among them, 2-methoxyphenol, 2-methoxy-4-methylphenol, 4-methylphenol, and butanoic acid showed the highest FD factors. Quantification results based on labeled standard addition followed by calculation of odor activity values (OAV) of 13 compounds with the highest FD factors revealed that 11 compounds were present at concentrations above their odor threshold values and therefore mostly contribute to the overall aroma of smoked ewe's milk cheese. Six of those compounds were represented by phenolic derivatives, with the highest OAV for 2-methoxyphenol (1280). Analysis of key odorants of an unsmoked cheese sample showed that the smoking process had a fundamental influence on Oscypek aroma formation.  相似文献   

19.
The odorants in Chinese jasmine green tea scented with jasmine flowers (Jasminum sambac) were separated from the infusion by adsorption to Porapak Q resin. Among the 66 compounds identified by GC and GC/MS, linalool (floral), methyl anthranilate (grape-like), 4-hexanolide (sweet), 4-nonanolide (sweet), (E)-2-hexenyl hexanoate (green), and 4-hydroxy-2,5-dimethyl-3(2H)-furanone (sweet) were extracted as potent odorants by an aroma extract dilution analysis and sensory analysis. The enantiomeric ratios of linalool in jasmine tea and Jasminum sambac were determined by a chiral analysis for the first time in this study: 81.6% ee and 100% ee for the (R)-(-)-configuration, respectively. The jasmine tea flavor could be closely duplicated by a model mixture containing these six compounds on the basis of a sensory analysis. The omission of methyl anthranilate and the replacement of (R)-(-)-linalool by (S)-(+)-linalool led to great changes in the odor of the model. These two compounds were determined to be the key odorants of the jasmine tea flavor.  相似文献   

20.
An investigation of the volatile fraction of a freshly prepared sourdough rye bread crumb by means of the aroma extract dilution analysis (AEDA), followed by identification experiments, revealed 22 flavor compounds in the flavor dilution (FD) factor range of 128 to 2048. Quantitations performed by stable isotope dilution assays (SIDA) and a calculation of odor activity values (OAV; ratio of concentration to odor threshold) revealed the following as contributors to the overall crumb flavor: 3-methylbutanal (malty), (E)-2-nonenal (green, fatty), (E,E)-2,4-decadienal (fatty, waxy), hexanal (green), acetic acid (sour, pungent), phenylacetaldehyde (honey-like), methional (boiled potato-like), vanillin (vanilla-like), 2,3-butandione (buttery), 3-hydroxy-4,5-dimethyl-2(5H)-furanone (spicy), and 2- and 3-methylbutanoic acid (sweaty). Using either citrate buffer, starch, or deodorized crumb as model matrixes, the typical malty and sour rye bread crumb flavor was reproduced by adding a mixture of 20 reference odorants in the "natural" concentrations as quantitatively determined in the fresh crumb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号