首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have measured carbon nanotube quantum dots with multiple electrostatic gates and used the resulting enhanced control to investigate a nanotube double quantum dot. Transport measurements reveal honeycomb charge stability diagrams as a function of two nearly independent gate voltages. The device can be tuned from weak to strong interdot tunnel-coupling regimes, and the transparency of the leads can be controlled independently. We extract values of energy-level spacings, capacitances, and interaction energies for this system. This ability to control electron interactions in the quantum regime in a molecular conductor is important for applications such as quantum computation.  相似文献   

2.
A bidirectional single-electron counting device is demonstrated. Individual electrons flowing in forward and reverse directions through a double quantum dot are detected with a quantum point contact acting as a charge sensor. A comprehensive statistical analysis in the frequency and time domains and of higher order moments of noise reveals antibunching correlation in single-electron transport through the device itself. The device can also be used to investigate current flow in the attoampere range, which cannot be measured by existing current meters.  相似文献   

3.
A tunable kondo effect in quantum dots   总被引:1,自引:0,他引:1  
A tunable Kondo effect has been realized in small quantum dots. A dot can be switched from a Kondo system to a non-Kondo system as the number of electrons on the dot is changed from odd to even. The Kondo temperature can be tuned by means of a gate voltage as a single-particle energy state nears the Fermi energy. Measurements of the temperature and magnetic field dependence of a Coulomb-blockaded dot show good agreement with predictions of both equilibrium and nonequilibrium Kondo effects.  相似文献   

4.
BC Stipe  MA Rezaei  W Ho 《Science (New York, N.Y.)》1998,279(5358):1907-1909
Tunneling electrons from the tip of a scanning tunneling microscope were used to induce and monitor the reversible rotation of single molecules of molecular oxygen among three equivalent orientations on the platinum(111) surface. Detailed studies of the rotation rates indicate a crossover from a single-electron process to a multielectron process below a threshold tunneling voltage. Values for the energy barrier to rotation and the vibrational relaxation rate of the molecule were obtained by comparing the experimental data with a theoretical model. The ability to induce the controlled motion of single molecules enhances our understanding of basic chemical processes on surfaces and may lead to useful single-molecule devices.  相似文献   

5.
Zhou C  Kong J  Yenilmez E  Dai H 《Science (New York, N.Y.)》2000,290(5496):1552-1555
Modulation doping of a semiconducting single-walled carbon nanotube along its length leads to an intramolecular wire electronic device. The nanotube is doped n-type for half of its length and p-type for the other half. Electrostatic gating can tune the system into p-n junctions, causing it to exhibit rectifying characteristics or negative differential conductance. The system can also be tuned into n-type, exhibiting single-electron charging and negative differential conductance at low temperatures. The low-temperature behavior is manifested by a quantum dot formed by chemical inhomogeneity along the tube.  相似文献   

6.
A scanning probe technique was used to obtain a high-resolution map of the random electrostatic potential inside the quantum Hall liquid. A sharp metal tip, scanned above a semiconductor surface, sensed charges in an embedded two-dimensional (2D) electron gas. Under quantum Hall effect conditions, applying a positive voltage to the tip locally enhanced the 2D electron density and created a "bubble" of electrons in an otherwise unoccupied Landau level. As the tip scanned along the sample surface, the bubble followed underneath. The tip sensed the motions of single electrons entering or leaving the bubble in response to changes in the local 2D electrostatic potential.  相似文献   

7.
Double quantum dots provide an ideal model system for studying interactions between localized impurity spins. We report on the transport properties of a series-coupled double quantum dot as electrons are added one by one onto the dots. When the many-body molecular states are formed, we observe a splitting of the Kondo resonance peak in the differential conductance. This splitting reflects the energy difference between the bonding and antibonding states formed by the coherent superposition of the Kondo states of each dot. The occurrence of the Kondo resonance and its magnetic field dependence agree with a simple interpretation of the spin status of a double quantum dot.  相似文献   

8.
Manipulation of single spins is essential for spin-based quantum information processing. Electrical control instead of magnetic control is particularly appealing for this purpose, because electric fields are easy to generate locally on-chip. We experimentally realized coherent control of a single-electron spin in a quantum dot using an oscillating electric field generated by a local gate. The electric field induced coherent transitions (Rabi oscillations) between spin-up and spin-down with 90 degrees rotations as fast as approximately 55 nanoseconds. Our analysis indicated that the electrically induced spin transitions were mediated by the spin-orbit interaction. Taken together with the recently demonstrated coherent exchange of two neighboring spins, our results establish the feasibility of fully electrical manipulation of spin qubits.  相似文献   

9.
The exceptional electronic properties of graphene, with its charge carriers mimicking relativistic quantum particles and its formidable potential in various applications, have ensured a rapid growth of interest in this new material. We report on electron transport in quantum dot devices carved entirely from graphene. At large sizes (>100 nanometers), they behave as conventional single-electron transistors, exhibiting periodic Coulomb blockade peaks. For quantum dots smaller than 100 nanometers, the peaks become strongly nonperiodic, indicating a major contribution of quantum confinement. Random peak spacing and its statistics are well described by the theory of chaotic neutrino billiards. Short constrictions of only a few nanometers in width remain conductive and reveal a confinement gap of up to 0.5 electron volt, demonstrating the possibility of molecular-scale electronics based on graphene.  相似文献   

10.
The effective interaction between magnetic impurities in metals that can lead to various magnetic ground states often competes with a tendency for electrons near impurities to screen the local moment (known as the Kondo effect). The simplest system exhibiting the richness of this competition, the two-impurity Kondo system, was realized experimentally in the form of two quantum dots coupled through an open conducting region. We demonstrate nonlocal spin control by suppressing and splitting Kondo resonances in one quantum dot by changing the electron number and coupling of the other dot. The results suggest an approach to nonlocal spin control that may be relevant to quantum information processing.  相似文献   

11.
We observe spin blockade due to Pauli exclusion in the tunneling characteristics of a coupled quantum dot system when two same-spin electrons occupy the lowest energy state in each dot. Spin blockade only occurs in one bias direction when there is asymmetry in the electron population of the two dots, leading to current rectification. We induce the collapse of the spin blockade by applying a magnetic field to open up a new spin-triplet current-carrying channel.  相似文献   

12.
Optically induced entanglement is identified by the spectrum of the phase-sensitive homodyne-detected coherent nonlinear optical response in a single gallium arsenide quantum dot. The electron-hole entanglement involves two magneto-excitonic states differing in transition energy and polarization. The strong coupling needed for entanglement is provided through the Coulomb interaction involving the electrons and holes. The result presents a first step toward the optical realization of quantum logic operations using two or more quantum dots.  相似文献   

13.
We report on the electron analog of the single-photon gun. On-demand single-electron injection in a quantum conductor was obtained using a quantum dot connected to the conductor via a tunnel barrier. Electron emission was triggered by the application of a potential step that compensated for the dot-charging energy. Depending on the barrier transparency, the quantum emission time ranged from 0.1 to 10 nanoseconds. The single-electron source should prove useful for the use of quantum bits in ballistic conductors. Additionally, periodic sequences of single-electron emission and absorption generate a quantized alternating current.  相似文献   

14.
Optical emission from individual strained indium arsenide (InAs) islands buried in gallium arsenide (GaAs) was studied. At low excitation power density, the spectra from these quantum dots consist of a single line. At higher excitation power density, additional emission lines appeared at both higher and lower energies, separated from the main line by about 1 millielectron volt. At even higher excitation power density, this set of lines was replaced by a broad emission peaking below the original line. The splittings were an order of magnitude smaller than the lowest single-electron or single-hole excited state energies, indicating that the fine structure results from few-particle interactions in the dot. Calculations of few-particle effects give splittings of the observed magnitude.  相似文献   

15.
We report coherent optical control of a biexciton (two electron-hole pairs), confined in a single quantum dot, that shows coherent oscillations similar to the excited-state Rabi flopping in an isolated atom. The pulse control of the biexciton dynamics, combined with previously demonstrated control of the single-exciton Rabi rotation, serves as the physical basis for a two-bit conditional quantum logic gate. The truth table of the gate shows the features of an all-optical quantum gate with interacting yet distinguishable excitons as qubits. Evaluation of the fidelity yields a value of 0.7 for the gate operation. Such experimental capability is essential to a scheme for scalable quantum computation by means of the optical control of spin qubits in dots.  相似文献   

16.
Carbon nanotube quantum resistors   总被引:1,自引:0,他引:1  
The conductance of multiwalled carbon nanotubes (MWNTs) was found to be quantized. The experimental method involved measuring the conductance of nanotubes by replacing the tip of a scanning probe microscope with a nanotube fiber, which could be lowered into a liquid metal to establish a gentle electrical contact with a nanotube at the tip of the fiber. The conductance of arc-produced MWNTs is one unit of the conductance quantum G0 = 2e2/h = (12.9 kilohms)-1. The nanotubes conduct current ballistically and do not dissipate heat. The nanotubes, which are typically 15 nanometers wide and 4 micrometers long, are several orders of magnitude greater in size and stability than other typical room-temperature quantum conductors. Extremely high stable current densities, J > 10(7) amperes per square centimeter, have been attained.  相似文献   

17.
The electrical noise of mesoscopic devices can be strongly influenced by the quantum motion of electrons. To probe this effect, we have measured the current fluctuations at high frequency (5 to 90 gigahertz) using a superconductor-insulator-superconductor tunnel junction as an on-chip spectrum analyzer. By coupling this frequency-resolved noise detector to a quantum device, we can measure the high-frequency, nonsymmetrized noise as demonstrated for a Josephson junction. The same scheme is used to detect the current fluctuations arising from coherent charge oscillations in a two-level system, a superconducting charge qubit. A narrow band peak is observed in the spectral noise density at the frequency of the coherent charge oscillations.  相似文献   

18.
The controlled manipulation of silicon at the nanometer scale will facilitate the fabrication of new types of electronic devices. The scanning tunneling microscope (STM) can be used to manipulate strongly bound silicon atoms or clusters at room temperature. Specifically, by using a combination of electrostatic and chemical forces, surface atoms can be removed and deposited on the STM tip. The tip can then move to a predetermined surface site, and the atom or cluster can be redeposited. The magnitude of such forces and the amount of material removed can be controlled by applying voltage pulses at different tip-surface separations.  相似文献   

19.
Optical gain and stimulated emission in nanocrystal quantum dots   总被引:1,自引:0,他引:1  
The development of optical gain in chemically synthesized semiconductor nanoparticles (nanocrystal quantum dots) has been intensely studied as the first step toward nanocrystal quantum dot lasers. We examined the competing dynamical processes involved in optical amplification and lasing in nanocrystal quantum dots and found that, despite a highly efficient intrinsic nonradiative Auger recombination, large optical gain can be developed at the wavelength of the emitting transition for close-packed solids of these dots. Narrowband stimulated emission with a pronounced gain threshold at wavelengths tunable with the size of the nanocrystal was observed, as expected from quantum confinement effects. These results unambiguously demonstrate the feasibility of nanocrystal quantum dot lasers.  相似文献   

20.
Nanotechnology creates a new challenge for materials characterization because device properties now depend on size and shape as much as they depend on the traditional parameters of structure and composition. Here we show that Z-contrast tomography in the scanning transmission electron microscope has been developed to determine the complete three-dimensional size and shape of embedded structures with a resolution of approximately 1 cubic nanometer. The results from a tin/silicon quantum dot system show that the positions of the quantum dots and their size, shape, structure, and formation mechanism can be determined directly. These methods are applicable to any system, providing a unique and versatile three-dimensional visualization tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号