首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to evaluate the chemical composition and the dynamic water vapour sorption properties of Eucalyptus pellita wood thermally modified in vacuum. For this purpose, wood samples were thermally modified in a vacuum oven at 160–240 °C for 4 h. Chemical composition were investigated by wet chemical analysis, elemental analysis, as well as Fourier transform infrared (FTIR) analysis, and dynamic water vapour sorption properties were evaluated by dynamic vapour sorption apparatus. The results showed that holocellulose and alpha-cellulose contents decreased and lignin and extractives contents relatively increased during the heat process. Elemental analysis showed a reduction in hydrogen content and an increase in carbon content. FTIR analysis indicated that the degradation of hemicellulose and condensation reactions of lignin occurred. In addition, the thermo-vacuum resulted in a reduction in the equilibrium moisture content of wood during the adsorption or desorption process. And the sorption hysteresis had a decreasing trend with increasing treatment temperature. The development of the hygroscopicity was related to the increase in the relative content of lignin, the degradation of the carbonyl groups in xylan and the loss of carbonyl group linked to the aromatic skeleton in lignin after heat treatment.  相似文献   

2.
Japanese beech (Fagus crenata) wood was treated by two-step semi-flow hot-compressed water (the first stage: 230 °C/10 MPa/15 min, the second stage: 270 °C/10 MPa/15 min), and produced lignin-derived products in the hot-compressed water-soluble portions at the first and second stages, and the final residue of the second stage was characterized with alkaline nitrobenzene oxidation method and gel permeation chromatographic analysis. As a result, the lignin-derived products at the first stage, where hemicellulose was also decomposed, consisted of lignin-based monomers and dimers and oligomers/polymers in the water-soluble portion. A large part of the oligomers/polymers was, however, recovered as the precipitate during 12 h setting after hot-compressed water treatment. By the analysis of nitrobenzene oxidation products, there were relatively higher contents of ether-type lignin in the precipitate at the first stage than in original beech wood. Since the ether linkages of lignin are more preferentially cleaved by this hot-compressed water, lignin-based polymeric fractions were flowed out from the porous cell walls from which hemicellulose was removed. On the other hand, at the second stage condensed-type lignin remained in the precipitate and residue. Based on these results, decomposition behavior of lignin in Japanese beech wood as treated by the two-step semi-flow hot-compressed water was discussed regarding the topochemistry of lignin structure.  相似文献   

3.
Bamboo was carbonized at different temperatures ranging from 200℃ to 600℃.The dependence of the change of hemicellulose,cellulose,and lignin on the temperature was investigated by means of elemental analysis and Fourier Transform Infrared (FTIR) spectra of the residual solid products.The results showed:(1)Below 200℃,hemicellulose in bamboo wasdecomposed and a large amount of hydroxyl groups are dislocated from hemicellulose and cellulose,accompanied by the evolution of water to escape.(2)200℃-250℃,cellulose in bamboo was brastically decomposed whereas the net structure of lignin keep stable,with the except of the dislocation of methoxyl groups from lignin.(3)250℃-400℃,the net structure of lignin collapse,up to 400℃,followed by that the more position in aryl groups are substituted.(4)For bamboo carbonization,the aromatization of residual carbon has approximately completed at the temperature as high as 600℃.But the fusion of aromatic rings possibly does not occur.  相似文献   

4.
为构建棕榈藤材材性数据库,提升棕榈藤材高附加值加工利用水平,文章以高地钩叶藤为研究对象,对其主要化学成分含量进行测定和分析。结果表明,高地钩叶藤材综纤维素、酸不溶木质素、α-纤维素、半纤维素、苯-醇抽提物、热水抽提物、冷水抽提物、1%NaOH抽提物及灰分含量的均值分别为67.98%、16.72%、43.91%、24.38%、9.78%、18.85%、15.02%、38.60%和1.46%。径向上,综纤维素、α-纤维素、酸不溶木质素及灰分含量均为藤皮>藤中>藤芯;而半纤维素、冷水抽提物、热水抽提物、苯-醇抽提物及1%NaOH抽提物含量均为藤芯>藤中>藤皮。轴向上,综纤维素、α-纤维素、酸不溶木质素及灰分含量最大值均在中部,而半纤维素及4种抽提物含量最大值均在梢部。酸不溶木质素和α-纤维素含量最小值在梢部,综纤维素、半纤维素及灰分含量最小值在基部,冷水抽提物、苯-醇抽提物及1%NaOH抽提物含量最小值均出现在基部以上2 m处,而热水抽提物含量最小值在中部。  相似文献   

5.
Pulverized samples of wood, cedar and eucalyptus were treated with 5 N NaOH solutions at 25–150 °C. Hemicellulose and lignin content in the samples decreased with increasing treatment temperatures, while the recovery of glucose was maintained at nearly 90 %. X-ray diffraction analysis showed that the content of the original cellulose I structure in the samples decreased with increasing temperature, and most of the cellulose in the sample treated at 150 °C was converted to cellulose II by mercerization. Enzymatic hydrolysis of the alkaline-treated samples was carried out at 37 °C using solutions comprising a mixture of cellulase and β-glucosidase. The samples treated at higher temperatures showed better enzymatic degradability. Treatment with an alkaline solution of lower concentration (1 N NaOH) at 150 °C was also used. Despite significant quantities of hemicellulose and lignin being removed, mercerization was not induced. The enzymatic degradability was much lower than that of the sample treated with a 5 N NaOH solution at 150 °C. Thus, treatment with concentrated alkaline solution at high temperature led to not only the removal of hemicellulose and lignin, but also to modification of the cellulose structure, which resulted in high efficiency of enzymatic saccharification of the wood samples.  相似文献   

6.
To investigate the effect of CO2 laser incising under five drying methods on drying characteristics of Sugi lumber, the squares (120 mm × 120 mm) of Sugi lumber with length of 650 mm were used. A half of samples were incised by CO2 laser with incising density of 2,500 holes/m2. Five types of drying methods were used: microwave drying, steam injection drying, and three combinations of microwave heating and steam injection drying. Steam injection drying was conducted by injecting superheated steam of 120 °C through a perforated plate heated to 140 °C of an injection press. Microwave was irradiated with the power of 3 kW at frequency of 2.45 GHz. The results indicated that incising helps heat through a specimen and thus the whole temperature raised rapidly, which was up to threefolds compared to that of no-incised one. Incised specimens dried by a combination of microwave heating for 1 h and steam injection showed the highest drying rate, which was up to 5.3 %/h. Incising and microwave heating contributed positively to dry lumber under more uniform distribution of moisture content and to reduce surface and internal checks. Incised specimen dried by microwave showed the most uniform distribution of moisture content without surface and internal checks.  相似文献   

7.
Heat treatment improves the dimensional stability and hydrophobicity of wood, and heat-treated wood is currently attracting attention as a new interior material. However, there are few evaluations where the acoustic properties of heat-treated wood are reported when such wood is used as an interior material. In this study, Larix kaempferi wood, typically used as a building material, was heat-treated at 200, 220, and 240 °C for 9, 12, 15, and 18 h. The sound absorption coefficients of the treated wood samples were measured at 250, 500, 1000, 2000, and 4000 Hz in a reverberation room. The sound absorption coefficient increased with the treatment temperature and the treatment time. The results of this study showed that the high-frequency band range sound absorption coefficient of wood can be increased dramatically by heat treatment.  相似文献   

8.
Common hornbeam (Carpinus betulus L.) is a highly underused wood species despite its great hardness, strength, wear-resistance and toughness. It is mainly used as firewood in Hungary because of its wood defects, irregular shape and low-dimensional stability. These wood defects and small breast height diameter result in a low yield. It is non-durable outdoors as it tends to turn grey, crack and be attacked by wood-decaying organisms. Indoors it lasts for hundreds of years. One technology that could improve the stability and durability properties is acetylation. Hornbeam was acetylated with the Accoya® method under industrial conditions. The aim of this research was the assessment of acetylation affecting the chemical properties of hornbeam wood and how these are related to the change in physical and mechanical properties. Main wood constituents (cellulose, hemicellulose, Klason lignin, extractives and ash content) were determined and compared. Chemical parameters related to the degradation of structural polymers were also evaluated (total phenolic and soluble carbohydrate contents, pH and buffering capacity, furfural, levulinic acid, formic acid, acetic acid). Structural changes in acetylated wood and in the Klason lignin fraction were also assessed using FTIR spectroscopy.  相似文献   

9.
A new approach is proposed for the evaluation of the brittleness of heat-treated Styrax tonkinensis wood. Heat treatment made wood more brittle when wood was heated at a higher temperature or for a longer time. The brittleness increased to four times that of the control when wood was heated at 200°C for 12 h. For treatment at 160°C, the increase in brittleness without any change in weight is thought to be possibly caused by the relocation of lignin molecules. At higher temperatures, loss of amorphous polysaccharides due to degradation is thought to become the main factor affecting brittleness. The crystallites that were newly formed after 2 h of treatment showed brittleness that was different from that of the inherent crystallites remaining after 12 h of heat treatment. This inherent crystalline cellulose possibly plays a role in brittleness. There is also the possibility of using color to predict the brittleness of heat-treated wood.  相似文献   

10.
Heat treatment of wood in absence of oxygen and under mild conditions allows for obtaining a material with many interesting properties, such as enhanced dimensional stability and increased biological durability. The aim of this work was to study the influence of a thermal treatment on the antioxidant activity of the extractives of two wood species – beech and spruce – by using the DPPH method and quantifying the formation of phenoxyl radicals using ESR as wood and extractives are exposed to light irradiation. The relationship between the kinetics of formation of free radicals in the extracts of heat-treated wood and the antioxidant properties is discussed. Links with colour modification are discussed.  相似文献   

11.
Merbau is widely used for indoor finishing, outdoor constructions, and furniture. However, it has a disadvantage in some applications in that part of its extractives is water-soluble and can be readily leached out to stain adjacent materials. This study examined whether heat treatment could overcome the above-mentioned problem. Effects of the treatment temperature and time on water-soluble extractives and color changes of merbau heartwood were studied. CIELAB ΔL *, Δa *b *, and ΔE * parameters and absorbance spectra were used to evaluate color change and water-soluble extractive solutions, respectively. The results show that heat treatment is an efficient technique to overcome the problem caused by water-soluble extractives of merbau heartwood. Surface color of the treated samples tends to become darker and color of the extractive solution becomes fading to transparent when the treatment temperature and time increased. The absorbance of UV light decreases in intensity and the dominant absorption peak appears around 350 nm when the treatment temperature and time increase. The optimized parameters of treatment temperature and time are 170 °C and 4 h. Modulus of rupture and modulus of elasticity of the heat treated samples under the optimized parameters decrease by 29.6 and 12.9 %, respectively, compared with those of the untreated samples.  相似文献   

12.
We investigated the impact of residual extractives on lignin determination by lignin content difference between unextracted and extracted pulps, residual extractives analysis, and lignin content contribution from model extractive compounds. There were two different kinds of extractives in aspen kraft pulp. The extractives impacting on kappa number determination were well removed in oxygen delignification; these were mainly unsaturated fatty acids. However, the extractives impacting on Klason lignin determination were largely resistant to oxygen delignification; these were mainly saturated fatty acids, sterols, and hydrocarbons. Oxidation of unsaturated fatty acids was the main reaction in oxygen delignification. These trends were confirmed by simulation of lignin content determination with three model extractive compounds (β-sitosterol, linoleic acid, and palmitic acid). The publication of this article was made possible by an Emachu Research Fund. The authors are grateful for the fund.  相似文献   

13.
This study aims to evaluate the chemical composition of wood and extractives of Pinus taeda and Schizolobium parahyba (guapuruvu) as potential feedstock for new applications in the biorefinery industry. For this purpose, their content of α-cellulose, hemicellulose, insoluble lignin, hot water solubility, NaOH1% solubility, inorganic materials (ash), and monomeric sugars by high-performance liquid chromatography was quantified. Attenuated total reflectance infrared spectroscopy and thermogravimetric analysis were also used to complete the physicochemical characterization of the studied woods. The extractives were obtained by soxhlet extraction with ethanol:toluene and dichloromethane and identified with pyrolysis-gas chromatography/mass spectroscopy technique. The results showed that guapuruvu wood has the higher amount of hemicellulose (16%) when compared to pine wood (10%), which resulted in higher solubility in alkali solution. Furthermore, in relation to other biomasses, the two woods presented more percentage of lignin and minor content of hemicelluloses. The P. taeda wood presented the highest percentage of extractives mainly composed of fatty acids and aromatic hydrocarbons, while guapuruvu wood had a higher percentage of phenolic compounds and also fatty acids. Both the materials have low content of extractives with dichloromethane and were mainly composed of lipophilic compounds.  相似文献   

14.
杉木热处理材结晶度及力学性能的研究   总被引:1,自引:0,他引:1  
热处理对木材力学性能的影响是多样的,这与热处理条件下木材的物理化学变化密切相关。本次研究将杉木板材在160℃、180℃和220℃常压蒸汽条件下进行热处理,考察处理材的结晶度、抗弯弹性模量、抗弯强度及相互可能的关联。结果表明,热处理使试材结晶度增加,有助于提高木材的刚性,使热处理材的抗弯弹性模量高于常规对照材;结晶度的提高对抗弯强度没有改善作用,热处理后试材的抗弯强度明显下降。  相似文献   

15.
Epidermal peeling (EPT) and steam-heating (SHT) treatments are two widely processing methods in bamboo industry. Moso bamboo (Phyllostachys pubescens Mazel) and makino bamboo (Phyllostachys makinoi Hayata) are important economical bamboo species in Taiwan and China. The subject of this study was to access the changes of chemical and mechanical properties in moso and makino bamboo culms, which were collected from Taiwan and China after EPT and SHT. As regard to chemical properties, the amounts of extractives and ash were increased both in moso and makino bamboos after EPT and SHT. In contrast, the contains of holocellulose and α-cellulose were decreased after EPT and SHT for two bamboos. Moso bamboo collected from China contained the lowest cellulose content but the highest amount of hemicellulose by SHT. The lignin contents of all samples were no significant different after SHT, and it might due to the structure of lignin did not destroy at 120 °C. For the mechanical properties, the density of all makino and moso bamboo samples was reduced after SHT; moreover, the decreasing trend of density was similar to the reducing of holocellulose, α-cellulose, hemicellulose, and equilibrium moisture content (EMC). All bamboo samples without EPT presented the highest modulus of elasticity (MOE) and modulus of rupture (MOR) whether SHT or not. Both MOE and MOR of all bamboo samples were decreased after SHT. The integrity of the bamboo skin is important for the dimensional stability of the bamboo, and the water absorption ability would be increased after EPT; however, SHT decreased the water absorption of bamboo.  相似文献   

16.
The scrimber is composed of the special elementary unit called fibrosis veneers. Study on chemical constituent changes of fibrosis veneers during heat treatment is helpful to expand the application areas of scrimbers. The objectives of this study were to investigate the effect of heat treatment on the chemical composition of poplar fibrosis veneers. The content changes of chemical composition and extractives after heat treatment were evaluated by chemical analysis. X-ray photoelectron spectroscopy (XPS) and solid-state nuclear magnetic resonance (NMR) were used to characterize the changes in the chemical structure of components. Untreated samples were also set for comparison. The results indicated that transformation of the material induced by this treatment led to an increase in the contents of lignin and extractives, while a decrease in those of holocellulose and α-cellulose. XPS spectroscopy results showed that the hemicelluloses and celluloses could be strongly affected by the atmosphere in the oven during the treatment. Relatively, the lignin was not very sensitive to the heating process to some extent. Solid-state NMR results showed that different degrees of transformations of the polymers took place during the heat treatment, resulting from the deacetylation of hemicelluloses, demethoxylation of lignin and changes in the cellulose structure.  相似文献   

17.
Abstract

To investigate the role of extractives on heat-induced discoloration of wood, samples of black locust (Robinia pseudoacacia) wood flour were extracted with various solvents prior to heat-treatment. Analysis of their color parameters and chromophoric structures showed that the chroma value of the unextracted sample decreased while that of the extracted sample increased after heat-treatment. Both samples showed broad diffuse reflectance UV-Vis (DRUV) absorption bands with maxima around 360–380 nm after heat-treatment due to the formation of conjugated double bonds, carbonyl functionalities, and quinoid structures. Compared with the unextracted sample, the dominant chromaticity of the extracted samples hypochromatically shifted and the peak became narrower. This result showed that extractives contribute mostly to the reduction in the light reflection on heat-treated wood. In addition to extractives, lignin and hemicellulose also contributed to the formation of color substances upon heat-treatment. The increase in C3/C2 ratio in X-ray photoelectron spectroscopy (XPS) spectra signified the oxidation reactions in the heating process. The increase in O1/O2 for extracted sample after heat-treatment and changes in DRUV and Fourier transform infrared spectroscopy (FTIR) spectra support the hypothesis that discoloration can also arise from the degradation of hemicellulose and the condensation reactions of lignin.  相似文献   

18.
Thermal modification of wood is an environment-friendly alternative method for improving several properties of wood without the use of chemicals. This paper deals with the examination of color and chemical changes in spruce (Picea abies L.) and oak wood (Quercus robur F.) that occur due to thermal treatment. The thermal modification was performed at 160, 180, and 210 °C according to thermowood process. The color changes were measured by the spectrophotometer and described in the L*a*b* color system. Chemical changes were examined by wet chemistry methods, infrared spectroscopy and liquid chromatography. During the experiment, oak samples showed smaller color changes than spruce samples at all temperature values. During thermal modification, the content of cellulose, lignin, and extractives increases; however, the hemicellulose content drops by 58.85% (oak) and by 37.40% (spruce). In addition to deacetylation, new carbonyl and carboxyl groups are formed as a result of oxidation. Bonds in lignin (mainly β-O-4) and methoxyl groups are cleaved, and lignin is condensed at higher temperatures.  相似文献   

19.
Veneer drying is one of the most important stages in the manufacturing of veneer-based composites such as plywood and laminated veneer lumber. Due to the high drying costs, increased temperatures are being used commonly in plywood industry to reduce the overall drying time and increase capacity. However, high drying temperatures can alter some physical, mechanical and chemical characteristics of wood and cause some drying-related defects. In this study, it was attempted to predict the optimum drying temperature for beech and spruce veneers via artificial neural network modeling for optimum bonding. Therefore, bonding shear strength values of plywood panels manufactured from beech and spruce veneers dried at temperatures of 20, 110, 150 and 180 °C were obtained experimentally. Then, the intermediate bond strength values based on veneer drying temperatures were predicted by artificial neural network modeling, and the values not measured experimentally were evaluated. The optimum drying temperature values that yielded the highest bonding strength were obtained as 169 °C for urea formaldehyde and 125 °C for phenol formaldehyde adhesive in beech plywood panels, while 162 °C for urea formaldehyde and 151 °C for phenol formaldehyde in spruce plywood panels.  相似文献   

20.
The formation of chromophore groups from a phenolic compound oxidized with air and the formation of dark materials from hydrolysable extractives are considered as causes of discoloration. In this work, the colour changes, antioxidant capacity, and Fourier Transform Infrared Spectra of dust-wood are investigated in European oak wood under different plain vacuum drying conditions. The conductive heat source is maintained at four temperatures (46, 61, 70 and 80°C), and vacuum in the chamber is controlled at three different intervals (60–100, 150–200, and 250–300?mbar). Drying kinetics and temperature profiles are presented. The results suggest that degradation of extractives allows yellowing in wood and temperature improves lightness under these special drying conditions (plain vacuum). Furthermore, the presence of carbonyl groups in surfaces is related to the loss in antioxidant potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号