首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effects of aggregates of different sizes on the soil microbial biomass. The distribution of aggregate size classes (<2, 2–4, 4–10, >10 mm) in the upper mineral soil horizon (Ah layer) was very different in three sites (upper, intermediate, lower) in a beechwood (Fagus sylvatica) on a basalt hill (Germany). Aggregates of different sizes (<2, 2–4, 4–10 mm) contained different amounts of C and N but the C:N ratios were similar. C and N contents were generally higher in smaller aggregates. The maximum initial respiratory response by microorganisms in intact aggregates and in aggregates passed through a 1-mm sieve declined with the aggregate size, but the difference was more pronounced in intact aggregates. Disruption of aggregates generally increased this response, particularly in 4- to 10-mm aggregates in the lower site. Basal respiration differed strongly among sites, but was similar in each of the aggregate size classes. Aggregate size did not significantly affect the specific respiration (g O2 g–1 microbial C h–1) nor the microbial: organic C ratio, but these parameters differed among sites. Microbial growth was increased strongly by passing the soil through a 1-mm sieve in each of the aggregate materials. The growth of microorganisms in disrupted aggregates was similar, and the effect of aggregate disruption depended on the growth of microorganisms in intact aggregates.  相似文献   

2.
Summary In microcosm studies the organic layers of coniferous forest soils show high nitrate and low ammonium mobilization, in accord with the presence of high numbers of autotrophic nitrifiers. The fungivorous collembolan Tomocerus minor (Lubbock) increases ammonium mobilization, probably through its excretion products, and has an indirect effect on nitrate mobilization. An input of N seems to have a negative effect on the number of nitrifiers and on nitrate mobilization; a decrease in N mobilization in the presence of T. minor is probably due to stimulation of microbial growth, which has an immobilizing effect.  相似文献   

3.
Summary A range of soil microbiological parameters were measured at intervals throughout the growing season of a potato crop. Treatments applied to the soil at sowing were zero N fertilisation of N fertilisation at 120 kg N ha–1, either alone or supplemented with straw or sucrose at 1200 kg C ha–1. C and N flushes determined by fumigation-incubation and fumigation-extraction, and substrate-induced respiration, were measured as indicators of microbial biomass. Microbial activity was measured as respiration (CO2 production) and dehydrogenase activity (formazan production). The greatest effects were obtained from the addition of N plus sucrose. Both biomass size and activity were significantly stimulated for up to 25 days after incorporation, with the magnitude of the effects consistently diminishing over time. By 125 days after planting, there was no detectable legacy from any of the treatmentson any of the biomass parameters that were measured, and all values had reverted to those prevalent at planting. There was no consistent effect from adding N, either alone or supplemented with straw, on any of the biomass parameters. There was no evidence for crop-induced stimulation of the biomass. The experiment demonstrates that biomass is only influenced where the quantity, quality, and rate of incorporation of C into the soil is appropriate, in this case, only by adding C as a pulse of sucrose.  相似文献   

4.
The effect of liming on microbial biomass C and respiration activity was studied in four liming experiments on young pine plantations. One of the experimental sites had been limed and planted 12 years before, two 5 years before, and one a year before soil sampling. The youngest experimental site was also treated with ash fertilizer. Liming raised the pHKCl of the humus layer by 1.5 units or less. Microbial biomass was measured using the fumigation-extraction and substrate-induced respiration methods. Liming did not significantly affect microbial biomass C, except in the experiment which had been limed 11 years ago, where there was a slight biomass increase. Basal respiration, which was measured by the evolution of CO2, increased in the limed soils, except for the youngest experiment, where there was no effect. Ash fertilization raised the soil pHKCl by about 0.5 unit, but did not influence microbial biomass C or basal respiration. Fumigation-extraction and substrate-induced respiration derived microbial biomass C values were correlated positively with each other (r=0.65), but substrate-induced respiration gave approximately 1.3 times higher results. In addition, the effect of storing the soil samples at +6 and -18°C was evaluated. The effects were variable but, generally, the substrate-induced respiration derived microbial biomass C decreased, and the fumigation-extraction derived microbial biomass C and basal respiration decreased or were not affected by storage.  相似文献   

5.
We studied the reactions of humus layer (F/H) microbial respiratory activity, microbial biomass C, and the fungal biomass, measured as the soil ergosterol content, to the application of three levels of wood ash (1000, 2500, and 5000 kg ha-1) and to fire treatment in a Scots pine (Pinus sylvestris L.) stand. Physicochemical measurements (pH, organic matter content, extractable and total C content, NH 4 + and total N content, cation-exchange capacity, base saturation) showed similarity between the fire-treated plots and those treated with the lowest dose of wood ash (1000 kg ha-1). The ash application did not change the level of microbial biomass C or fungal ergosterol when compared to the control, being around 7500 and 350 g g-1 organic matter for the biomass C and ergosterol, respectively. The fire treatment lowered the values of both biomass measurements to about half that of the control values. The fire treatment caused a sevenfold fall in the respiration rate of fieldmoist soil to 1.8 l h-1 g-1 organic matter compared to the values of the control or ash treatments. However, in the same soils adjusted to a water-holding capacity of 60%, the differences between the fire treatment and the control were diminished, and the ash-fertilized plots were characterized by a higher respiration rate compared to the control plots. The glucose-induced respiration reacted in the same way as the water-adjusted soil respiration. The metabolic quotient, qCO2, gradually increased from the control level with increasing applications of ash, reaching a maximum in the fire treatment. Nitrification was not observed in the treatment plots.  相似文献   

6.
Summary The effects of the presence of Folsomia candida on substrate-induced respiration, CO2-C evolution, bacterial count and NH 4 + -N were investigated in a grassland soil. Differences in these parameters, with the exception of NH 4 + , were correlated with the age of the collembolan Folsomia candida. In the presence of juvenile animals total CO2-C evolution was enhanced, but substrate-induced respiration and the bacterial count were unchanged. In fumigated soil with imagos, substrate-induced respiration and the number of bacteria were increased, but total CO2-C evolution was unaltered. Different food selection strategies between adults and juvenile animals may explain the results.  相似文献   

7.
Plant growth can be an important factor regulating seasonal variations of soil microbial biomass and activity. We investigated soil microbial biomass, microbial respiration, net N mineralization, and soil enzyme activity in turfgrass systems of three cool-season species (tall fescue, Festuca arundinacea Schreb., Kentucky bluegrass, Poa pratensis L., and creeping bentgrass, Agrostis palustris L.) and three warm-season species (centipedegrass, Eremochloa ophiuroides (Munro.) Hack, zoysiagrass, Zoysia japonica Steud, and bermudagrass, Cynodon dactylon (L.) Pers.). Microbial biomass and respiration were higher in warm- than the cool-season turfgrass systems, but net N mineralization was generally lower in warm-season turfgrass systems. Soil microbial biomass C and N varied seasonally, being lower in September and higher in May and December, independent of turfgrass physiological types. Seasonal variations in microbial respiration, net N mineralization, and cellulase activity were also similar between warm- and cool-season turfgrass systems. The lower microbial biomass and activity in September were associated with lower soil available N, possibly caused by turfgrass competition for this resource. Microbial biomass and activity (i.e., microbial respiration and net N mineralization determined in a laboratory incubation experiment) increased in soil samples collected during late fall and winter when turfgrasses grew slowly and their competition for soil N was weak. These results suggest that N availability rather than climate is the primary determinant of seasonal dynamics of soil microbial biomass and activity in turfgrass systems, located in the humid and warm region.  相似文献   

8.
Microbial biomass C and N, and activities related to C and N cycles, were compared in needle and leaf litter, and in the uppermost 10 cm of soil under the litter layer in Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and silver birch (Betula pendula L.) stands, planted on originally similar field afforestation sites 23–24 years ago. The ground vegetation was differentiated under different tree species, consisting of grasses and herbs under birch and pine, and mosses or no vegetation with a thick layer of needles under spruce. The C:N ratio of the soils was 13–21 and the soil pHCaCl 2 3.8–5.2. Both showed little variation under different tree species. Microbial biomass C and N, C mineralization, net ammonification, reduction) did not differ significantly in soil under different tree species either. Birch leaf litter had a higher pHCaCl 2 (5.9) than spruce and pine needle litter (pH 5.0 and 4.8, respectively). The C:N ratio of spruce needles was 30, and was considerably higher in pine needles (69) and birch leaves (54). Birch leaves tended to have the highest microbial biomass C and C mineralization. Spruce needles appeared to have the highest microbial biomass N and net formation of mineral N, whereas formation of mineral N in pine needles and birch leaves was negligible. Microbial biomass C and N were of the same order of magnitude in the soil and litter samples but C mineralization was tenfold higher in the litter samples.  相似文献   

9.
Chemical characteristics and some parameters related to biological components were determined in 16 soils from a fairly homogeneous area in the north of Italy, contaminated with different levels of heavy metals. Correlation analysis of the parameters studied showed close positive relationships among the metals and with the organic C content in the soils studied. Negative relationships were observed among the heavy metals, soil respiration, and the ratio between evolved CO2–C and microbial biomass C per unit time (specific respiratory activity). This was ascribed to an adverse heavy metal effect on the soil microflora, which appeared to increase the accumulation of organic matter as the heavy metal content increased, probably because the biomass was less effective in mineralising soil organic matter under these conditions.  相似文献   

10.
In February 1993 samples of litter from three different litter layers (upper, intermediate, and lower) were taken from a beechwood growing on basalt soil. Using the substrate-induced respiration method, we investigated the influence of fragmentation and glucose concentration on the maximum initial respiratory response. Glucose concentrations ranged between 0 and 160000 g g-1 dry weight. The initial respiratory response reached a maximum at 80000 g glucose g-1 dry weight. The addition of higher concentrations of glucose resulted in negligible changes in respiration. Litter materials of four different size classes (intact leaves, fragmented <100 mm2, <25 mm2, and <5 mm2) were amended with 80000 g glucose g-1 dry weight. Substrate-induced respiration was at a maximum in the size class <25 mm2. The addition of glucose to intact litter did not result in microbial growth. It is concluded that C is not the primary limiting element for the microflora in litter layers of the study site. Fragmentation of beech litter enabled the microorganisms to grow. Presumably, nutrients that limited microbial growth in intact litter were mobilized by the fragmentation procedure and enabled microorganisms to grow in fragmented litter materials.  相似文献   

11.
Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae)   总被引:10,自引:0,他引:10  
Summary Microbial respiration, microbial biomass and nutrient requirements of the microflora (C, N, P) were studied in the food substrate (soil taken from the upper 3 cm of the mineral soil of a beech wood on limestone), the burrow walls and the casts of the earthworm Aporrectodea caliginosa (Savigny). The passage of the soil through the gut caused an increase in soil microbial respiration of about 90% over a 4-week period. Microbial biomass was increased only in freshly deposited casts and decreased in aging faeces to a level about 10% lower than in soil. Microbial respiration of the burrow walls was only increased over a shorter period (about 2 weeks). The microflora of the soil and the burrow walls was limited by P, whereas in earthworm casts, microbial growth was limited by the amount of available C. In aging faeces the P requirement of the microflora increased and approached that of the soil. Immobilization of phosphate in earthworm casts is probably caused by mainly abiotic processes. C mineralization by soil microflora fertilized with glucose and P was limited by N, except in freshly deposited casts. Ammonium, not nitrate, was responsible for this process. N dynamics in earthworm casts are discussed.  相似文献   

12.
In studying the basal respiration, microbial biomass (substrate-induced respiration, SIR), and metabolic quotient (qCO2) in western red cedar (Thuja plicata Donn ex D. Don)-western hemlock [(Tsuga heterophylla Raf.) Sarg.] ecosystems (old-growth forests, 3- and 10-year-old plantations) on northern Vancouver Island, British Columbia, Canada, we predicted that (1) soil basal respiration would be reduced by harvesting and burning, reflecting the reduction in microbial biomass and activities; (2) the microbial biomass would be reduced by harvesting and slash-burning, due to the excessive heat of the burning or due to reduced substrate availability; (3) microbial biomass in the plantations would tend to recover to the preharvesting levels with growth of the trees and increased substrate availability; and (4) microbial biomass measured by the SIR method would compare well with that measured by the fumigation-extraction (FE) method. Decaying litter layer (F), woody F (Fw) and humus layer (H) materials were sampled four times in the summer of 1992. The results obtained supported the four predictions. Microbial biomass was reduced in the harvested and slash-burned plots. Both SIR and FE methods provided equally good estimates of microbial biomass in the samples [SIR microbial C (mg g-1)=0.227+0.458 FE microbial C (mg g-1), r=0.63, P=0.0001] and proved suitable for microbial biomass measurements in this strongly acidic soil. Basal respiration was significantly greater in the old-growth forests than in the young plantations (P<0.05) in both F and H layers, but not in the Fw layer. For the 3- and 10-year-old plantations, there was no difference in basal respiration in F, Fw, and H layers. Basal respiration was related to changes in air temperature, precipitation, and the soil moisture contant at the time of sampling. The qCO2 values were higher in the old-growth stands than in the plantations. Clear-cutting followed by prescribed burning did not increase soil microbial respiration, but CO2 released from slash-burning and that contributed from other sources may be of concern to increasing atmospheric CO2 concentrations.  相似文献   

13.
The collembological composition of samples from the Central and Western Pyrenees (Northern Spain) was studied. Soils from two biotopes (pine forest and Rhododendron shrub) were studied in Nuria and Vallibierna, using different diversity indices and multivariate analyses. Ten species were found that were endemic to the Iberian Peninsula. Three of these are exclusive to the Pyrenees: Ceratophysella elegans, Hypogastrura dasiensis and Protachorutes pyrenaeus. The greatest diversity was observed in the soils of Rhododendron, above all at Nuria. Collembola were most poorly represented in the pine forest of Vallibierna, where the endemic Hypogastrura meridionalis was the dominant species. Multivariate analyses indicated that the latter species characterizes this pine forest and separates it from all other biotopes studied. The evenness (E) was most pronounced in Nuria, where Folsomia manolachei was the characteristic species.  相似文献   

14.
Summary Using microcosms containing decomposing Pinus nigra litter, the effects of introducing two species of soil arthropods, the fungivorous collembolan Tomocerus minor and the detritivorous isopod Philoscia muscorum, have been studied. The effects of these animals on microbial respiration, on dehydrogenase and cellulase activity, and on the concentration of exchangeable macronutrients (Ca2+, Mg2+, K+, NO inf3 sup- , NH inf4 sup+ , PO inf4 sup3- ) were measured. Both species enhanced microbial activity and the concentration of exchangeable nitrate, ammonium, and phosphate. Ca2+ and Mg2+ concentrations were lowered in the microcosms with animals. The differences between the two species were mainly quantitative, and it appears that the effect of isopods is direct, whereas the collembolans show direct and indirect effects. Positive effects of the presence of animals were found when microbial activities or concentrations of exchangeable nutrients in microcosms without animals were low; negative effects were found when they were relatively high. Thus, soil arthropods have a buffering role in soil processes. These results ae discussed against a background of a supposed succession of sugar fungi/bacteria to more slowly growing decomposing fungi.Dedicated to the late Prof. Dr. W. Kühnelt  相似文献   

15.
Summary The functional roles of the fungivorous collembolan Tomocerus minor and the detritivorous isopod Philoscia muscorum during the decomposition of Pinus nigra needles were studied in mesocosms filled with two different types of F1 litter, obtained from two different forest soils. The effects of the animals on the availability of K+, Ca2+, NO inf3 sup- , NH inf4 sup+ , and PO inf4 sup3- and on the respiration, dehydrogenase, and cellulase activity of microorganisms were measured over one growing season. The animals were introduced into the F1 litter in three densities. The most important animal effect was a buffering effect, in that addition of the animals increased nutrient availability and microbial activity where the corresponding values in control mesocosms without animals were low, and decreased the nutrient availability and microbial activity where control values were high. This effect occurred for both species and was most evident in the substrate with the highest temporal fluctuations. The effects on nutrient availability are attributed to an animal effect on the activity of and successional stage reached the microbial community, with NH inf4 sup+ availability seen as the most important factor. The concept of functional groups in relation to these animal effects is discussed.  相似文献   

16.
本试验通过两室分根装置种植玉米,利用网袋法研究接种Glomus mosseae和Glomus etunicatum两种AM真菌对玉米秸秆降解的影响。试验分别在玉米移栽后第20 d、30 d、40 d、50 d和60 d时取样,通过测定接种AM真菌后玉米秸秆中碳、氮释放,土壤中3种常见酶活性、微生物量碳、微生物量氮及土壤呼吸的动态变化,探讨AM真菌降解玉米秸秆可能的作用机制。研究结果表明:经60 d的培养后,与未接种根室相比,接种G.mosseae和G.etunicatum真菌的菌根室玉米秸秆降解量提高了20.75%和20.97%;另外,接种G.mosseae和G.etunicatum加快了玉米秸秆碳素释放,降低了氮素释放,致使碳氮比降低25.45%和26.17%,有利于秸秆进一步降解。在本试验条件下,接种AF真菌的菌根室中土壤酸性磷素酶、蛋白酶和过氧化氢酶活性均有显著提高,并增加了微生物量碳、氮和土壤呼吸作用,形成了明显有别于根际的微生物区系。这一系列影响都反映出AM真菌能够直接或间接作用于玉米秸秆的降解过程,是导致玉米秸秆降解加快的重要原因。  相似文献   

17.
Microbial biomass phosphorus in soils of beech (Fagus sylvatica L.) forests   总被引:3,自引:0,他引:3  
Thirty-eight soils from forest sites in central Germany dominated by beech trees (Fagus sylvatica L.) were sampled to a depth of about 10 cm after careful removal of the overlying organic layers. Microbial biomass P was estimated by the fumigation — extraction method, measuring the increase in NaHCO3-extractable phosphate. The size of the microbial P pool varied between 17.7 and 174.3 g P g-1 soil and was on average more than seven times larger than NaHCO3-extractable phosphate. Microbial P was positively correlated with soil organic C and total P, reflecting the importance of soil organic matter as a P source. The mean microbial P concentration was 13.1% of total P, varying in most soils between 6 and 18. Microbial P and microbial C were significantly correlated with each other and had a mean ratio of 14.3. A wide (5.1–26.3) microbial C: P ratio indicates that there is no simple relatinship between these two parameters. The microbial C: P ratio showed strong and positive correlations with soil pH and cation exchange capacity.  相似文献   

18.
Near-infrared spectroscopy and soil physicochemical determinations (pHH2O, organic matter content, total C content, NH inf4 sup+ , total N content, cation-exchange capacity, and base saturation) were used to characterize fire-or wood ash-treated humus samples. The spectroscopic and the soil physicochemical analysis data from the humus samples were used separately to explain observed variations in soil respiration and microbial biomass C by partial least-square regression. The first regression component obtained from the physicochemical and spectroscopic characterization explained 10–12% and 60–80% of the biological variation, respectively. This suggests that information on organic material collected from near-infrared spectra is very useful for explaining biological variations in forest humus.  相似文献   

19.
Changes in above-ground litterfall can influence below-ground biogeochemical processes in forests. In order to examine how above-ground litter inputs affect soil carbon (C), nitrogen (N) and phosphorus (P) in a temperate deciduous forest, we studied a 14-year-old small-scale litter manipulation experiment that included control, litter exclusion, and doubled litter addition at a mature Fagus sylvatica L. site. Total organic C (TOC), total N (TN) and total P (TP), total organic P (TOP), bioavailable inorganic P (Pi), microbial C, N and P, soil respiration and fine root biomass were analyzed in the A and in two B horizons. Our results showed that litter manipulation had no significant effect on TOC in the mineral soil. Litter addition increased the bioavailable Pi in the A horizon but had no significant effect on N in the mineral soil. Litter exclusion decreased TN and TP in the B horizon to a depth of 10 cm. In the A horizon of the litter exclusion treatment, TP, TOP and bioavailable Pi were increased, which is most likely due to the higher root biomass in this treatment. The high fine root biomass seems to have counteracted the effects of the excluded aboveground litter. In conclusion, our study indicates that aboveground litter is not an important source for C in the mineral soil and that P recycling from root litter might be more important than from above-ground litter.  相似文献   

20.
Here we studied the effects of gut transit through the earthworm Eudrilus eugeniae, on the physicochemical, biochemical, and microbial characteristics of pig slurry, by analyzing fresh casts. The reduction in the dissolved organic C contents in casts we recorded suggests that during digestion, earthworms assimilated labile organic C preferentially, which is a limiting growth factor for them. Furthermore, both microbial biomass and activity in pig slurry were significantly decreased by earthworm gut transit. It appears that E. eugeniae is able to digest microorganisms, although the addition of glucose to the food increased respiration, indicating that growth of microorganisms in casts could be limited by depletion of labile C. Despite reduced microbial biomass and activity, the metabolic diversity of microbial communities was greater in casts than in original pig slurry. Community level physiological profiles obtained from Biolog Ecoplate data revealed that, after earthworm gut transit, the microbial communities in casts and pig slurry were clearly differentiated by their physiological profiles. The results indicate that first stage in vermicomposting of pig slurry by E. eugeniae, i.e., casting, produced changes that will influence the dynamics of the organic matter degradation by reducing forms of N and C available to microorganisms, hence restricting their growth and multiplication. Nevertheless, the reduced microflora of casts was characterized by an increased catabolic potential that might lead to thorough degradation of pig slurry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号