首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sixteen Chilean flamingos, Phoenicopterus chiles, and 10 red-tailed hawks, Buteo jamacensis, were vaccinated in the pectoral muscle with 0.2 ml of a commercially produced killed West Nile virus vaccine intended for use in horses. Half the birds of each species received a booster vaccination 3 weeks after the first injection. Three weeks after the booster vaccination, none of 13 birds surveyed had detectable antibody to West Nile virus.  相似文献   

2.
OBJECTIVE: To determine the onset of immunity after IM administration of a single dose of a recombinant canarypox virus vaccine against West Nile virus (WNV) in horses in a blind challenge trial. ANIMALS: 20 mixed-breed horses. PROCEDURE: Horses with no prior exposure to WNV were randomly assigned to 1 of 2 groups (10 horses/group). In 1 group, a recombinant canarypox virus vaccine against WNV was administered to each horse once (day 0). The other 10 control horses were untreated. On day 26, 9 treated and 10 control horses were challenged via the bites of mosquitoes (Aedes albopictus) infected with WNV. Clinical responses and WNV isolation were monitored for 14 days after challenge exposure; antibody responses against WNV after administration of the vaccine and challenge were also assessed in both groups. RESULTS: Following challenge via WNV-infected mosquitoes, 1 of 9 treated horses developed viremia. In contrast, 8 of 10 control horses developed viremia after challenge exposure to WNV-infected mosquitoes. All horses seroconverted after WNV challenge; compared with control horses, antibody responses in the horses that received the vaccine were detected earlier. CONCLUSIONS AND CLINICAL RELEVANCe: In horses, a single dose of the recombinant canarypox virus-WNV vaccine appears to provide early protection against development of viremia after challenge with WNV-infected mosquitoes, even in the absence of measurable antibody titers in some horses. This vaccine may provide veterinarians with an important tool in controlling WNV infection during a natural outbreak or under conditions in which a rapid onset of protection is required.  相似文献   

3.
The New York 1999 strain of West Nile virus (WNV) is nearly 100% fatal in the American crow (Corvus brachyrhynchos). We evaluated four WNV vaccine formulations in American crows, including intramuscular (i.m.) DNA vaccine, i.m. DNA vaccine with adjuvant, orally administered microencapsulated DNA vaccine, and i.m. killed vaccine. Neutralizing antibodies developed in approximately 80% of crows that received the DNA vaccine i.m. (with or without adjuvant), and in 44% that received the killed vaccine. However, no crows that received the oral microencapsulated DNA vaccine or the placebo developed WNV antibodies. All crows were challenged 10 wk after initial vaccination. No unvaccinated crows survived challenge, and survival rates were 44% (i.m. DNA vaccine), 60% (i.m. DNA vaccine with adjuvant), 0% (oral microencapsulated DNA vaccine), and 11% (killed vaccine). Peak viremia titers in the birds that survived were significantly lower as compared to titers in birds that died. Parenteral administration of a WNV DNA vaccine was associated with reduced mortality but did not provide sterile immunity.  相似文献   

4.
Between August and October 2000, 76 horses were reported by veterinary practitioners as having signs of a neurological disorder, varying from an involvement of the spinal cord alone to the entire central nervous system; 15 of the horses died or were euthanased as a result of their grave prognosis or secondary complications. At the same time, an outbreak of West Nile virus infection affected people and birds, principally domestic geese. West Nile virus was isolated from four of the horses with encephalomyelitis and five other horses seroconverted, indicating that the virus was the probable cause of the outbreak in horses. Three of the cases from which the virus was isolated are described briefly and one case is described in detail. This horse behaved abnormally and had general proprioceptive deficits in all four limbs. Its neurological condition deteriorated after two days and severe inspiratory dyspnoea due to a failure to abduct the arytenoids necessitated a tracheostomy. It died on the fourth day and histological lesions were observed in the brain stem and grey matter of the spinal cord.  相似文献   

5.
REASON FOR PERFORMING STUDY: West Nile virus (WNV) infection is endemic and able to cause disease in naive hosts. It is necessary therefore to evaluate the safety of new vaccines. OBJECTIVES: To establish: 1) the safety of a modified live Flavivirus/West Nile virus (WN-FV) chimera by administration of an overdose and testing for shed of vaccine virus and spread to uninoculated sentinel horses; 2) that this vaccine did not become pathogenic once passaged in horses; and 3) vaccine safety under field conditions. METHODS: There were 3 protocols: 1) In the overdose/shed and spread study, horses were vaccinated with a 100x immunogenicity overdose of WN-FV chimera vaccine and housed with sentinel horses. 2) A reversion to virulence study, where horses were vaccinated with a 20x immunogenicity overdose of WN-FV chimera vaccine. Horses in both studies were evaluated for abnormal health conditions and samples obtained to detect virus, seroconversion and dissemination into tissues. 3) In a field safety test 919 healthy horses of various ages, breeds and sex were used. RESULTS: Vaccination did not result in site or systemic reactions in either experimental or field-injected horses. There was no shed of vaccine virus, no detection of vaccine virus into tissue and no reversion to virulence with passage. CONCLUSIONS: WN-FV chimera vaccine is safe to use in horses with no evidence of ill effects from very high doses of vaccine. There was no evidence of reversion to virulence. In addition, administration of this vaccine to several hundred horses that may have been previously exposed to WNV or WNV vaccine resulted in no untoward reactions. POTENTIAL RELEVANCE: These studies establish that this live attenuated Flavivirus chimera is safe to use for immunoprophylaxis against WNV disease in horses.  相似文献   

6.
The accidental introduction of West Nile Virus into New York City from the Old World in 1999 resulted in an epidemic in humans, horses, and birds that swept to the west coast in just 3 years. The virus is transmitted by infective mosquitoes among susceptible native birds, which serve as amplifying hosts. Clinical disease occurs in humans and horses, but not enough virus is produced in their blood to infect other mosquitoes; therefore, humans and horses are considered dead-end hosts. Humans can best protect themselves by remaining indoors during periods of high mosquito activity and/or by using recommended repellents. Effective vaccines are available for horses.  相似文献   

7.
The circulation of West Nile virus in Portugal was assessed by serological surveys conducted during 2004-2010 in horses and birds. The detection of WNV antibodies in both species in all the years covered by the study as well as the presence of anti-WNV IgM in symptomatic horses that had not traveled outside the country, support the notion that WNV circulates in Portugal.  相似文献   

8.
In Europe, virological and epidemiological data collected in wild birds and horses suggest that a recurrent circulation of West Nile virus (WNV) could exist in some areas. Whether this circulation is permanent (due to overwintering mechanisms) or not remains unknown. The current conception of WNV epidemiology suggests that it is not: this conception combines an enzootic WNV circulation in tropical Africa with seasonal introductions of the virus in Europe by migratory birds. The objectives of this work were to (i) model this conception of WNV global circulation; and (ii) evaluate whether the model could reproduce data and patterns observed in Europe and Africa in vectors, horses, and birds. The model was calibrated using published seroprevalence data obtained from African (Senegal) and European (Spain) wild birds, and validated using independent, published data: seroprevalence rates in migratory and resident wild birds, minimal infection rates in vectors, as well as seroprevalence and incidence rates in horses. According to this model, overwintering mechanisms are not needed to reproduce the observed data. However, the existence of such mechanisms cannot be ruled out.  相似文献   

9.
A new recombinant West Nile virus (WNV) vaccine has been licensed for use in horses. Prior to the availability of the recombinant vaccine in 2004, the only equine WNV vaccine available on the market had been an inactivated vaccine. Since the recombinant vaccine only expresses selected viral genes, the question could be posed as to whether a single dose of the recombinant vaccine would be effective in producing an anamnestic serologic response in horses previously vaccinated with an inactivated WNV vaccine. In this study we demonstrate that vaccination of horses with a canarypox-vectored recombinant vaccine, under field conditions, results in a marked anamnestic response in horses previously vaccinated with an inactivated WNV vaccine.  相似文献   

10.
A 42-day study was conducted to assess the impact of three West Nile virus vaccines given either as separate injections or incorporated with their counterpart equine encephalitis and tetanus vaccines on serological responses under field use conditions. Two hundred forty mature, West Nile virus seronegative (<4) horses were followed serologically pre- and postprimary and secondary vaccination with six different vaccination programs, all including West Nile virus antigens. Forty horses were unvaccinated sentinel horses. All vaccines stimulated both a primary and secondary (booster) response to vaccination that was significantly higher than that of seronegative controls. However, inclusion of West Nile virus with equine encephalitis viruses and tetanus toxoid in vaccines had a significant detrimental impact on West Nile virus serum neutralization antibody production to both the primary and secondary vaccinations.  相似文献   

11.
OBJECTIVE: To determine humoral responses to an equine West Nile virus (WNV) vaccine in healthy alpacas and llamas and compare responses in alpacas and llamas with responses in horses. DESIGN: Clinical trial. ANIMALS: 28 alpacas, 56 llamas, and 16 horses. PROCEDURE: Horses received 2 vaccinations at 4-week intervals, and alpacas and llamas received 3 vaccinations at 3-week intervals. Fifty-five llamas received a fourth vaccination 3 weeks after the third. Blood samples were collected immediately prior to each vaccination, 3 weeks after the last vaccination for alpacas and llamas, and 4 weeks after the last vaccination for horses and tested for virus-neutralizing antibodies. Samples from 29 randomly selected vaccinated llamas were used. RESULTS: None of the animals developed any local or systemic adverse reactions. Four of 28 (14%) alpacas, 4 of 29 (14%) llamas, and 7 of 16 (44%) horses were seropositive 3 (llamas and alpacas) or 4 (horses) weeks after administration of the first vaccination; 27 of 28 (96%) alpacas, 26 of 29 (90%) llamas, and 15 of 16 (94%) horses were seropositive after administration of the second vaccination; and all 28 alpacas and 28 of 29 (97%) llamas were seropositive 3 weeks after administration of the third vaccination. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that vaccination with the equine WNV vaccine is safe in alpacas and llamas. Administration of 3 vaccinations generally resulted in virus-neutralizing antibody titers similar to those observed following 2 vaccinations in horses; however, because it is not known what antibody titer would be protective against clinical WNV disease in alpacas or llamas, we cannot conclude that the vaccine was efficacious.  相似文献   

12.
OBJECTIVE: To describe an outbreak of encephalomyelitis caused by West Nile virus (WNV) in horses in northern Indiana. DESIGN: Case series. ANIMALS: 170 horses. PROCEDURES: Horses with clinical signs suggestive of encephalomyelitis caused by WNV were examined. Date, age, sex, breed, and survival status were recorded. Serum samples were tested for anti-WNV antibodies, and virus isolation was attempted from samples of brain tissue. Climate data from local weather recording stations were collected. An epidemic curve was constructed, and case fatality rate was calculated. RESULTS: The most common clinical signs were ataxia, hind limb paresis, and muscle tremors and fasciculations. Eight horses had been vaccinated against WNV from 2 to 21 days prior to the appearance of clinical signs. West Nile virus was isolated from brain tissue of 2 nonvaccinated horses, and anti-WNV IgM antibodies were detected in 132 nonvaccinated horses; in 2 other nonvaccinated horses, anti-WNV antibodies were detected and WNV was also isolated from brain tissue. Thirty-one (22.8%) horses died or were euthanatized. The peak of the outbreak occurred on September 6, 2002. Ambient temperatures were significantly lower after the peak of the outbreak, compared with prior to the peak. CONCLUSIONS AND CLINICAL RELEVANCE: The peak risk period for encephalomyelitis caused by WNV in northern Indiana was mid-August to mid-September. Reduction in cases coincided with decreasing ambient temperatures. Because of a substantial case fatality rate, owners of horses in northern Indiana should have their horses fully protected by vaccination against WNV before June. In other regions of the United States with a defined mosquito breeding season, vaccination of previously nonvaccinated horses should commence at least 4 months before the anticipated peak in seasonal mosquito numbers, and for previously vaccinated horses, vaccine should be administered no later than 2 months before this time.  相似文献   

13.
West Nile virus, a mosquito‐vectored flavivirus of the Japanese encephalitis serogroup, was first detected in North America following an epizootic in the New York City area in 1999. In the intervening 11 years since the arrival of the virus in North America, it has crossed the contiguous USA, entered the Canadian provinces bordering the USA, and has been reported in the Caribbean islands, Mexico, Central America and, more recently, South America. West Nile virus has been reported in over 300 species of birds in the USA and has caused the deaths of thousands of birds, local population declines of some avian species, the clinical illness and deaths of thousands of domestic horses, and the clinical disease in over 30 000 Americans and the deaths of over 1000. Prior to the emergence of West Nile virus in North America, St. Louis encephalitis virus and Dengue virus were the only other known mosquito‐transmitted flaviviruses in North America capable of causing human disease. This review will discuss the North American experience with mosquito‐borne flavivirus prior to the arrival of West Nile virus, the entry and spread of West Nile virus in North America, effects on wild bird populations, genetic changes in the virus, and the current state of West Nile virus transmission.  相似文献   

14.
Clinical presentation of West Nile disease in horses is variable, but ataxia, weakness and muscle fasciculations are often observed, sometimes with abnormal behaviour, teeth grinding and bruxism. Practitioners should be aware that horses are more sensitive to infection than man and serve as sentinels for an early warning of West Nile virus circulation in a given area. This early warning allows the implementation of preventive and control measures such as vaccination of horses and mosquito control.  相似文献   

15.
16.
17.
West Nile virus (WNV) is a flavivirus closely related to Japanese encephalitis and St. Louis encephalitis viruses that is primarily maintained in nature by transmission cycles between mosquitoes and birds. Occasionally, WNV infects and causes disease in other vertebrates, including humans and horses. West Nile virus has re-emerged as an important pathogen as several recent outbreaks of encephalomyelitis have been reported from different parts of Europe in addition to the large epidemic that has swept across North America. This review summarises the main features of WNV infection in the horse, with reference to complementary information from other species, highlighting the most recent scientific findings and identifying areas that require further research.  相似文献   

18.
The epidemic West Nile Virus (WNV) infections observed in the last years, particularly those in the USA in 1999 and the following years, have led to an increasing interest in this zoonotic infection. Here, the most prominent aspects of WNV biology and epidemiology are presented. Clinical signs observed in men and horses are described, as well as the current state of diagnostics and immunoprophylaxis. Preliminary results of investigations on the prevalence of WNV in Germany show that migrating birds have been in contact with WNV; there is however no indication for the presence of this virus. While WNV is endemic in many parts of the "Old World", thus inducing "natural immunity" in (migrating) birds and vertebrates, a susceptible bird population with no existing immunity against this virus was exposed in the "New World".  相似文献   

19.
A prospective cohort study was used to estimate the incidence of West Nile virus (WNV) infection in a group of unvaccinated horses (n = 37) in California and compare the effects of natural WNV infection in these unvaccinated horses to a group of co-mingled vaccinated horses (n = 155). Horses initially were vaccinated with either inactivated whole virus (n = 87) or canarypox recombinant (n = 68) WNV vaccines during 2003 or 2004, prior to emergence of WNV in the region. Unvaccinated horses were serologically tested for antibodies to WNV by microsphere immunoassay incorporating recombinant WNV E protein (rE MIA) in December 2003, December 2004, and every two months thereafter until November 2005. Clinical neurologic disease attributable to WNV infection (West Nile disease (WND)) developed in 2 (5.4%) of 37 unvaccinated horses and in 0 of 155 vaccinated horses. One affected horse died. Twenty one (67.7%) of 31 unvaccinated horses that were seronegative to WNV in December, 2004 seroconverted to WNV before the end of the study in November, 2005. Findings from the study indicate that currently-available commercial vaccines are effective in preventing WND and their use is financially justified because clinical disease only occurred in unvaccinated horses and the mean cost of each clinical case of WND was approximately 45 times the cost of a 2-dose WNV vaccination program.  相似文献   

20.
West Nile virus has been associated with numerous bird mortalities in the United States since 1999. Five avian species at three zoological parks were selected to assess the antibody response to vaccination for West Nile virus: black-footed penguins (Spheniscus demersus), little blue penguins (Eudyptula minor), American flamingos (Phoenicopterus ruber), Chilean flamingos (Phoenicopterus chilensis), and Attwater's prairie chickens (Tympanuchus cupido attwateri). All birds were vaccinated intramuscularly at least twice with a commercially available inactivated whole virus vaccine (Innovator). Significant differences in antibody titer over time were detected for black-footed penguins and both flamingo species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号