首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Spatial patterns, rates, and density of encroaching forests into adjacent grasslands have important implications for long-term land use management and resource planning. This study examines the effects of Douglas-fir (Pseudotsuga menzeisii) and aspen (Populus tremuloides) regeneration mechanisms on sucker and seedling spatial patterns, distance from adult trees, and density in encroaching forests. A total of 8,924 aspen suckers and 1,244 Douglas-fir seedlings were counted and mapped in 2,920 quadrats (5 m × 5 m) in 106 plots along a lower forest-grassland ecotone in the Centennial Valley, MT, USA. Sucker and seedling spatial patterns were analyzed using Morisita’s I index. Average sucker and seedling density per quadrat and distance from adult trees were estimated for each plot and compared between aspen-dominated plots and Douglas-fir-dominated plots using ANOVA tests. Aspen suckers were established in a clustered spatial pattern at a significantly higher density and a significantly shorter distance from the adult trees. In contrast, Douglas-fir seedlings were established in varying spatial patterns at a significantly lower density and a significantly greater distance from the adult trees. Forest encroachment into the adjacent grassland in the Centennial Valley is occurring in contrasting patterns and at varying rates and densities due to the difference in aspen and Douglas-fir regeneration mechanisms.  相似文献   

2.
Spatial pattern of trees, basal stem increment and height were examined in a 5.0 ha mixed deciduous/Pinus koraiensis forest from October in 1984 to May in 1987. Conclusions are as following: 1. Analysis of the age-structure of the korcan pine forest shows that it is different from general steady-state forest type. The lack of saplings and individuals in small-diameter class clearly indicates that regeneration is not continuous. Continuous regeneration depends on thinning of the canopy to form a gap. Similar-aged korcan pine sccdings grow in these gaps. 2. The horizontal structure of the korcan pine is a mosaic of more or less even-aged groups of trees. The mosaic is a result of korcan pine by regeneration strategy. The aggregations of korcan pine of different ages overlaps to form a continuous population generation. As a results, the population is maintained in steady state.  相似文献   

3.
Restoration of the range of forest types and stages that once composed the landscape mosaic of the Upper Great Lakes region of North America will involve manipulating managed red pine stands to recreate now rare structural conditions. Because many of the attributes used to characterize structural condition depend upon spatial arrangement, sampling schemes to assess condition must match sampling extent to attribute variability. To evaluate the metrics and scales appropriate for characterizing structural complexity in managed red pine, we applied metrics that incorporated one-, two-, and three-dimensional structural attributes to eight 1.0 ha mature stem-mapped stands. Most metrics were also calculated within simulated moving windows of 0.05–1.0 ha in sampling extent (“plot size”) within each stand. Two standards were used to evaluate the adequacy of plot sizes for these metrics: (1) estimates were precise, varying less than 10% among moving windows for a given scale, and (2) estimates were accurate to within 10% of the 1.0 ha value at both the 5th and 95th percentiles of the moving window distributions. Necessary sample sizes to achieve precise and accurate estimates were also calculated for each scale.  相似文献   

4.
Fire is an important process in California closed-cone pine forests; however spatial variability in post-fire stand dynamics of these forests is poorly understood. The 1995 Vision Fire in Point Reyes National Seashore burned over 5000 ha, initiating vigorous Pinus muricata (bishop pine) regeneration in areas that were forested prior to the fire but also serving as a catalyst for forest expansion into other locales. We examined the post-fire stand structure of P. muricata forest 14 years after fire in newly established stands where the forest has expanded across the burn landscape to determine the important factors driving variability in density, basal area, tree size, and mortality. Additionally, we estimated the self-thinning line at this point in stand development and compared the size-density relationship in this forest to the theorized (−1.605) log-log slope of Reineke’s Rule, which relates maximum stand density to average tree size. Following the fire, post-fire P. muricata density in the expanded forest ranged from 500 to 8900 live stems ha−1 (median density = 1800 ha−1). Post-fire tree density and basal area declined with increasing distance to individual pre-fire trees, but showed little variation with other environmental covariates. Self-thinning (density-dependent mortality) was observed in nearly all stands with post-fire density >1800 stems ha−1, and post-fire P. muricata stands conformed to the size-density relationship predicted by Reineke’s Rule. This study demonstrates broad spatial variability in forest development following stand-replacing fires in California closed-cone pine forests, and highlights the importance of isolated pre-fire trees as drivers of stand establishment and development in serotinous conifers.  相似文献   

5.
Species richness and evenness have greatly declined in oak–hickory forests in the central hardwood region in the U.S.A. in the past 100 years due to the rapid population growth of Acer saccharum. This study used a 50-year record of spatial dynamics to examine how demographic processes, particularly recruitment, may have contributed to this increase in an old-growth forest remnant, Brownfield Woods, Urbana, Illinois, U.S.A. The impact of canopy disturbance, including the outbreak of Dutch elm disease, on this increase was also evaluated. Historical maps of trees (≥7.6 cm DBH) from 1951, 1988, and 2001 in a 180 m × 280 m area were used to develop a series of univariate Ripley's L(d) functions to study changes in spatial patterns of three size classes of A. saccharum over time. Bivariate Ripley's L(d) functions were also utilized to evaluate spatial associations between recruitment and canopy disturbance. Our results indicated that A. saccharum was aggregated at most spatial scales up to 80 m during 1951–2001. Such aggregation arose mainly from small individuals. Furthermore, newly recruited individuals were aggregated at multiple spatial scales, and were significantly associated with canopy disturbance in general, as well as gaps created by Ulmus trees killed by Dutch elm disease. The aggregation of the 1951 initial group of small individuals changed via mortality to a random distribution over time. The results indicate that tree deaths caused by disturbances of different scales and types were the main cause of increased recruitment of A. saccharum in Brownfield Woods. The occurrence of Dutch elm disease further accelerated its population increase. This study demonstrated a direct spatial link between recruitment of A. saccharum and disturbance, and provided a long-term case study of a population explosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号